Spreading of Liquid Monolayers: From Kinetic Monte Carlo Simulations to Continuum Limit

  • M. N. Popescu
  • S. Dietrich
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 32)


We study with kinetic Monte Carlo simulations the two-dimensional spreading of a fluid monolayer that is extracted from a reservoir. The asymptotic spreading behavior is analyzed within a continuum limit and compared with previous predictions. The influence of a chemically patterned substrate (longitudinal stripes) on the spreading behavior of such fluid monolayers is briefly discussed.


Density Profile Continuum Limit Kinetic Monte Carlo Wetting Film Longitudinal Stripe 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. Heslot, A. M. Cazbat, and N. Fraysse: Diffusion-controlled Wetting Films J Phys.: Cond. Matt. 1 (1989) 5793–5798;CrossRefGoogle Scholar
  2. F. Heslot, A. M. Cazbat, P. Levinson, and N. Fraysse: Dynamics of Wetting of Tiny Drops: Ellipsometric Study of the Late Stages of Spreading. Phys. Rev. Lett. 62 (1989) 1286–1289;CrossRefGoogle Scholar
  3. N. Fraysse, M. P. Valignat, F. Heslot, A. M. Cazbat, and P. Levinson: The Spreading of Layered Microdroplets. J. Coll. Int. Sci. 158 (1993) 27–32.CrossRefGoogle Scholar
  4. 2.
    S. F. Burlatsky, G. Oshanin, A. M. Cazbat, and M. Moreau: Microscopic Model of Upward Creep of an Ultrathin Wetting Film. Phys. Rev. Lett. 76 (1996) 86–89.CrossRefGoogle Scholar
  5. 3.
    G. Oshanin, J. De Coninck, A. M. Cazabat, and M. Moreau: Microscopic Model for Spreading of a Two-dimensional Monolayer. J. Mol. Liquids 76 (1998) 195–219.CrossRefGoogle Scholar
  6. 4.
    P. G. de Gennes and A. M. Cazbat: Films Diffusifs de Mouillage. C. R. Acad. Sci. 310 II (1990) 107–111;Google Scholar
  7. D. B. Abraham, R. Cuerno, and E. Moro: A Microscopic Model for Thin Film Spreading. preprint, cond-mat/0201218.Google Scholar
  8. 5.
    E. Adam, L. Billard, and F. Lançon: Class of Monte Carlo Algorithms for Dynamic Problems Leads to an Adaptive Method. Phys. Rev. E 59 (1999) 1212–1216.CrossRefGoogle Scholar
  9. 6.
    G. Giacomin: Van der Waals Limit and Phase Separation in a Particle Model with Kawasaki Dynamics. J. Stat. Phys. 65 (1991) 217–234.MathSciNetMATHCrossRefGoogle Scholar
  10. 7.
    M. N. Popescu and S. Dietrich: unpublished.Google Scholar
  11. 8.
    S. Abbott, J. Ralston, G. Reynolds, and R. Hayes: Reversible Wettability of Photoresponsive Pyrimidine-Coated Surfaces. Langmuir 15 (1999) 8923–8928.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • M. N. Popescu
    • 1
    • 2
  • S. Dietrich
    • 1
    • 2
  1. 1.Max-Planck-Institut für MetallforschungStuttgartGermany
  2. 2.Institut für Theoretische und Angewandte PhysikUniversität StuttgartStuttgartGermany

Personalised recommendations