Deterministic Behaviour in Sidebranching Development

  • Ricard González-Cinca
  • Yves Couder
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 32)

Abstract

The development of sidebranching in solidifying dendrites in a regime of finite diffusion length is studied both experimentally and by means of a phase-field model. The growth rate of each sidebranch shows a power-law behaviour from the early stages of its life. From their birth, branches which finally succeed in the competition process of sidebranching development have a greater growth exponent than branches which are stopped.

Keywords

Anisotropy Bromide Xenon 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Langer, J.S., in Chance and Matter, Souletie, J., Vannimenus, J., Storra, R., Eds. North Holland, (1987) 629Google Scholar
  2. 2.
    Dynamics of Curved Fronts,Pelcé, P., Ed. Academic Press (1988)Google Scholar
  3. 3.
    Growth and Form. Nonlinear Aspects,Ben Amax, M., Pelcé, P. Tabeling, P., Eds. Plenum Press (1988)Google Scholar
  4. 4.
    Brener, E., Temkin, D.: Noise-induced sidebranching in the three-dimensional nonaxisymmetric dendritic growth. Phys. Rev. E 51 (1995) 351–359CrossRefGoogle Scholar
  5. 5.
    Karma, A., Rappel, W.-J.: Phase-field model of dendritic sidebranching with thermal noise. Phys. Rev. E 60 (1999) 3614–3625CrossRefGoogle Scholar
  6. 6.
    Pavlik, S.G., Sekerka, R.F.: Fluctuations in the phase-field model of solidification. Physica A 277 (2000) 415–431CrossRefGoogle Scholar
  7. 7.
    Gonzalez–Cinca, R., Ramirez–Piscina, L., Casademunt, J., Hernandez–Machado, A.: Sidebranching induced by external noise in solutal dendritic growth. Phys. Rev. E 63 (2001) 051601–1–9Google Scholar
  8. 8.
    Bisang, U., Bilgram, J.H.: Shape of the tip and the formation of sidebranches of xenon dendrites. Phys. Rev. E 54 (1996) 5309–5326CrossRefGoogle Scholar
  9. 9.
    Li, Q., Beckermann, C.: Evolution of the sidebranch structure in free dendritic growth. Acta Mater. 47 (1999) 2345–2356CrossRefGoogle Scholar
  10. 10.
    Maurer, J., Bouissou, P., Perrin, B., Tabeling, P.: Europhys. Lett. 6 (1989) 67CrossRefGoogle Scholar
  11. 11.
    Couder, Y., Argoul, F., Arnéodo, A., Maurer, J., Rabaud, M.: Statistical properties of fractal dendrites and anisotropic diffusion-limited aggregates. Phys. Rev. A 42 (1990) 3499–3503CrossRefGoogle Scholar
  12. 12.
    Wheeler, A.A., Murray, B.T., Schaefer, R.J.: Computation of dendrites using a phase-field model. Physica D 66 (1993) 243–262MATHCrossRefGoogle Scholar
  13. 13.
    McFadden, G.B., Wheeler, A.A., Braun, R.J., Coriell, S.R., Sekerka, R.F.: Phase-field models for anisotropic interfaces. Phys. Rev. E 48 (1993) 2016–2024MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Ricard González-Cinca
    • 1
  • Yves Couder
    • 2
  1. 1.Departament de Física AplicadaUniversitat Politècnica de CatalunyaBarcelonaSpain
  2. 2.Laboratoire de Physique StatistiqueEcole Normale SupérieureParis CEDEX 05France

Personalised recommendations