Skip to main content

A Phase-field Model for the Solidification Process in Multicomponent Alloys

  • Conference paper
  • 637 Accesses

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 32))

Abstract

Our aim is to describe phase transitions in a system of an arbitrary number of components and phases. Based on a gradient flow for the entropy (including surface anisotropy) we propose a phase field model that can be regarded as an extension of the Penrose-Fife model and that is thermodynamically consistent. By formal asymptotic expansions we see that the considered domain splits into several phases. We define the surface entropies on the phase boundaries and then we can show that in the limit the model satisfies the Gibbs—Thomson relation and other conditions known from classical sharp interface models. Finally, some possibilities to linearize the equations are outlined.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. W. Alt and I. Pawlow: Models of non-isothermal phase transitions in multicomponent systems. Part I: Theory, SFB256 University Bonn, Preprint 222 (1992)

    Google Scholar 

  2. G. Caginalp: Stefan and Hele-Shaw type models as asymptotic limits of the phase-field equations, Phys. Rev. A 39, 5997 (1989)

    Article  MathSciNet  Google Scholar 

  3. G. Caginalp: An analysis of a phase field model of a free boundary, Arch. Rational Mech. Anal., 92, 205–245 (1986)

    MathSciNet  MATH  Google Scholar 

  4. G. Caginalp and W. Xie: Phase-field and sharp-interface alloy models, Phys. Rev. E 48, 1897 (1993)

    MathSciNet  Google Scholar 

  5. H. Garcke, B. Nestler and B. Stinner: A diffuse interface model for alloys with multiple components and phases, in preparation for submission to Phys. Rev. Lett.

    Google Scholar 

  6. H. Garcke, B. Nestler and B. Stinner:chrw(133), in preparation for submission tochrw(133)

    Google Scholar 

  7. H. Garcke, B. Nestler and B. Stoth: On anisotropic order parameter models for multi-phase systems and their sharp interface limit, Physica D 115, 87108 (1998)

    Google Scholar 

  8. H. Garcke, B. Nestler and B. Stoth: A multi phase field concept: numerical simulations of moving phase boundaries and multiple junctions, SIAM J. Appl. Math. 60, No. 1, 295–315 (1999)

    MathSciNet  MATH  Google Scholar 

  9. J. S. Kirkaldy and D. J. Young: Diffusion in condensed state, The Institute of Metals, London (1987)

    Google Scholar 

  10. T. Lo, A. Karma, M. Plapp: Phase-field modeling of microstructural pattern formation during directional solidification of peritectic alloys without morphological instability, Phys. Rev. E. 63, 031504 (2001)

    Google Scholar 

  11. B. Nestler and A. A. Wheeler: A multi phase field model of eutectic and peritectic alloys: numerical simulation of growth structures, Physica D 138, 114 (2000)

    Google Scholar 

  12. L. Onsager: Reciprocal relations in irreversible processes I, Phys. Rev. 37, 405 (1931)

    Article  Google Scholar 

  13. L. Onsager: Reciprocal relations in irreversible processes II, Phys. Rev. 38, 2265 (1931)

    Article  MATH  Google Scholar 

  14. O. Penrose and P. C. Fife: Thermodynamically consistent models of phase—field type for the kinetics of phase transitions, Physica D 43, 44 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  15. I. Steinbach, F. Pezolla, B. Nestler, M. Seeßelberg, R. Prieler, G. Schmitz, J. Rezende: A phase field concept for multiphase systems, Physica D 94, 135–147 (1996)

    Article  MATH  Google Scholar 

  16. P. Sternberg: Vector—valued local minimizers of nonconvex variational problems, Rocky Mt. J. Math. 21 No. 2, 799–807 (1991)

    MathSciNet  MATH  Google Scholar 

  17. S-L. Wang, R. F. Sekerka, A. A. Wheeler, B. T. Murray, S. R. Coriell, R. J. Braun, G. B. McFadden: Thermodynamically—consistent phase—field models for solidification, Physica D 69, 189–200 (1993)

    Google Scholar 

  18. A. A. Wheeler, W. J. Boettinger and G. B. McFadden: Phase—field model for isothermal phase transitions in binary alloys, Phys. Rev. A 45, 7424 (1992)

    Article  Google Scholar 

  19. A. A. Wheeler, W. J. Boettinger and G. B. McFadden: Phase—field model for solidification of a eutectic alloy, Proc. R. Soc. Lond. A 452, 495–525 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Garcke, H., Nestler, B., Stinner, B. (2003). A Phase-field Model for the Solidification Process in Multicomponent Alloys. In: Emmerich, H., Nestler, B., Schreckenberg, M. (eds) Interface and Transport Dynamics. Lecture Notes in Computational Science and Engineering, vol 32. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-07969-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-07969-0_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07320-5

  • Online ISBN: 978-3-662-07969-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics