Advertisement

Density Effects and Fluid Flow in Phase-field Models

  • Massimo Conti
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 32)

Abstract

In this paper we discuss a method to incorporate hydrodynamic effects into phase-field models for the solidification of both pure substances and binary alloys. We start from a generalised thermodynamic potential with squared gradient terms for the associated fields; the condition of local positive entropy production is then utilised to derive a set of equations which drive the system towards equilibrium. The models are numerically solved in one dimension; the effects of the flow field on the growth dynamics are presented and discussed.

Keywords

Entropy Production Pure Substance Density Effect Gradient Term Diffusive Regime 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Caroli, B., Caroli, C. and Roulet, B. in: Solids far from equilibrium, ed. Godreche, ( Cambridge University Press, Cambridge, 1992 ).Google Scholar
  2. 2.
    Kurz, W. and Fisher, D. J.: Fundamentals of solidification ( Trans Tech Publications, Aedermannsdorf, 1992 ).Google Scholar
  3. 3.
    Caginalp, G.: Arch. Ration. Mech. Anal. 92, 205 (1986).MathSciNetMATHGoogle Scholar
  4. 4.
    Caginalp, G.: Phys. Rev. A 39, 5887 (1989).MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Penrose, O. and Fife, P. C.: Physica D 43, 44 (1990).MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Wang, S. L., Sekerka, R. F., Wheeler, A. A., Murray, B. T., Coriell, S. R., Braun, R. J. and McFadden, G. B.: Physica D 69, 189 (1993).MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Caginalp, G. and Jones, J.: Annals of Physics 237, 66 (1995).CrossRefGoogle Scholar
  8. 8.
    Wheeler, A. A., Boettinger, W. J. and McFadden, G. B.: Phys. Rev. E 47, 1893 (1993).CrossRefGoogle Scholar
  9. 9.
    Conti, M.: Phys. Rev. E 56, 3197 (1997).CrossRefGoogle Scholar
  10. 10.
    Ahmad, N. A., Wheeler, A. A., Boettinger, W. J. and McFadden, G. B.: Phys. Rev. E 58, 3436 (1998).CrossRefGoogle Scholar
  11. 11.
    Zhigiang Bi, Robert F. Sekerka, Physica A 261, 95 (1998).CrossRefGoogle Scholar
  12. 12.
    Caginalp, G. and Jones, J.: in IMA Volumes on Mathematics and its applications, edited by Gurtin, M. E. and McFadden, G. B. 29–50, (1991).Google Scholar
  13. 13.
    Anderson, D. M., McFadden, G. B. and Wheeler, A. A.: Physica D 135, 175 (2000).MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Anderson, D. M., McFadden, G. B. and Wheeler, A. A.: Physica D 151, 305 (2001).MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Conti, M.: Phys. Rev. E 64, 051601 (2001).Google Scholar
  16. 16.
    Warren, J. A. and Boettinger, W. J.: Acta Metall. Mater. 43, 689 (1995).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Massimo Conti
    • 1
  1. 1.Dipartimento di Matematica e Fisica, Nazionale di Fisica della MateriaUniversita’ di Camerino, and IstitutoCamerinoItaly

Personalised recommendations