Advertisement

Antithrombin III

  • H.-P. Schuster
  • S. Knaub

Zusammenfassung

Die Sepsis stellt ein Kontinuum von ineinander übergehenden pathophysiologischen Vorgängen unterschiedlicher Schweregrade dar, das von der Organdysfunktion bis zum Organversagen reicht und sowohl entzündungsfördernde als auch entzündungshemmende Komponenten einschließt. Klinisch erkennbare Stadien sind die unkomplizierte Sepsis, der septische Schock und das Multiorganversagen. Im klinischen Verlauf kann eine Infektion auch ohne die dazwischenliegende Phase des septischen Schocks zu einer schweren Sepsis mit den Zeichen der Gewebshypoxie und Organdysfunktion führen. Klinisch geht die Sepsis mit einer systemischen Entzündungsreaktion (“systemic inflammatory response syndrome„, SIRS) einher. Nicht die Infektion an sich ist Ursache für die Dysfunktion der Organe, sondern die Reaktion des Organismus auf die Infektion. Die Entzündungsreaktion wird durch die Aktivität endogener molekularer Substanzen vermittelt, deren Freisetzung einen systemischen Prozeß in Gang setzt. Ermöglichen die endogenen Mediatoren zu Beginn der Infektion noch eine an sich sinnvolle Abwehrreaktion, kommt es im weiteren Verlauf des Prozesses häufig zu einer überschießenden und damit pathogenen Abwehrreaktion des Organismus [14].

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Abe H, Okajima K, Okabe H, Takatsuki K, Binder BR (1994) Granulocyte protease and hydrogen peroxide synergistically inactivate thrombomodulin of endothelial cells in vitro. J Lab Clin Med 123: 874–881PubMedGoogle Scholar
  2. 2.
    Abildgaard CF, Corrigan JJ, Seeler RA (1967) Meningococcemia associated with intravascular coagulation. Pediatrics 40: 78–87PubMedGoogle Scholar
  3. 3.
    Abraham E, Wunderink R, Silverman H et al. (1995) Efficacy and safety of monoclonal antibody to human tumor necrosis factor a in patients with sepsis syndrome. JAMA 273: 934–941PubMedCrossRefGoogle Scholar
  4. 4.
    Balk R, Bedrosian C, McCormick L, Baugham J (1995) Prospective double-blind, placebo-controlled trial of ATIII substitution in sepsis. In: Roussos C (ed): 8th European Congress of Intensive Care Medicine. Monduzzi, Bologna, pp 79611Google Scholar
  5. 5.
    Bauer KA, Cate H, ten, Barzegar S, Spriggs DR, Sherman ML, Rosenberg RD (1989) Tumor necrosis factor infusions have a procoagulant effect on the hemostatic mechanism of humans. Blood 74: 165–172PubMedGoogle Scholar
  6. 6.
    Bock RL (1994) Disseminated intravascular coagulation. Med Clin North Am 78: 511–543Google Scholar
  7. 7.
    Bick Rl (1995) Disseminated intravascular coagulation: Objective criteria for clinical and laboratory diagnosis and assessment of therapeutic response. Clin Appl Thrombosis/Hemostasis 1: 3–23CrossRefGoogle Scholar
  8. 8.
    Blauhut B, Kramar H, Vinazzer H, Bergmann H (1985) Substitution of Antithrombin III in Shock and DIC: A randomized study. Thromb Res 29: 81–89Google Scholar
  9. 9.
    Bombeli T, Mueller M, Haeberli A (1997) Anticoagulant properties of the vascular endothelium. Thromb Haemost 77: 408–423PubMedGoogle Scholar
  10. 10.
    Bone RC (1991) A critical evaluation of new agents for the treatment of sepsis. JAMA 266: 1686–1691PubMedCrossRefGoogle Scholar
  11. 11.
    Bone RC (1991) The pathogenesis of sepsis. Ann Intern Med 1115: 457–469Google Scholar
  12. 12.
    Bone RC (1992) Sepsis and coagulation. An important link. Chest 101: 594–596PubMedCrossRefGoogle Scholar
  13. 13.
    Bone RC, Fisher CJ Jr., Clemmer TP, Slotman GJ, Metz CA, Balk RA (1989) Sepsis syndrome: A valid clinical entity. Crit Care Med 17: 389–393Google Scholar
  14. 14.
    Bone RC, Balk RA, Cerra FB (1992) Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Chest 101: 1644–1655PubMedCrossRefGoogle Scholar
  15. 15.
    Cronberg S, Skansberg P, Nivenios-Larsson K (1973) Disseminated intravascular coagulation in septicemia caused by beta-hemolytic streptococci. Thromb Res 3: 405–414CrossRefGoogle Scholar
  16. 16.
    Deventer SJH van, Buller HR, Cate JW, ten, Aarden LA, Hack CE, Sturk A (1990) Experimental endotoxemia in humans: Analysis of cytokine release and coagulation, fibrinolytic and complement pathways. Blood 76: 2520–2526Google Scholar
  17. 17.
    Dickneite G, Pques EP (1993) Reduction of mortality with antithrombin III in septicemic rats: A study of Klebsiella pneumoniae induced sepsis. Thromb and Haemost 69: 98–102Google Scholar
  18. 18.
    Dinarello CA (1991) The proinflammatory cytokines interleukin-1 and tumor necrosis factor and treatment of the septic shock syndrome: J Infect Dis 163: 1177–1184PubMedGoogle Scholar
  19. 19.
    Dinarello CA, Gelfand JA, Wolff SM (1993) Anticytokine strategies in the treatment of the systemic inflammatory response syndrome. JAMA 269: 1829–1835PubMedCrossRefGoogle Scholar
  20. 20.
    Fisher CJ, Dhainaut JFA, Opal SM et al. (1994) Recombinant human Interleukin-1 receptor antagonist in the treatment of patients with sepsis syndrome. JAMA 271: 1836–1843PubMedCrossRefGoogle Scholar
  21. 21.
    Fourrier F, Chopin C, Goudemand J et al. (1992) Septic shock multiple organ failure, and disseminated intravascular coagulation. Chest 101: 816–823PubMedCrossRefGoogle Scholar
  22. 22.
    Fourrier F, Chopin C, Huart J, Runge I, Caron C, Goudemand J (1993) Double-blind, placebo-controlled trial of antithrombin III concentrates in septic shock with disseminated intravascular coagulation. Chest 104: 882–888PubMedCrossRefGoogle Scholar
  23. 23.
    Greenman RL, Schein RMH, Martin MA et al. (1991) A controlled clinical trial of E5 murine monoclonal IgM antibody to endotoxin in the treatment of gram-negative sepsis. JAMA 266: 1097–1102PubMedCrossRefGoogle Scholar
  24. 24.
    Guidice D, Galliolo G, Wolfler A et al. (1997) AT III in the ICU patient: A randomized double blind trial. In: Braschi A, Chiaranda M, Gattinoni L, Pesenti A, Raimondi F (eds) Simposio mostra anestesia rianimazione e terapia intensiva. Springer, Berlin Heidelberg New York Tokyo, pp 9–12Google Scholar
  25. 25.
    Hellgran M, Javelin L, Hägnevik K, Blombäck M, Meden-Britth G (1984) Antithrombin III concentrate as adjuvant in DIC treatment–a pilot study in 9 severely ill patients. Thromb Res 35: 459–466CrossRefGoogle Scholar
  26. 26.
    Hinshaw LB (1996) Sepsis/septic shock: Participation of the microcirculation. Grit Care Med 24: 1072–1078CrossRefGoogle Scholar
  27. 27.
    Horie S, Ishii H, Kazama M (1990) Heparin-like glycosaminoglycan is a receptor for antithrombin-III-dependent but not for thrombin-dependent prostacyclin production in human endothelial cells. Thromb Res 59: 895–904PubMedCrossRefGoogle Scholar
  28. 28.
    Inthorn D, Hoffmann JN, Hartl WH, Mühlbayer D, Jochum M (1997) Antithrombin III supplementation in severe sepsis: beneficial effects on organ dysfunction. Shock 8: 328–334PubMedCrossRefGoogle Scholar
  29. 29.
    Jochum M (1995) Influence of high-dose antithrombin concentrate therapy on the release of cellular proteinases. Cytokines, and soluble adhesion molecules in acute inflammation. Sem Hematol 32 [Suppl 2]: 19–33Google Scholar
  30. 30.
    Kirchmaier CM, Bender N, Oehm H, Breddin H (1987) Therapeutic use of antithrombin in septicaemia in adults. Biol Clin Hematol 9 /1: 113–119Google Scholar
  31. 31.
    Lamy M, Eisele B, Keinecke HO, Delvos U, Thijs LG (1996) Antithrombin III in Patients with Severe Sepsis. A randomized, placebo-controlled, double-blind multicenter trial. In: Bennett D (ed) 9th European Congress on Intensive Care Medicine. Monduzzi, Bologna, pp. 385–390Google Scholar
  32. 32.
    McCloskey RV, Straube RC, Sanders C, Smith SM, Smith CR (1994) Treatment of septic shock with human monoclonal antibody HA-1A. Ann Intern Med 121: 1–5PubMedGoogle Scholar
  33. 33.
    Okajima K, Uchiba M, Murakami K (1995) Antithrombin replacement in DIC and MOF. In: Vincent JL (ed) Yearbock of intensive care and emergency medicine. Springer, Berlin Heidelber New York Tokyo, pp. 457–464CrossRefGoogle Scholar
  34. 34.
    Parrillo JE (1989) Septic shock in humans: clinical evaluation, pathophysiology and therapeutic approach. In: Shoemaker WC, Thompson WL, Holbrook P (eds) Textbook of critical care. 2nd edn. Saunders, Philadelphia, PA, pp. 1006–1023Google Scholar
  35. 35.
    Parrillo JE, Parker MM, Natanson C (1990) Septic shock in humans: advances in the understanding of pathogenesis, cardiovascular dysfunction and therapy. Ann Intern Med 113: 227–242PubMedGoogle Scholar
  36. 36.
    Piguet PF, Grau GE, Vassalli P (1990) Subcutaneous perfusion of tumor necrosis factor induces local proliferation of fibroblasts, capillaries, and epidermal cells, of massive tissue necrosis. Am J Pathol 136: 103–110PubMedGoogle Scholar
  37. 37.
    Pinner RV (1996) Trends in infectious disease mortality. JAMA 275: 189–193PubMedCrossRefGoogle Scholar
  38. 38.
    Poll T van der, Buller HR, Cate H ten (1990) Activation of coagulation after administration of tumor necrosis factor to normal subjects. N Engl J Med 322: 1622–1627CrossRefGoogle Scholar
  39. 39.
    Rao LVM, Nordfang 00, Hoang AD, Pendurthi UR (1995) Mechanism of antithrombin III inhibition of factor Vila/tissue factor activity on cell surfaces. Comparison with tissue factor pathway inhibitor/factor-Xa-induced inhibition of factor Vlla/tissue factor activity. Blood 85: 121–129Google Scholar
  40. 40.
    Remick DG, Kunkel RG, Larric JW, Kunkel SL (1987) Acute in vivo effects of human recombinant tumor necrosis factor. Lab Invest 56: 583–590PubMedGoogle Scholar
  41. 41.
    Rubenberg WL, Baker LR, McBride JA (1967) Intravascular coagulation in a case of clostridium perfringens septicemia. BMJ 3: 271–279CrossRefGoogle Scholar
  42. 42.
    Schipper HG, Jenkins CSP, Kahl LH, Cate JW ten (1978) Antithrombin III transfusion in disseminated intravascular coagulation. Lancet I: 854–856Google Scholar
  43. 43.
    Schuster HP, Eisele B, Keinecke HO et al. (1998) S-AT III study: Antithrombin III in patients with sepsis. Intensive Care Med 24: (in print)Google Scholar
  44. 44.
    Seitz R, Wolf M, Egbring R, Havemann K (1989) The disturbance of haemostasis in septic shock: Role of neutrophil elastase and thrombin, effects of antithrombin III and plasma. Eur J Haematol 43: 22–28Google Scholar
  45. 45.
    Smith-Erichsen N, Aasen AO, Gallimore MJ, Amundsen E (1982) Studies of components of the coagulation systems in normal individuals and septic shock patients. Circ Shock 9: 491–497PubMedGoogle Scholar
  46. 46.
    Taylor FB, Emerson TE, Jordan R, Chang AK, Blick KE (1988) Antithrombin III prevents the lethal effects of escherichia coli infusion in baboons. Circ Shock 26: 227–235PubMedGoogle Scholar
  47. 47.
    Taylor FB, Chang ACK, Peer GT et al. (1991) DEGR-FXa blocks disseminated intravascular coagulation initiated by E. coli without preventing shock or organ damage. Blood 87: 364–368Google Scholar
  48. 48.
    Vinazzer H (1989) Therapeutic use of antithrombin III in shock and disseminated intravascular coagulation. Sem Thromb Hemost 15 /3: 347–352CrossRefGoogle Scholar
  49. 49.
    Vinazzer H (1995) Antithrombin III in shock and disseminated intravascular coagulation. Clin Applied Thrombosis/Hemostasis 1: 62–65CrossRefGoogle Scholar
  50. 50.
    Yamauchi T, Umeda F, Inogochi T (1989) Antithrombin-III-stimulated prostacyclin production by cultured aortic endothelial cells. Biochem Biophys Res Comm 29: 1404–1411CrossRefGoogle Scholar
  51. 51.
    Ziegler EJ, Fisher CJ, Sprung CL et al. (1991) Treatment of gram-negative bacteremia and septic shock with HA-1A human monoclonal antibody against endotoxin. A randomized, double-blind, placebo-controlled trial. N Engl J Med 324: 429–436Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • H.-P. Schuster
  • S. Knaub

There are no affiliations available

Personalised recommendations