Stoffwechseländerungen und künstliche Ernährung

  • W. Behrendt
  • J. Raumanns

Zusammenfassung

Die künstliche Ernährung kritisch-kranker Patienten zählt seit Jahren zu den etablierten Therapieverfahren in der Intensivmedizin. Sie erlaubt es, die bei schwerer Katabolie zu beobachtenden hohen Verluste an Nährsubstraten zumindest teilweise auszugleichen und den Patienten bei länger andauerndem Krankheitsverlauf und fehlender eigener Nahrungsaufnahme ein Überleben zu ermöglichen [51, 83]. Trotz dieser grundsätzlich positiven Aussage muß man aber auch feststellen, daß die derzeit angewandten enteralen und parenteralen Ernährungskonzepte noch erhebliche Mängel aufweisen [58], da unser Wissen über die Stoffwechseländerungen bei septischen Patienten sowie von Patienten mit Multiorganversagen noch lückenhaft und die Möglichkeiten einer an den Krankheitsverlauf adaptierten Nährstoffzufuhr begrenzt sind.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Adam S, Batson S (1997) A study of problems associated with the delivery of enteral feed in critically ill patients in five ICUs in the UK. Intensive Care Med 23: 261–266CrossRefPubMedGoogle Scholar
  2. 2.
    Adibi SA (1989) Intravenous use of glutamine in peptide form: clinical application of old and new observations. Metabolism 38: 89–92CrossRefPubMedGoogle Scholar
  3. 3.
    Adolph M, Eckart J, Metges C, Neeser G, Wolfram G (1987) Oxidative Verwertung 13C-markierter mittelkettiger Triglyceride bei beatmeten Intensivpatienten. In: Creutzfeld W, Schauder P (Hrsg) Mittelkettige Triglyceride in der parenteralen Ernährung. Beitr Infusionsther Klin Ernähr, Bd 20. Karger, Basel, S 126–144Google Scholar
  4. 4.
    Allison SP (1980) Effect of insulin on metabolic response to injury. JPEN 4: 173–179CrossRefGoogle Scholar
  5. 5.
    Alverdy JC,Aoys E,Moss GS (1988) Total parenteral nutrition promotes bacterial translocation from the gut. Surgery 104: 185–190PubMedGoogle Scholar
  6. 6.
    Andus T, Leser HG, Groß V, Schölmerich J (1991) Akutphase-Proteine: Regulation der Synthese durch Entzündungsmediatoren und klinische Bedeutung. Intensivmedizin 28: 2–10Google Scholar
  7. 7.
    Askanazi J, Carpentier YA, Elwyn DH et al. (1980) Influence of total parenteral nutrition on fuel utilization in injury and sepsis. Ann Surg 191: 40–46CrossRefPubMedGoogle Scholar
  8. 8.
    ASPEN Board of Directors (1993) Guidelines for the use of parenteral and enteral nutrition in adult and pediatric patients. JPEN 17: 20–21 SAGoogle Scholar
  9. 9.
    Barot LR, Rombeau JL, Feuerer ID, Mullen JL (1982) Caloric requirements in patients with inflammatory bowel disease. Ann Surg 195: 214–218CrossRefPubMedGoogle Scholar
  10. 10.
    Behrendt W, Bogatz V, Giani G (1990) The influence of posttraumatic caloric and nitrogen supply upon the cumulative nitrogen balance. Infusionstherapie 17: 32–39PubMedGoogle Scholar
  11. 11.
    Behrendt W, Surmann M, Raumanns J, Giani G (1991) How reliable are short-term measurements of oxygen uptake in polytraumatized and long-term ventilated patients? Infusionstherapie 18: 20–24PubMedGoogle Scholar
  12. 12.
    Bergström J, Fürst P, Norée LO, Vinnars E (1974) Intracellular free amino acid concentration in human muscle tissue. J Appl Physiol 36: 693–697PubMedGoogle Scholar
  13. 13.
    Bessey PQ, Watters JM, Aoki TT, Wilmore DW (1984) Combined hormonal infusion simulates the metabolic response to injury. Ann Surg 200: 264–280CrossRefPubMedGoogle Scholar
  14. 14.
    Bower RH, Cerra FB, Bershadsky B et al. (1995) Early enteral administration of a formula supplemented with arginine, nucleotides, and fish oil in intensive care unit patients: Results of a multicenter, prospective randomized, clinical trial. Crit Care Med 23: 436–449CrossRefPubMedGoogle Scholar
  15. 15.
    Bragg LE, Thompson J, Rikkers LF (1991) Influence of nutrient delivery on gut structure and function. Nutrition 7: 237–243PubMedGoogle Scholar
  16. 16.
    Brennan MF, Cerra F, Daly J et al. (1986) Report of a research workshop: Branch-chain amino acids in stress and injury. JPEN 10: 446–452CrossRefGoogle Scholar
  17. 17.
    Buchman AL, Moukarzel AA, Bhuta S et al. (1995) Parenteral nutrition is associated with intestinal morphologic and functional changes in humans. JPEN 19: 453–460CrossRefGoogle Scholar
  18. 18.
    Calder PC (1994) Glutamine and the immune system. Clin Nutr 13: 2–8CrossRefPubMedGoogle Scholar
  19. 19.
    Cerra FB, Siegel JH, Coleman B, Border JR, McMenamy RR (1980) Septic autocannibalism. A failure of exogenous nutritional support. Ann Surg 192: 570–579Google Scholar
  20. 20.
    Dale G, Young G, Latner AL, Goode A, Tweedle D, Johnston IVA (1975) The effect of surgical operation on venous plasma free amino acids. Ann Surg 81: 295–301Google Scholar
  21. 21.
    De Fronzo RA, Jacot E, Jequier E,Maeder J, Felber JP (1980) The effect of insulin on the disposal of intravenous glucose. Results from indirect calorimetry and hepatic and femoral catheterization. Diabetes 30: 1000–1007Google Scholar
  22. 22.
    Deitch EA, Winterton J, Li M (1987) The gut as a portal of entry for bacteremia: Role of protein malnutrition. Ann Surg 205: 681–691CrossRefPubMedGoogle Scholar
  23. 23.
    Deyk van K, Hempel V, Münch F, Kopp M, Graf H, Epple E (1983) Influence of parenteral fat administration on the pulmonary vascular system in man. Intensive Care Med 9: 73–77CrossRefPubMedGoogle Scholar
  24. 24.
    Dickerson RN, Vehe KL, Mullen JL, Feurer ID (1991) Resting energy expenditure in patients with pancreatitis. Crit Care Med 19: 484–490CrossRefPubMedGoogle Scholar
  25. 25.
    Dölp R, Ahnefeld FW, Schmitz E (1978) Klinische Untersuchungen über die Konzentration freier Aminosäuren im Plasma and Urin im Postaggressionsstoffwechsel. I. Mitteilung. Infusionstherapie 5: 241–245Google Scholar
  26. 26.
    Eckart J (1990) Fett in der parenteralen Ernährung. In: Ahnefeld FW, Grünert A, Schmitz JE (Hrsg) Parenterale Ernährungstherapie. Klinische Anaesthesiologie and Intensivtherapie Bd 40. Springer, Berlin Heidelberg New York Tokio, S 25–51CrossRefGoogle Scholar
  27. 27.
    Elliott M, Alberti KGMM (1983) The hormonal and metabolic response to surgery and trauma. In: Kleinberger G, Deutsch E (eds) New aspects of clinical nutrition. Karger, Basel, pp 247–270Google Scholar
  28. 28.
    Empfehlungen des Bundesgesundheitsamtes zur Anwendung von Kohlenhydraten in der parenteralen Ernährung (1990) Bundesanzeiger 212: 6059–6060Google Scholar
  29. 29.
    European Society of Intensive Care Medicine. Round Table Conference on metabolic support of the critically ill patients (1994). Intensive Care Med 20: 298–299CrossRefGoogle Scholar
  30. 30.
    Fischer JE (1991) A teleological view of sepsis. Clin Nutr 10: 1–9CrossRefGoogle Scholar
  31. 31.
    Forsberg E, Soop M, Thörne A (1991) Energy expenditure and outcome in patients with multiple organ failure following abdominal surgery. Intensive Care Med 17: 403–409CrossRefPubMedGoogle Scholar
  32. 32.
    Frankenfield DC, Wiles CE, Bagley S, Siegel J (1994) Relationship between resting and total energy expenditure in injured and septic patients. Crit Care Med 22: 1796–1804PubMedGoogle Scholar
  33. 33.
    Freund H, Atamian S, Holroyde J, Fischer JE (1979) Plasma amino acids as predictors of the severity outcome of sepsis. Ann Surg 190: 571–576CrossRefPubMedGoogle Scholar
  34. 34.
    Fürst P (1985) Kurzkettige Peptide in der parenteralen Ernährung. Infusionstherapie 12: 70–76Google Scholar
  35. 35.
    Fürst P, Stehle P (1993) Are we giving unbalanced amino acid solutions? In: Wilmore DW, Carpentier YA (eds) Metabolic support of the critically ill patient. Springer, Berlin Heidelberg New York Tokyo, pp 119–136CrossRefGoogle Scholar
  36. 36.
    Gelfand RA, Matthews DE, Bier DM, Sherwin RS (1984) Role of counterregulatory hormones in the catabolic response to injury. J Clin Invest 74: 2238–2248CrossRefPubMedGoogle Scholar
  37. 37.
    Georgieff M, Moldawer LL, Bistrian BR, Blackburn GL (1985) Xylitol, an energy source for intravenous nutrition after trauma. JPEN 9: 199–209CrossRefGoogle Scholar
  38. 38.
    Georgieff M, Pscheidl E, Götz H, Träger K, Anhäuptl T, Moldawer LL, Blackburn GL (1991) Untersuchungen zum Mechanismus der Reduktion der Proteinkatabolie nach Trauma und bei Sepsis durch Xylit. Anästhesist 40: 85–91Google Scholar
  39. 39.
    Giovannini I, Boldrini G, Castagneto, Sganga G, Nanni G, Pittiruti, Castiglioni G (1983) Respiratory quotient and pattern of substrate utilization in human sepsis and trauma. JPEN 7: 226–230CrossRefGoogle Scholar
  40. 40.
    Gotthardis M, Hackl JM (1988) Die Beeinflussung des katabolen Stoffwechsels bei septischen Patienten und Schädel-Hirn-Traumatisierten durch Gabe von Wachstumshormon. Infusionstherapie 15: 112–117Google Scholar
  41. 41.
    Griffiths RD, Jones C, Palmer A (1997) Six-month outcome of critically ill patients given glutamine-supplemented parenteral nutrition. Nutrition 13: 296–302Google Scholar
  42. 42.
    Griffith RD (1997) Feeding the critically ill—Should we do better? Intensive Care Med 23: 246–247CrossRefGoogle Scholar
  43. 43.
    Haider W, Lackner F, Tonczar L (1975) Verabreichung hochprozentiger Glucose mit großen Insulindosen im Rahmen einer frühzeitigen totalen parenteralen Ernährung bei Patienten mit schockbedingtem übersteigerten Kalorienbedarf. Anästhesist 24: 289–298Google Scholar
  44. 44.
    Hammarquist F, Wernerman J, Decken A von der, Vinnars E (1990) Alanyl-Glutamine counteracts the depletion of free glutamine and the postoperative decline in protein synthesis in skeletal muscle. Ann Surg 212: 637–644CrossRefGoogle Scholar
  45. 45.
    Hansen BA, Almdal TP, Vilstrup (1989) Effects of xylitol vs. glucose on urea synthesis and alanine metabolism in rats. Clin Nutr 8: 109–112Google Scholar
  46. 46.
    Harris JA, Benedict IG (1919) A biometric study of basal metabolism in man. Publication No 279. Carnegie Institution of Washington, p 227Google Scholar
  47. 47.
    Hartl WH, Miyoshi H, Elahi, Wolfe RR (1989) Glucagon and hepatic glucose production. Modulation by low dose bradykinin. Metabolism 38: 878–882Google Scholar
  48. 48.
    Hasselgren PO, Pedersen P, Sax HC, Warner BW, Fischer JE (1988) Current concept of protein turnover and amino acid transport in liver and skeletal muscle during sepsis. Arch Surg 123: 992–999CrossRefPubMedGoogle Scholar
  49. 49.
    Heyland D, Cook DJ, Guyatt G (1993) Enteral nutrition in the critically ill patient: a critical review of the evidence. Intensive Care Med 19: 435–442CrossRefPubMedGoogle Scholar
  50. 50.
    Heyland D, Cook DJ, Winder B, Brylowski L, Van deMark H, Guyatt G (1995) Enteral nutrition in the critically ill patient: A prospective survey. Grit Care Med 23: 1055–1060Google Scholar
  51. 51.
    Hill GL (1994) Impact of nutritional support on the clinical outcome of the surgical patients. Clin Nutr 13: 331–340CrossRefPubMedGoogle Scholar
  52. 52.
    Hinton P, Allison SP, Littlejohn SA, Lloyd J (1971) Insulin and glucose to reduce catabolic response to injury in burned patients. Lancet I: 767–769Google Scholar
  53. 53.
    Hwang TL, Huang SL, Chen MF (1990) Effects of intravenous fat emulsion on respiratory failure. Chest 97: 934–938CrossRefPubMedGoogle Scholar
  54. 54.
    Jeevanadam M, Grote-Holman E, Chirenji T et al. (1990) Effects of glucose on fuel utilization and glycerol turnover in normal and injured man. Crit Care Med 18: 125–135CrossRefGoogle Scholar
  55. 55.
    Karner J, Roth J (1989) Alanyl-glutamine infusions to patients with acute pancreatitis. Clin Nutr 9: 43–44CrossRefGoogle Scholar
  56. 56.
    Kierdorf H, Maurin N, Heintz B, Kindler J, Sieberth HG (1990) Eiweißkatabolie bei schwerkranken internistischen Intensivpflegepatienten. Stickstoffausscheidung und-bilanz als reproduzierbare and therapeutisch nutzbare Methode. Intensivmedizin 27: 193–200Google Scholar
  57. 57.
    Klein S, Peters SJ, Shangraw RE, Wolfe RR (1991) Lipolytic response to metabolic stress in critically ill patients. Crit Care Med 19: 776–779CrossRefPubMedGoogle Scholar
  58. 58.
    Klein S, Kinney J,Jeejeebhoy,Alpers D et al. (1997) Nutrition support in clinical practice: review of published data and recommendations for future research directions. Clin Nutr 193–218Google Scholar
  59. 59.
    Kreymann G, Grosser S, Buggisch P et al. (1992) Klinische Wertigkeit der indirekten Kalorimetrie in der internistischen Intensivmedizin — Teil 3: Sauerstoffaufnahme and Energieumsatz bei Infektion and Sepsis. Intensivmedizin 29: 42–50Google Scholar
  60. 60.
    Kudsk KA, Croce MA, Fabian TC et al. (1992) Enteral vs. parenteral feeding. Effects on septic morbidity after blunt and penetrating abdominal trauma. Ann Surg 215: 503–513CrossRefPubMedGoogle Scholar
  61. 61.
    Lanschot JJB van, Feenstra BWA, Vermeij CB, Bruining HA (1986) Calculations vs. measurements of total energy expenditure. Crit Care Med 14: 981–985CrossRefPubMedGoogle Scholar
  62. 62.
    Long CL, Kinney JM, Geiger JW (1976) Nonsuppressability of gluconeogenesis by glucose in septic patients. Metabolism 25: 193–201CrossRefPubMedGoogle Scholar
  63. 63.
    Long CL (1977) Energy balance and carbohydrate metabolism in infection and sepsis. Am J Clin Nutr 30: 1301–1310PubMedGoogle Scholar
  64. 64.
    Long CL, Schaffel N, Geiger JW, Schiller WR, Blakemore WS (1979) Metabolic response to injury and illness: Estimation of energy balance and protein needs from indirect calorimetry and nitrogen balance. JPEN 3: 452–456Google Scholar
  65. 65.
    Moore FA, Moore EE, Jones TN, McCroskey BL, Peterson VM (1989) TEN vs. TPN following major abdominal trauma - reduced septic morbidity. J Trauma 29: 916–923Google Scholar
  66. 66.
    Moore FA, Feliciano DV, Andrassy RJ et al. (1992) Early enteral feeding, compared with parenteral, reduces septic complications–the results of a meta-analysis. Ann Surg 216: 172–183CrossRefPubMedGoogle Scholar
  67. 67.
    Mochizuki H, Trocki O, Dommioni L et al. (1984) Mechanism of prevention of postburn hypermetabolism and catabolism by early enteral feeding. Ann Surg 200: 297–310CrossRefPubMedGoogle Scholar
  68. 68.
    Müller TF, Müller A, Bachem MG, Lange H (1995) Immediate metabolic effects of different nutritional regimens in critically ill medical patients. Intensive Care Med 21: 561–566CrossRefPubMedGoogle Scholar
  69. 69.
    Newsholme EA, Crabtree B, Ardawi MSM (1985) Glutamine metabolism in lymphocytes: its biochemical, physiological and clinical importance. Quart J Exp Physiol 70: 473–489Google Scholar
  70. 70.
    Newsholme EA, Newsholme P, Curi R, Challoner E, Ardawi MSM (1988) A role for muscle in the immune system and its importance in surgery, trauma, sepsis and burns. Nutrition 4: 261–268Google Scholar
  71. 71.
    Nordenström J, Carpentier YA, Askanazi J et al. (1982) Metabolic utilization of intravenous fat emulsions during total parenteral nutrition. Ann Surg 196: 221–231CrossRefPubMedGoogle Scholar
  72. 72.
    Palmbald J (1991) Intravenous lipid emulsions and host defense–a critical review. Clin Nutr 10: 303–308CrossRefGoogle Scholar
  73. 73.
    Palmer TEA, Griffiths RD, Jones CJ (1996) Effect of parenteral L-glutamine on muscle in the very severely ill. Nutrition 12: 316–319CrossRefPubMedGoogle Scholar
  74. 74.
    Petersson B, Waller SO, Vinnars E, Wernerman J (1994) Long-term effect of Glycyl-glutamine after elective surgery on free amino acids in muscle. JPEN 18: 320–325CrossRefGoogle Scholar
  75. 75.
    Radermacher P, Santak B, Strobach H, Schrör K, Tarnow J (1992) Parenteral fat application and pulmonary function. Intensive Care Med 18: 231–234CrossRefPubMedGoogle Scholar
  76. 76.
    Radrizzani D, Iapichino G, Cambisano M et al. (1988) Peripheral, visceral and body nitrogen balance of catabolic patients, without and with parenteral nutrition. Intensive Care Med 14: 212–216CrossRefPubMedGoogle Scholar
  77. 77.
    Rombeau JL, Takala J (1997) Summary of round table conference. Gut dysfunction in critical illness. Intensive Care Med 23: 476–479Google Scholar
  78. 78.
    Roth E, Funovics J, Mühlbacher F et al. (1982) Metabolic disorders in severe abdominal sepsis; glutamine deficiency in skeletal muscle. Clin Nutr 1: 24–42CrossRefGoogle Scholar
  79. 79.
    Schneeweiß B, Graninger W, Stockenhuber F et al. (1990) Energy metabolism in acute and chronic renal failure. Am J Clin Nutr 52: 596–601PubMedGoogle Scholar
  80. 80.
    Shangraw RE, Jahoor F, Miyoshi H et al. (1989) Differentiation between septic and postburn insulin resistance. Metabolism 38: 983–989CrossRefPubMedGoogle Scholar
  81. 81.
    Schloerb PR, AmareM (1993) Total parenteral nutrition with glutamine in bone marrow transplantation and other clinical applications. A randomized, double-blind study. JPEN 17: 407–413Google Scholar
  82. 82.
    Shaw JH, Wolfe RR (1989) An integrated analysis of glucose, fat, and protein metabolism in severely traumatized patients. Studies in the basal state and the response to total parenteral nutrition. Ann Surg 209: 63–72Google Scholar
  83. 83.
    Shields PL, Field J, Rawlings J, Kendall J, Allison SP (1996) Long-term outcome and cost-effectiveness of parenteral nutrition for acute gastrointestinal failure. Clin Nutr 15: 64–68CrossRefPubMedGoogle Scholar
  84. 84.
    Skeie B, Askanazi J, Rothkopf MM et al. (1988) Intravenous fat emulsions and lung function: a review. Crit Care Med 16: 183–194CrossRefPubMedGoogle Scholar
  85. 85.
    Souba WW, Smith RJ,Wilmore DW (1985) Glutamine metabolism by the intestinal tract. JPEN 9: 608–617Google Scholar
  86. 86.
    Streat SJ, Beddoe AH, Hill G (1987) Aggressive nutritional support does not prevent protein loss despite fat gain in septic intensive care patients. J Trauma 27: 262–266CrossRefPubMedGoogle Scholar
  87. 87.
    Stehle P, Zander J, Mertes N et al. (1989) Effect of parenteral glutamine peptide supplements on muscle glutamine loss and nitrogen balance after major surgery. Lancet I 231–233Google Scholar
  88. 88.
    Swinamer DL, Phang PT, Jones RL, Grace M, King GE (1987) Twenty-four hour energy expenditure in critically ill patients. Crit Care Med 15: 637–643CrossRefPubMedGoogle Scholar
  89. 89.
    Thiebaud D, Jacot E, De Fronzo RA et al. (1982) The effect of graded doses of insulin on total glucose uptake, glucose oxidation, and glucose storage in man. Diabetes 31: 957–963PubMedGoogle Scholar
  90. 90.
    Tracey KJ (1992) TNF and other cytokines in the metabolism of septic shock and cachexia. Clin Nutr 11: 1–11CrossRefPubMedGoogle Scholar
  91. 91.
    Tremel H,Kienle B, Weilemann S, Stehle P, Hirst P (1994) Glutamine Dipeptide–Supplemented parenteral nutrition maintains intestinal function in the critically ill. Gastroenterology 107: 1595–1601Google Scholar
  92. 92.
    Van der Hulst RW, Kreel BK van, Meyenfeld MF von et al. (1993) Glutamine and the preservation of gut integrity. Lancet II: 1363–1365Google Scholar
  93. 93.
    Venus B, Smith RA, Patel CB, Sandoval E (1989) Hemodynamic and gas exchange alterations during intralipid infusion in patients with adult respiratory distress syndrome. Chest 95: 1278–1281CrossRefPubMedGoogle Scholar
  94. 94.
    Vinnars E, Bergström J, Fürst P (1975) Influence of the postoperative state on the intracellular free amino acids in human muscular tissue. Ann Surg 183: 665–671CrossRefGoogle Scholar
  95. 95.
    Wannemacher RW, Pace JG, Beall FA et al. (1979) Role of the liver in regulation of ketone body production during sepsis. J Clin Invest 64: 1565–1572CrossRefPubMedGoogle Scholar
  96. 96.
    Wernerman J, Vinnars E (1987) The effect of trauma and surgery on interorgan fluxes of amino acids in man. Clin Sci 73: 129–133PubMedGoogle Scholar
  97. 97.
    Wolfe RR Herndon DN, Jahoor F, Miyoshi H, Wolfe M (1987) Effect of severe burn injury on substrate cycling by glucose and fatty acids. N Engl J Med 317: 403–408CrossRefPubMedGoogle Scholar
  98. 98.
    Ziegler TR, Young LS, Ben fell K et al. (1992) Clinical and metabolic efficacy of glutamine-supplemented parenteral nutrition after bone marrow transplantation. Ann Int Med 116: 821–828PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • W. Behrendt
  • J. Raumanns

There are no affiliations available

Personalised recommendations