Advertisement

Stoffwechseländerungen und künstliche Ernährung bei Sepsis und Multiorganversagen

  • W. Behrendt
  • J. Raumanns
Chapter

Zusammenfassung

Die künstliche Ernährung kritisch-kranker Patienten zählt seit Jahren zu den etablierten Therapieverfahren in der Intensivmedizin. Sie erlaubt es, die bei schwerer Katabolie zu beobachtenden hohen Verluste an Nährsubstraten zumindest teilweise auszugleichen und den Patienten bei länger andauerndem Krankheitsverlauf und fehlender eigener Nahrungsaufnahme ein Überleben zu ermöglichen [37]. Diese positive Feststellung darf aber nicht darüber hinwegtäuschen, daß unser Wissen hinsichtlich einer optimierten Nährstoffversorgung septischer Patienten sowie von Patienten mit Multiorganversagen noch große Lücken aufweist und sich eine Fülle wichtiger Fragen derzeit noch nicht befriedigend beantworten lassen.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Adibi SA (1989) Intravenous use of glutamine in peptide form: clinical application of old and new observations. Metabolism 38: 89–92PubMedCrossRefGoogle Scholar
  2. 2.
    Adolph M, Eckart J, Metges C, Neeser G, Wolfram G (1987) Oxidative Verwertung 13C-markierter mittelkettiger Triglyceride bei beatmeten Intensivpatienten. In: Creutzfeld W, Schauder P (Hrsg) Mittelkettige Triglyceride in der parenteralen Ernährung. Beitr Infusionsther Klin Ernähr, Bd 20. Karger, Basel, S 126–144Google Scholar
  3. 3.
    Allison SP (1980) Effect of insulin on metabolic response to injury. J Parenter Enteral Nutr 4: 173–179CrossRefGoogle Scholar
  4. 4.
    Andus T, Leser HG, Groß V, Schölmerich J (1991) Akutphase-Proteine: Regulation der Synthese durch Entzündungsmediatoren und klinische Bedeutung. Intensivmedizin 28: 2–10Google Scholar
  5. 5.
    Askanazi J, Carpentier YA, Elwyn DH, Nordenström J, Jeevanadam M, Rosenbaum S, Gump FE, Kinney JM (1980) Influence of total parenteral nutrition on fuel utilization in injury and sepsis. Ann Surg 191: 40–46PubMedCrossRefGoogle Scholar
  6. 6.
    Barot LR, Rombeau JL, Feuerer ID, Mullen JL (1982) Caloric requirements in patients with inflammatory bowel disease. Ann Surg 195: 214–218PubMedCrossRefGoogle Scholar
  7. 7.
    Behrendt W, Bogatz V, Giani G (1990) The influence of posttaumatic calorie and nitrogen supply upon the cumulative nitrogen balance. Infusionstherapie 17: 32–39PubMedGoogle Scholar
  8. 8.
    Behrendt W, Surmann M, Raumanns J, Giani G (1991) How reliable are short-term measurements of oxygen uptake in polytraumatized and long-term ventilated patients? Infusionstherapie 18: 20–24PubMedGoogle Scholar
  9. 9.
    Bergström J, Fürst P, Norée LO, Vinnars E (1974): Intracellular free amino acid concentration in human muscle tissue. J Appl Physiol 36: 693–697PubMedGoogle Scholar
  10. 10.
    Bessey PQ, Watters JM, Aoki TT, Wilmore DW (1984) Combined hormonal infusion simulates the metabolic response to injury. Ann Surg 200: 264–280PubMedCrossRefGoogle Scholar
  11. 11.
    Calder PC (1994) Glutamine and the immune system. Clin Nutr 13: 2–8PubMedCrossRefGoogle Scholar
  12. 12.
    Cerra FB, Siegel JH, Coleman B, Border JR, McMenamy RR (1980) Septic autocannibalism. A failure of exogenous nutritional support. Ann Surg 192: 570–579PubMedCrossRefGoogle Scholar
  13. 13.
    Dale G, Young G, Latner AL, Goode A, Tweedle D, Johnston IVA (1975) The effect of surgical operation on venous plasma free amino acids. Ann Surg 81: 295–301Google Scholar
  14. 14.
    DeFronzo RA, Jacot E, Jequier E, Maeder J, Felber JP (1980) The effect of insulin on the disposal of intravenous glucose. Results from indirect calorimetry and hepatic and femoral catheterization. Diabetes 30: 1000–1007Google Scholar
  15. 15.
    Deyk van K, Hempel V, Münch F, Kopp M, Graf H, Epple E (1983) Influence of parenteral fat administration on the pulmonary vascular system in man. Intensive Care Med 9: 73–77PubMedCrossRefGoogle Scholar
  16. 16.
    Dickerson RN, Vehe KL, Mullen JL, Feurer ID (1991) Resting energy expenditure in patients with pancreatitis. Crit Care Med 19: 484–490PubMedCrossRefGoogle Scholar
  17. 17.
    Dölp R, Ahnefeld FW, Schmitz E (1978) Klinische Untersuchungen über die Konzentration freier Aminosäuren im Plasma und Urin im Postaggressionsstoffwechsel. I. Mitteilung. Infusionstherapie 5: 241–245Google Scholar
  18. 18.
    Eckart J (1990) Fett in der Parenteralen Ernährung. In: Ahnefeld FW, Grünert A, Schmitz JE (Hrsg) Parenterale Ernährungstherapie. Klinische Anaesthesiologie und Intensivtherapie, Bd 40. Springer, Berlin Heidelberg New York Tokyo, S 25–51CrossRefGoogle Scholar
  19. 19.
    Elliott M, Alberti KGMM (1983) The hormonal and metabolic response to surgery and trauma. In: Kleinberger G, Deutsch E (eds) New aspects of clinical nutrition. Karger, Basel, pp 247–270Google Scholar
  20. 20.
    Fischer JE (1991) A teleological view of sepsis. Clin Nutr 10: 1–9CrossRefGoogle Scholar
  21. 21.
    Forsberg E, Soop M, Thörne A (1991) Energy expenditure and outcome in patients with multiple organ failure following abdominal surgery. Intensive Care Med 17: 403–409PubMedCrossRefGoogle Scholar
  22. 22.
    Frankenfield DC, Wiles CE, Bagley S, Siegel J (1994) Relationship between resting and total energy expenditure in injured and septic patients. Crit Care Med 22: 1796–1804PubMedGoogle Scholar
  23. 23.
    Freund H, Atamian S, Holroyde J, Fischer JE (1979) Plasma amino acids as predictors of the severity outcome of sepsis. Ann Surg 190: 571–576PubMedCrossRefGoogle Scholar
  24. 24.
    Fürst P (1985) Kurzkettige peptide in der parenteralen Ernährung. Infusionstherapie 12: 70–76Google Scholar
  25. 25.
    Fürst P, Albers S, Stehle P (1987) Stress-induced intracellular glutamine depletion. The potential use of glutamine-containing peptides in parenteral nutrition. In: Adibi SA, Fekl W, Fürst P, Oehmke M (eds) Dipeptides as new substrates in nutrition therapy. Beitr Infusionsther Klin Ernähr, Bd 17. Karger, Basel, pp 117–136Google Scholar
  26. 26.
    Fürst P, Stehle P (1993) Are we giving unbalanced amino acid solutions? In Wilmore DW, Carpentier YA (eds) Metabolic support of the critically ill patient. Springer, Berlin Heidelberg New York Tokyo, pp 119–136CrossRefGoogle Scholar
  27. 27.
    Gelfand RA, Matthews DE, Bier DM, Sherwin RS (1984) Role of counterregulatory hormones in the catabolic response to injury. J Clin Invest 74: 2238–2248PubMedCrossRefGoogle Scholar
  28. 28.
    Georgieff M, Moldawer LL, Bistrian BR, Blackburn GL (1985) Xylitol, an energy source for intravenous nutrition after trauma. J Parenter Enteral Nutr 9: 199–209CrossRefGoogle Scholar
  29. 29.
    Georgieff M, Pscheidl E, Götz H, Träger K, Anhäuptl T, Moldawer LL, Blackburn GL (1991) Untersuchungen zum Mechanismus der Reduktion der Proteinkatabolie nach Trauma und bei Sepsis durch Xylit. Anaesthesist 40: 85–91PubMedGoogle Scholar
  30. 30.
    Giovannini I, Boldrini G, Castagneto, Sganga G, Nanni G, Pittiruti, Castiglioni G (1983) Respiratory quotient and pattern of substrate utilization in human sepsis and trauma. J Parenter Enteral Nutr 7: 226–230CrossRefGoogle Scholar
  31. 31.
    Gotthardis M, Hackl JM (1988) Die Beeinflussung des katabolen Stoffwechsels bei septischen Patienten und Schädel-Hirn-Traumatisierten durch Gabe von Wachstumshormon. Infusionstherapie 15: 112–117Google Scholar
  32. 32.
    Haider W, Lackner F, Tonezar L (1975) Verabreichung hochprozentiger Glucose mit großen Insulindosen im Rahmen einer frühzeitigen totalen parenteralen Ernährung bei Patienten mit schockbedingtem übersteigerten Kalorienbedarf. Anaesthesist 24: 289–298PubMedGoogle Scholar
  33. 33.
    Hammarquist F, Wernerman J, von der Decken A, Vinnars E (1990) Alanyl-Glutamine counteracts the depletion of free glutamine and the postoperative decline in protein synthesis in skeletal muscle. Ann Surg 212: 637–644CrossRefGoogle Scholar
  34. 34.
    Hansen BA, Almdal TP, Vilstrup (1989) Effects of xylitol versus glucose on urea synthesis and alanine metabolism in rats. Clin Nutr 8: 109–112PubMedCrossRefGoogle Scholar
  35. 35.
    Harris JA, Benedict IG (1919) A biometric study of basal metabolism in man. Publication No 279. Carnegie Institution of Washington, p 227Google Scholar
  36. 36.
    Hasselgren PO, Pedersen P, Sax HC, Warner BW, Fischer JE (1988) Current concept of protein turnover and amino acid transprot in liver and skeletal muscle during sepsis. Arch Surg 123. 992–999PubMedCrossRefGoogle Scholar
  37. 37.
    Hill GL (1994) Impact of nutritional support on the clinical outcome of the surgical patient. Clin Nutr 13: 331–340PubMedCrossRefGoogle Scholar
  38. 38.
    Hinton P, Allison SP, Littlejohn SA, Lloyd J (1971) Insulin and glucose to reduce catabolic response to injury in burned patients. Lancet 1: 767–769PubMedCrossRefGoogle Scholar
  39. 39.
    Hulst RW van der, Kreel BK van, Meyenfeld MF von, Brummer RJ, Arends JW, Deutz NE, Soeters PB (1993) Glutamine and the preservation of gut integrity. Lancet 2: 1363–1365CrossRefGoogle Scholar
  40. 40.
    Hwang TL, Huang SL, Chen MF (1990) Effects of intravenous fat emulsion on respiratory failure. Chest 97: 934–938PubMedCrossRefGoogle Scholar
  41. 41.
    Jeevanadam M, Grote-Holman E, Chirenji T, Askanazi J, Elwyn DH, Kinney JM (1990) Effects of glucose on fuel utilization and glycerol turnover in normal and injured man. Crit Care Med 18: 125–135CrossRefGoogle Scholar
  42. 42.
    Kierdorf H, Maurin N, Heintz B, Kindler J, Sieberth HG (1990) Eiweißkatabolie bei schwerkranken internistischen Intensivpflegepatienten. Stickstoffausscheidung und -bilanz als reproduzierbare und therapeutisch nutzbare Methode. Intensivmedizin 27: 193–200Google Scholar
  43. 43.
    Klein S, Peters EJ, Shangraw RE, Wolfe RR (1991) Lipolytic response to metabolic stress in critically ill patients. Crit Care Med 19: 776–779PubMedCrossRefGoogle Scholar
  44. 44.
    Kreymann G, Grosser S, Buggisch P, Gottschall C, Schwarzenberg H, Costard-Jäckle A, Greten H (1992) Klinische Wertigkeit der indirekten Kalorimetrie in der internistischen Intensivmedizin — Teil 3: Sauerstoffaufnahme und Energieumsatz bei Infektion und Sepsis. Intensivmedizin 29: 42–50Google Scholar
  45. 45.
    Lanschot JJB van, Feenstra BWA, Vermeij CB, Bruining HA (1986) Calculations versus measurements of total energy expenditure. Crit Care Med 14: 981–985PubMedCrossRefGoogle Scholar
  46. 46.
    Long CL, Kinney JM, Geiger JW (1976) Nonsuppressability of gluconeogenesis by glucose in septic patients. Metabolism 25: 193–201PubMedCrossRefGoogle Scholar
  47. 47.
    Long CL (1977) Energy balance and carbohydrate metabolism in infection and sepsis. Am J Clin Nutr 30: 1301–1310PubMedGoogle Scholar
  48. 48.
    Long CL, Schaffel N, Geiger JW, Schiller WR, Blakemore WS (1979) Metabolic response to injury and illness: Estimation of energy balance and protein needs from indirect calorimetry and nitrogen balance. J Parenter Enteral Nutr 3: 452–456CrossRefGoogle Scholar
  49. 49.
    Newsholme EA, Crabtree B, Ardawi MSM (1985) Glutamine metabolism in lymphocytes: its biochemical, physiological and clinical importance. Quart J Exp Physiol 70: 473–489Google Scholar
  50. 50.
    Newsholme EA, Newsholme P, Curi R, Challoner E, Ardawi MSM (1988) A role for muscle in the immune system and its importance in surgery, trauma, sepsis and burns. Nutrition 4: 261–268Google Scholar
  51. 51.
    Nordenström J, Carpentier YA, Askanazi J, Robin AP, Elwyn DH, Hensle TW, Kinney JM (1982) Metabolic utilization of intravenous fat emulsions during total parenteral nutrition. Ann Surg 196: 221–231PubMedCrossRefGoogle Scholar
  52. 52.
    O’Riordain MG, Fearon KC, Ross JA, Rogers P, Falconer JS, Bartolo DC, Garden OJ, Carter DC (1994) Glutamine-supplemented total parenteral nitrition enhances T-lymphocyte response in surgical patients undergoing colorectal resection. Ann Surg 220: 212–221PubMedCrossRefGoogle Scholar
  53. 53.
    Palmbald J (1991) Intravenous lipid emulsions and host defense — a critical review. Clin Nutr 10: 303–308CrossRefGoogle Scholar
  54. 54.
    Radermacher P, Santak B, Strobach H, Schrör K, Tarnow J (1992) Parenteral fat application and pulmonary function. Intensive Care Med 18 231–234PubMedCrossRefGoogle Scholar
  55. 55.
    Radrizzani D, Iapichino G, Cambisano M, Bonetti G, Ronzoni G, Colombo A (1988) Peripheral, visceral and body nitrogen balance of catabolic patients, without and with parenteral nutrition. Intensive Care Med 14: 212–216PubMedCrossRefGoogle Scholar
  56. 56.
    Roth E, Funovics J, Mühlbacher F, Schemper M, Mauritz W, Sporn P, Fritsch A (1982) Metabolic disorders in severe abdominal sepsis; glutamine deficiency in skeletal muscle. Clin Nutr 1: 24–42CrossRefGoogle Scholar
  57. 57.
    Roth E, Zöch G, Mauritz W, Karner J, Funovics J, Sporn P, Fritsch A (1986) Metabolic changes of patients with acute necrotizing pancreatitis. Infusionstherapie 13: 172–179Google Scholar
  58. 58.
    Schneeweiß B, Graninger W, Stockenhuber F, Druml W, Ferenci P, Eichinger S, Grimm G, Langgner A, Lenz K (1990) Energy metabolism in acute and chronic renal failure. Am J Clin Nutr 52: 596–601PubMedGoogle Scholar
  59. 59.
    Shangraw RE, Jahoor F, Miyoshi H, Neff WA, Stuart CA, Herndon DN, Wolfe RR (1989) Differentiation between septic and postburn insulin resistance. Metabolism 38: 983–989PubMedCrossRefGoogle Scholar
  60. 60.
    Shaw JH, Wolfe RR (1987) Fatty acid and glycerol kinetics in septic patients with gastrointestinal cancer. The response to glucose infusion and parenteral feeding. Ann Surg 205: 368–376PubMedCrossRefGoogle Scholar
  61. 61.
    Skeie B, Askanazi J, Rothkopf MM, Rosenbaum SH, Kvetan V, Thomashow B (1988) Intravenous fat emulsions and lung function: a review. Crit Care Med 16: 183–194PubMedCrossRefGoogle Scholar
  62. 62.
    Souba WW, Smith RJ, Wilmore DW (1985) Glutamine metabolism by the intestinal tract. J Parenter Enteral Nutr 9: 608–617CrossRefGoogle Scholar
  63. 63.
    Stehle P (1988) Bedarfsgerechte Bereitstellung von kurzkettigen Peptiden-eine Voraussetzung für deren Einsatz in der künstlichen Ernährung. Infusionstherapie 15: 26–32Google Scholar
  64. 64.
    Stehle P, Zander J, Mertes N, Albers S, Puchstein C, Lawin P, Fürst P (1989) Effect of parenteral glutamine peptide supplements on muscle glutamine loss and nitrogen balance after major surgery. Lancet I: 231–233CrossRefGoogle Scholar
  65. 65.
    Streat SJ, Beddoe AH, Hill G (1987) Aggressive nutritional support does not prevent protein loss despite fat gain in septic intensive care patients. J Trauma 27: 262–266PubMedCrossRefGoogle Scholar
  66. 66.
    Swinamer DL, Phang PT, Jones RL, Grace M, King GE (1987) Twenty-four hour energy expenditure in critically ill patients. Crit Care Med 15: 637–643PubMedCrossRefGoogle Scholar
  67. 67.
    Thiebaud D, Jacot E, DeFronzo RA, Maeder E, Jequier E, Felber JP (1982) The effect of graded doses of insulin on total glucose uptake, glucose oxidation, and glucose storage in man. Diabetes 31: 957–963PubMedGoogle Scholar
  68. 68.
    Tracey KJ (1992) TNF and other cytokines in the metabolism of septic shock and cachexia. Clin Nutr 11: 1–11PubMedCrossRefGoogle Scholar
  69. 69.
    Ukikusa M, Ozawa K, Shimahra Y, Asano M, Nakatani T, Tobe T (1982) Changes in blood ketone body ratio. Their significance after major hepatic resection. Ann Surg 116: 781–785Google Scholar
  70. 70.
    Venus B, Smith RA, Patel CB, Sandoval E (1989) Hemodynamic and gas exchange alterations during intralipid infusion in patients with adult respiratory distress syndrome. Chest 95: 1278–1281PubMedCrossRefGoogle Scholar
  71. 71.
    Vinnars E, Bergström J, Fürst P (1975) Influence of the postoperative state on the intracellular free amino acids in human muscular tissue. Ann Surg 183: 665–671CrossRefGoogle Scholar
  72. 72.
    Wannemacher RW, Pace JG, Beall FA, Dinterman RE, Petrella VJ, Neufeld HA (1979) Role of the liver in regulation of ketone body production during sepsis. J Clin Invest 64: 1565–1572PubMedCrossRefGoogle Scholar
  73. 73.
    Wernerman J, Vinnars E (1987) The effect of trauma and surgery on interorgan fluxes of amino acids in man. Clin Sci 73: 129–133PubMedGoogle Scholar
  74. 74.
    Wolfe RR, Herndon DN, Jahoor F, Miyoshi H, Wolfe M (1987) Effect of severe burn injury on substrate cycling by glucose and fatty acids. N Engl J Med 317: 403–408PubMedCrossRefGoogle Scholar
  75. 75.
    Ziegler TR, Young LS, Benfell K, Scheltinga M, Hortos K, Bye R, Morrow FD, Jacobs DO, Smith RJ, Antin JH, Wilmore DW (1992) Clinical and metabolic efficacy of glutamine-supplemented parenteral nutrition after bone marrow transplantation. Ann Int Med 116: 821–828PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • W. Behrendt
  • J. Raumanns

There are no affiliations available

Personalised recommendations