Formalization of at-line Human Evaluations to Monitor Product Changes during Processing: The Concept of Sensory Indicator

  • Corinne Curt
  • Nathalie Perrot
  • Irène Allais
  • Laure Agioux
  • Irina Ioannou
  • Boris Edoura-Gaena
  • Gilles Trystram
  • Joseph Hossenlopp


Sensory characteristics of food products are essential for consumers. It is a challenge for firms to maintain these characteristics constant, with as few variations in quality as possible. The control of quality properties and in particular sensory ones can be carried out using reliable process control strategies. Nevertheless, classical control approaches can rarely be used in food processes due in particular to the lack of real-time, reliable instrumental sensors, which limits available information on the product, and to poor understanding of the interactions between food and process. The scarcity of suitable on-line sensors is closely related to the variability of the raw material, the complexity of the biological phenomena during processing and the severe constraints that sensors must satisfy, such as hygiene, high humidity, and so on. As a consequence, some food product properties are very difficult to be quantified during food manufacture [11]. However, various solutions have been explored to overcome this problem: sensor design and adaptation, off-line measurements, software sensors [21]. Moreover, human evaluation is widely accepted as a tool for the evaluation of the quality of food products: operators play a major role in process control, since they take into account not only the information from sensors but also that from their own senses [20]. They can detect small changes in product characteristics such as cookie color after baking [12] thanks to their process knowledge and experience.


Sensory Evaluation Formal Description Sensory Measurement Discrimination Ability Process Control System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    AFNOR (1994), Vocabulaire international des termes fondamentaux et généraux de métrologie, NF X 07–001Google Scholar
  2. 2.
    AFNOR NF ISO (1993), Analyse sensorielle–Guide général pour la sélection, l’entraînement et le contrôle des sujets. Partie 1: Sujets qualifiés, 8586–1MATHGoogle Scholar
  3. 3.
    AFNOR NF ISO (1994), Analyse sensorielle–Guide général pour la sélection, l’entraînement et le contrôle des sujets. Partie 2: Experts, 8586–2Google Scholar
  4. 4.
    Agioux L (2003), Conception et validation d’un outil d’aide à l’estimation de l’état sensoriel de fromages en cours d’affinage-Application à l’affinage d’un fromage à pâte molle et à croûte fleurie. Ph.D. thesis, INA-PG, FranceGoogle Scholar
  5. 5.
    Curt C, Trystram G, Hossenlopp J (2001), Formalisation of at-line human evaluations to monitor product changes during processing. Integration of human decision in the dry sausage ripening process, Sciences des Aliments 21: 663–681Google Scholar
  6. 6.
    Curt C, Hossenlopp J, Perrot N, Trystram G (2002), Dry sausage ripening control–Integration of sensory-related properties. Food Control 13: 151–159MATHCrossRefGoogle Scholar
  7. 7.
    Eerikäinen T, Linko P, Linko S, Siimes T, Zhu YH (1993), Fuzzy logic and neural network applications in food science and technology, Trends in food Science and Technology 4: 237–242CrossRefGoogle Scholar
  8. 8.
    Euzenat J (1996), Corporate memory through cooperative creation of knowledge bases and hyper-documents, In: 10th Knowledge Acquisition for Knowledge-Based Systems Worshop, Banff, Canada, 36, pp 1–18Google Scholar
  9. 9.
    Hossenlopp J (1995), L’évaluation sensorielle appliquée aux produits laitiers, CIDIL, Paris, FranceGoogle Scholar
  10. 10.
    Issanchou S, Lesschaeve I (1993), La formation d’un jury d’analyse sensorielle, Ann. Fals. Exp. Chim. 86: 241–252Google Scholar
  11. 11.
    Pérez-Correa JR, Zaror CA (1993), Recent advances in process control and their potential applications to food processing, Food Control 4: 202–209CrossRefGoogle Scholar
  12. 12.
    Perrot N, Trystram G, Guely F, Chevrie F, Schoesetters N, Dugre E (2000), Feed-back quality control in the baking industry using fuzzy sets, Journal of Process Engineering 23: 249–280CrossRefGoogle Scholar
  13. 13.
    Perrot N, Agioux L, loannou I, Chevallereau V, Trystam G, Mauris G, Corrieu G (2002), A fuzzy symbolic approach to estimate the sensory state of a food product: application to cheese ripening. In: Food SIM2002, Cork, Ireland, pp 99–102Google Scholar
  14. 14.
    Poitou JP (1995), Documentation is knowledge. An anthropological approach to corporate knowledge management, In: 3rd International Symposium on the Management of Industrial and Corporate Knowledge, Compiègne, France, pp 91–103Google Scholar
  15. 15.
    Pomian J (1996), Mémoire d’entreprise - techniques et outils de la gestion du savoir, Les Editions Sapientia, ParisGoogle Scholar
  16. 16.
    Rozier J, Durand P (1969), La fabrication du saucisson sec, Rec. Méd. Vét. CXLV: 845–858Google Scholar
  17. 17.
    Sauvageot F (2000), Quelques questions auxquelles se trouve confrontée l’évaluation sensorielle en l’année 2000, Industries Alimentaires et Agricoles: 42–52Google Scholar
  18. 18.
    Schlich P (1993), Risk tables for discrimination tests, Food Quality and Preference 4: 141–151CrossRefGoogle Scholar
  19. 19.
    Stone H, Sidel J, Oliver S, Woolsey A, Singleton RC (1974), Sensory evaluation by quantitative descriptive analysis, Food technology: 24–34Google Scholar
  20. 20.
    Trystram G, Danzart M, Treillon R, O’Connor B (1994), Supervision of food processes, In: Trystram G (eds) Automatic control of food and biological processes, Elsevier Science, Paris, pp. 441–448Google Scholar
  21. 21.
    Trystram G, Courtois F (1998), Automatique et industries alimentaires–quelques avancées, perspectives et limites, I.A.A.: 21–32Google Scholar
  22. 22.
    Wide P (1999), The human decision making in the dough mixing process estimated in an artificial sensor system, Journal of Food Engineering 39: 39–46CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Corinne Curt
    • 1
  • Nathalie Perrot
    • 1
  • Irène Allais
    • 1
  • Laure Agioux
    • 1
  • Irina Ioannou
    • 1
  • Boris Edoura-Gaena
    • 1
  • Gilles Trystram
    • 2
  • Joseph Hossenlopp
    • 1
  1. 1.Cemagref — Equipe Automatique et Qualité Alimentaire — 24UMR Génie Industriel AlimentaireAubière CedexFrance
  2. 2.ENSIA — 1UMR Génie Industriel AlimentaireMassy CedexFrance

Personalised recommendations