Resistance Management for Sustainable Use of Bacillus thuringiensis Crops in Integrated Pest Management

  • Y. Carrière
  • M. S. Sisterson
  • B. E. Tabashnik
Chapter

Abstract

Intensified management of agricultural land has produced dramatic yield increases over the last century. Intensification involves increased mechanization, irrigation and use of synthetic fertilizers and pesticides, in conjunction with use of crops bred to respond to high-input environments (Matson et al. 1997). Accordingly, the large monocultures currently epitomizing agricultural intensification differ in many ways from natural ecosystems. Compared to plants in natural environments, crops in monocultures may be easier to find for insect herbivores (Root 1973; Feeny 1976; Andow 1991), more suitable nutritionally (Scriber and Slansky 1981; Myers 1985), or less defended by natural enemies (Croft 1990; Andow 1991). Moreover, economically acceptable damage to crops can be low compared to damage occurring in natural environments. Such differences facilitate pest outbreaks in monocultures, which are suppressed most of the time with synthetic insecticides.

Keywords

Migration Toxicity Corn Bacillus Resis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alstad DN, Andow DA (1996) Implementing management of insect resistance to transgenic crops. AgBiotech News Info 8: 177N - 181NGoogle Scholar
  2. Alyokhin AV, Ferro DN (1999) Relative fitness of colorado potato beetle (Coleoptera: Chrysomelidae) resistant and susceptible to the Bacillus thuringiensis Cry3A toxin. J Econ Entomol 92: 510–515Google Scholar
  3. Andow DA (1991) Vegetational diversity and arthropod population response. Annu Rev Entomol 36: 561–586Google Scholar
  4. Andow DA, Hutchison WD (1998) Bt-corn resistance management. In: Mellon M, Rissler J (eds) Now or never. Serious new plans to save a natural pest control. Union of Concerned Scientists, Cambridge, MA, pp 19–66Google Scholar
  5. Andow DA, Ives AR (2002) Monitoring and adaptive resistance management. Ecol Appl 12: 1378–1390Google Scholar
  6. Andow DA, Olson DM, Hellmich RL, Alstad DN, Hutchison WD (2000) Frequency of resistance to Bacillus thuringiensis toxin CrylAb in an Iowa population of O. nubilalis ( Lepidoptera: Crambidae). J Econ Entomol 93: 26–30Google Scholar
  7. Arpaia S, Gould F, Kennedy GG (1997) Potential impact of Coleomegilla maculata predation on adaptation of Leptinotarsa decemlineata to Bt-transgenic potatoes. Entomol Exp Appl 82: 91–100Google Scholar
  8. Benedict JH, Sachs ES, Altman DW, Ring DR, Stone TB, Sims SR (1993) Impact of ô-endotoxinproducing cotton on insect-plant interactions with Heliothis virescens and Helicoverpa zea ( Lepidoptera: Noctuidae). Environ Entomol 22: 1–9Google Scholar
  9. Benrey B, Denno RF (1997) The slow-growth-high-mortality hypothesis: a test using the cabbage butterfly. Ecology 78: 987–999Google Scholar
  10. Caprio MA (1994) Bacillus thuringiensis gene deployment and resistance management in single-and multi-tactic environments. Biocontrol Sci Technol 4:487–497Google Scholar
  11. Caprio MA (2001) Source-sink dynamics between transgenic and non-transgenic habitats and their role in the evolution of resistance. J Econ Entomol 94: 698–705PubMedGoogle Scholar
  12. Caprio MA, Tabashnik BE (1992) Gene flow accelerates local adaptation among finite populations: simulating the evolution of insecticide resistance. J Econ Entomol 85: 611–620Google Scholar
  13. Carpenter J, Felsot A, Goode T, Hammig M, Onstad D, Sankula S (2002) Comparative environmental impacts of biotechnology-derived and traditional soybean, corn, and cotton crops. Council for Agricultural Science and Technology, Ames, IowaGoogle Scholar
  14. Carrière Y, Roff DA (1995) Change in genetic architecture resulting from the evolution of insecticide resistance: a theoretical and empirical analysis. Heredity 75: 618–629Google Scholar
  15. Carrière Y, Tabashnik BE (2001) Reversing insect adaptation to transgenic insecticidal plants. Proc R Soc Lond B 268: 1475–1480Google Scholar
  16. Carrière Y, Deland J-P, Roff DA, Vincent C (1994) Life-history costs associated with the evolution of insecticide resistance. Proc R Soc Lond B 258: 35–40Google Scholar
  17. CarrièreY, Dennehy TJ, Petersen B, Haller S, Ellers-Kirk C, Antilla L, Liu Y-B, Willot E, Tabashnik BE (200la) Large-scale management of insect resistance to transgenic cotton in Arizona: can transgenic insecticidal crops be sustained? J Econ Entomol 94: 315–325Google Scholar
  18. Carrière Y, Ellers-Kirk C, Liu Y-B, Sims MA, Patin AL, Dennehy TJ, Tabashnik BE (2001b) Fitness costs and maternal effects associated with resistance to transgenic cotton in the pink bollworm. J Econ Entomol 94: 1571–1576PubMedGoogle Scholar
  19. Carrière Y, Ellers-Kirk C, Pederson B, Haller S, Antilla L (2001c) Predicting spring moth emergence in the pink bollworm: implications for managing resistance to transgenic cotton. J Econ Entomol 94: 1012–1021PubMedGoogle Scholar
  20. Carrière Y, Ellers-Kirk C, Patin AL, Sims AM, Meyer S, Liu Y-B, Dennehy TJ, Tabashnik BE (2001d) Overwintering costs associated with resistance to transgenic cotton in the pink bollworm. J Econ Entomol 94: 935–941PubMedGoogle Scholar
  21. Carrière Y, Dennehy TJ, Ellers-Kirk C, Holley D, Liu Y-B, Sims MA, Tabashnik BE (2002). Fitness costs, incomplete resistance, and management of resistance to Bt crops. Proc 4th Pac Rim Conf Biotech Bac thur Environ Imp. Camberra, Australia, pp 82–91.Google Scholar
  22. Carrière Y, Ellers-Kirk C, Sisterson M, Antilla L, Withlow M, Dennehy TJ, Tabashnik BE (2003a) Long-term regional suppression of pink bollworm by Bt cotton. Proc Natl Acad Sci USA 100: 1519–1523PubMedGoogle Scholar
  23. Carrière Y, Dutilleul P, Ellers-Kirk C, Pedersen B, Haller S, Antilla L, Dennehy TJ, Tabashnik BE (2003b) Sources, sinks, and the zone of influence of refuges for managing insect resistance to Bt crops. (submitted)Google Scholar
  24. Carrière Y, Ellers-Kirk C, Biggs R, Dennehy TJ, Tabashnik BE (2003c) Effects of gossypol on fitness costs associated with resistance to Bt cotton in the pink bollworm. submittedGoogle Scholar
  25. Chilcutt CF, Tabashnik BE (1997a) Host-mediated competition between the pathogen Bacillus thuringiensis and the parasitoid Cotesia plutella of the diamondback moth ( Lepidoptera: Plutellidae). Environ Entomol 26: 38–45Google Scholar
  26. Chilcutt CF, Tabashnik BE (1997b) Independent and combined effects of Bacillus thuringiensis and the parasitoid Cotesia plutella (Hymenoptera: Braconidae) on susceptible and resistant diamondback moth ( Lepidoptera: Plutellidae). J Econ Entomol 90: 397–403Google Scholar
  27. Chilcutt CF, Tabashnik BE (1999a) Effects of Bacillus thuringiensis on adults of Cotesia plutellae (Hymenoptera: Braconidae), a parasitoid of the diamondback moth ( Lepidoptera: Plutellidae). Biocontrol Sci Technol 9: 435–440Google Scholar
  28. Chilcutt CF, Tabashnik BE (1999b) Simulation of integration of Bacillus thuringiensis and the parasitoid Cotesia plutellae (Hymenoptera: Braconidae) for control of susceptible and resistant diamondback moth ( Lepidoptera: Plutellidae). Environ Entomol 28: 505–512Google Scholar
  29. Comins HN (1977) The development of insecticide resistance in the presence of migration. J Theor Biol 64: 177–197PubMedGoogle Scholar
  30. Croft BA (1990) Arthropod biological control agents and pesticides. Wiley-Interscience, New YorkGoogle Scholar
  31. Currie CR, Scott JA, Summerbell RC, Malloch D (1999) Fungus-growing ants use antibiotic-producing bacteria to control garden parasites. Nature 398: 701–704Google Scholar
  32. Davis PM, Onstad DW (2000) Seed mixtures as a resistance management strategy for O. nubilalis ( Lepidoptera: Crambidae) infesting transgenic corn expressing CrylAb protein. J Econ Entomol 93: 937–948Google Scholar
  33. Dennehy TJ, Williams III L (1997) Management of resistance in Bemisia in Arizona cotton. Pestic Sci 51: 398–406Google Scholar
  34. Dutton A, Romeis KJ, Bigler F (2002) Uptake of Bt-toxin by herbivores feeding on transgenic maize and consequences for the predator Chrysoperla carnea. Ecol Entomol 27: 441–447Google Scholar
  35. Ellsworth PC, Jones J (2000) Arizona cotton insect losses. The University of Arizona, Cooperative Extension. Web Publication #AZ1183. Tucson, AZ. URL: http: ag.arizona.edu crops cotton insects cil cil.htmlGoogle Scholar
  36. Ellsworth PC, Martinez-Carillo JL (2001) IPM for Bemisia tabaci: a case study from North America. Crop Protec 20: 853–869Google Scholar
  37. Environmental Defense and Union of Concerned Scientists (2001) Appendix 3: Benbrook Benefits Analyses. http:www.biotech-info.net Bt-rereg.htmlGoogle Scholar
  38. Falconer DS (1981) Introduction to quantitative genetics, 2nd edn. Longman, New York Feeny PP (1976) Plant apparency and chemical defense. Rec Adv Phytochem 10:1–40Google Scholar
  39. Ferré J, Van Rie J (2002) Biochemistry and genetics of insect resistance to Bacillus thuringiensis.Annu Rev Entomol 47: 501–533Google Scholar
  40. Gahan LJ, Gould F, Heckel DG (2001) Identification of a gene associated with Bt resistance in Heliothis virescens. Science 293: 857–860PubMedGoogle Scholar
  41. Georghiou GP (1986) The magnitude of the resistance problem. In: National Academy of Sciences (ed) Pesticide resistance: strategies and tactics for management. National Academy Press, Washington, DC, pp 14–43Google Scholar
  42. Georghiou GP, Taylor CR (1977) Genetic and biological influences in the evolution of insecticide resistance. J Econ Entomol 70: 319–323PubMedGoogle Scholar
  43. Gould F (1998) Sustainability of transgenic insecticidal cultivars: integrating pest genetics and ecology. Annu Rev Entomol 43: 701–726PubMedGoogle Scholar
  44. Gould F (2000) Testing Bt refuge strategies in the field. Nat Biotech 18: 266–267Google Scholar
  45. Gould F, Kennedy GG, Johnson MT (1991) Effects of natural enemies on the rate of herbivore adaptation to resistant host plants. Entomol Exp Appl 58: 1–14Google Scholar
  46. Gould F, Anderson A, Reynolds A, Bumgarner L, Moar W (1995) Selection and genetic analysis of a Heliothis virescens (Lepidoptera: Noctuidae) strain with high levels of resistance to Bacillus thuringiensis toxins. J Econ Entomol 88: 1545–1559Google Scholar
  47. Gould F, Anderson A, Jones A, Sumerford D, Heckel DG, Lopez J, Micinski C, Leonard R, Laster M (1997) Initial frequency of alleles for resistance to Bacillus thuringiensis toxins in field populations of Heliothis virescens. Proc Natl Acad Sci USA 94: 3519–3523PubMedGoogle Scholar
  48. Groeters FR, Tabashnik BE (2000) Roles of selection intensity, major genes, and minor genes in evolution of insecticide resistance. J Econ Entomol 93: 1580–1587PubMedGoogle Scholar
  49. Groeters FR, Tabashnik BE, Finson N, Johnson MW (1993) Fitness costs of resistance to Bacillus thuringiensis in the diamondback moth (Plutella xylostella). Evolution 48: 197–2001Google Scholar
  50. Groot AT, Dicke M (2002) Insect-resistant transgenic plants in a multi-trophic context. Plant J 31: 387–406PubMedGoogle Scholar
  51. Guse CA, Onstad DW, Bushman LL, Porter P, Higgins RA, Sloderbeck PE, Cronholm GB, Peairs FB (2002) Modeling the development of resistance by stalk-boring lepidoptera ( Crambicidea) in areas with irrigated, transgenic corn. Environ Entomol 31: 676–685Google Scholar
  52. Hanski I (1999) Metapopulation ecology. Oxford University Press, OxfordGoogle Scholar
  53. Hawkins BA (1994) Pattern and process in host-parasitoid interactions. Cambridge University Press, CambridgeGoogle Scholar
  54. Henneberry TJ, Forlow Jech L, de la Torre T (2001) Effect of transgenic cotton on mortality and development of pink bollworm ( Lepidoptera: Gelechiidae) larvae. Southwest Entomol 26: 115–128Google Scholar
  55. Higginson DM (2003) Male reproductive costs of Bacillus thuringiensis resistance in the pink bollworm (Lepidoptera: Gelechiidae). MS Thesis, Department of Entomology, The University of ArizonaGoogle Scholar
  56. Hilbeck A, Baumgartner M, Fried PM, Bigler F (1998) Effects of transgenic Bacillus thuringiensis corn-fed prey on mortality and development time of immature Chrysoperla carnea. Environ Entomol 27: 480–487Google Scholar
  57. Hill E, Broadbent ID, Chothia C, Pettitt J (2001) Cadherin superfamily proteins in Caenorhabditis elegans and Drosophila melanogaster. J Mol Biol 305: 1011–1024PubMedGoogle Scholar
  58. Hoy CW, Feldman J, Gould F, Kennedy GG, Reed G, Wyman JA (1998) Naturally occurring biological controls in genetically engineered crops. In: Barbosa P (ed) Conservation biological control. Academic Press, New York, pp 185–205Google Scholar
  59. Huang F, Buschman LL, Higgins RA, McGaughey WH (1999) Inheritance of resistance to Bacillus thuringiensis toxin ( Dipel-ES) in the European corn. Science 284: 965–967Google Scholar
  60. Huang F, Buschman LL, Higgins RA, Li H (2002) Survival of Kansas Dipel-resistant O. nubilalis ( Lepidoptera: Crambidae) on Bt and non-Bt corn hybrids. J Econ Entomol 95: 614–621Google Scholar
  61. Ives AR, Andow DA (2002) Evolution of resistance to Bt crops: directional selection in struc-tured environments. Ecol Lett 5: 792–801Google Scholar
  62. Johnson MW, Tabashnik BE (1999) Enhanced biological control through pesticide selectivity. In: Fisher TD, Bellows TS (eds) Handbook of biological control. Academic Press, New York, pp 297–317Google Scholar
  63. Knight PJK, Crickmore N, Ellar D (1994) The receptor for Bacillus thuringiensis crylA(c) deltaendotoxin in the brush border membrane of the lepidopteran Manduca sexta is aminopeptidase N. Mol Microbiol 11: 429–436Google Scholar
  64. Lee MK, Rajamohan F, Gould F, Dean DH (1995) Resistance to Bacillus thuringiensis CrylA delta-endotoxin in a laboratory-selected Heliothis virescens strain is related to receptor alteration. Appl Environ Microbiol 61: 3836–3842PubMedGoogle Scholar
  65. Lenormand T, Raymond M (1998) Resistance management: the stable zone strategy. Proc R Soc Lond B 265: 1985–1990Google Scholar
  66. Lewis WJ, van Lenteren JC, Phatak SC, Tumlinson III JH (1997) A total approach to sustainable pest management. Proc Nail Acad Sci USA 94: 12243–12248Google Scholar
  67. Liu Y-B, Tabashnik BE, Dennehy TJ, Patin AL, Bartlett AC (1999) Development time and resistance to Bt crops. Nature 400: 519PubMedGoogle Scholar
  68. Liu Y-B, Tabashnik BE, Dennehy TJ, Patin AL, Sims MA, Meyer SK, Carrière Y (2001) Effects of Bt cotton and CrylAc toxin on survival and development of pink bollworm ( Lepidoptera: Gelechiidae). J Econ Entomol 94: 1237–1242Google Scholar
  69. Liu Y-B, Tabashnik BE, Dennehy TJ, Carrière Y, Sims MA, Meyer SK (2002) Oviposition and mining in bolls of Bt and non-Bt cotton by resistant and susceptible pink bollworm ( Lepidoptera: Gelechiidae). J Econ Entomol 95: 143–148Google Scholar
  70. Mallet J, Porter P (1992) Preventing insect adaptation to insect-resistant crops: are seed mixtures or refugia the best strategy? Proc R Soc Lond B 250: 165–169Google Scholar
  71. Matson PA, Parton WI, Power AG, Swift MJ (1997) Agricultural intensification and ecosystem properties. Science 277: 504–509PubMedGoogle Scholar
  72. McGaughey WH (1985) Insect resistance to the biological insecticide Bacillus thuringiensis. Science 229: 193–195PubMedGoogle Scholar
  73. McKenzie JA (1990) Selection at the dieldrin resistance locus in overwintering populations of Lucilia cuprina (Wiedemann). Aust J Zool 38: 493–501Google Scholar
  74. McKenzie JA (1996) Ecological and evolutionary aspects of insecticide resistance. Academic Press, Austin, TXGoogle Scholar
  75. Morin S, Biggs R, Sisterson M, Shriver L, Ellers-Kirk C, Higginson D, Holley D, Gahan L, Heckel DG, Carrière Y, Dennehy TJ, Brown JK, Tabashnik BE (2003) Three cadherin alleles associated with Bt resistance in pink bollworm. Proc Natl Acad Sci USA 100: 5004–5009PubMedGoogle Scholar
  76. Myers JH (1985) Effect of physiological condition of the host plant on the ovipositional choice of the cabbage white butterfly, Pieris rapae. J Anim Ecol 54: 193–204Google Scholar
  77. Nagamatsu Y, Koike T, Sasaki K, Yoshimoto A, Furukawa Y (1999) The cadherin-like protein is essential to specificity determination and cytotoxic action of the Bacillus thuringiensis insecticidal CryIAa toxin. FEBS Lett 460: 385–390Google Scholar
  78. Nagar B, Overduin M, Ikura M, Rini JM (1996) Structural basis of calcium-induced E-cadherin rigidification and dimerization. Nature 380: 360–364PubMedGoogle Scholar
  79. Naranjo SE (2001) Conservation and evaluation of natural enemies in IPM systems for Bemisia tabaci. Crop Protect 20: 835–852Google Scholar
  80. Obrycki JJ, Losey JE, Taylor OR, Jesse LCH (2001). Transgenic insecticidal corn: beyond insecticidal toxicity to ecological complexity. Bioscience 51: 353–361Google Scholar
  81. Onstad DW, Gould F (1998) Modeling the dynamics of adaptation to transgenic maize by O. nubilalis (Lepidoptera: Pyralidae ). J Econ Entomol 91: 585–593Google Scholar
  82. Onstad DW, Guse CA (1999) Economic analyses of the use of transgenic crops and nontransgenic refuges for management of European corn borer ( Lepidoptera: Pyralidae). J Econ Entomol 92: 1256–1265Google Scholar
  83. Onstad DW, Spencer JL, Guse CA, Levine E, Isard SA (2001a) Modeling evolution of behavioral resistance by an insect to crop rotation. Entomol Exp Appl 100: 195–201Google Scholar
  84. Onstad DW, Guse CA, Spencer JL, Levine E, Gray M (2001b) Modeling the adaptation to trans-genic corn by western corn rootworm ( Coleoptera: Chrysomelidae). J Econ Entomol 94: 529–540Google Scholar
  85. Onstad DW, Guse CA, Porter P, Buschman LL, Higgins RA, Sloderbeck PE, Peairs FB, Gronholm GB (2002) Modeling the development of resistance by stalk-boring lepidopteran insects ( Crambidae) in areas with transgenic corn and frequent insecticide use. J Econ Entomol 95: 1033–1043Google Scholar
  86. Oppert B, Kramer KJ, Beeman RW, Johnson D, McGaughey WH (1997) Proteinase-mediated insect resistance to Bacillus thuringiensis toxins. J Biol Chem 272: 23473–23476PubMedGoogle Scholar
  87. Orr DB, Landis DA (1997) Oviposition of O. nubilalis and impact of natural enemy populations in transgenic versus isogenic corn. J Econ Entomol 90: 905–909Google Scholar
  88. Otto SP, Bourguet D (1999) Balanced polymorphism and the evolution of dominance. Am Nat 153: 561–574Google Scholar
  89. Patin AL, Dennehy TJ, Sims MA, Tabashnik BE, Liu Y-B, Antilla L, Gouge D, Henneberry TJ, Staten R (1999) Status of pink bollworm susceptibility to Bt in Arizona. Proc Belt Cot Conf Nat Cot Counc, National Cotton Council of America, Memphis, pp 991–999Google Scholar
  90. Peck SL, Ellner SP (1997) The effect of economic thresholds and life-history parameters on the evolution of pesticide resistance in a regional setting. Am Nat 149: 43–63Google Scholar
  91. Peck SL, Gould F, Ellner SP (1999) Spread of resistance in spatially extended regions of trans-genic cotton: implications for management of Heliotis virescens ( Lepidoptera: Noctuidae). J Econ Entomol 92: 1–16Google Scholar
  92. Pimentel D, Acquay H, Biltonen M, Rice P, Silva M, Nelson J, Lipner V, Giordano S, Horowitz A, D’Amore M (1992) Environmental and economic costs of pesticide use. Bioscience 42: 750–760Google Scholar
  93. Potting RPJ, Poppy BM, Schuler TH (1999) The role of volatiles from cruciferous plants and preflight experience in the foraging behavior of the specialist parasitoid Cotesia plutellae. Entomol Exp Appl 93: 87–95Google Scholar
  94. Ramachandran S, Buntin GD, All JN, Tabashnik BE, Raymer PL, Adang MJ, Pulliam DA, Stewart Jr CN (1998) Survival, development, and oviposition of resistant diamondback (Lepidoptera:Google Scholar
  95. Plutellidae) on transgenic canola producing a Bacillus thuringiensis toxin. J Econ Entomol 91:1239–1244Google Scholar
  96. Rausher MD (2001) Co-evolution and plant resistance to natural enemies. Nature 411:857–864 Riggin-Bucci TM, Gould F (1997) Impact of intraplot mixtures of toxic and non-toxic plants onGoogle Scholar
  97. population dynamics of diamondback moth (Lepidoptera: Plutellidae) and its natural ene-mies. J Econ Entomol 90: 241–251Google Scholar
  98. Root RB (1973) Organization of a plant-arthropod association in simple and diverse habitats: the fauna of collards (Brassica oleracea). Ecol Monogr 1: 95–124Google Scholar
  99. Rosenheim JA, Tabashnik BE (1990) Evolution of pesticide resistance: interactions between gen-eration time and genetic, ecological, and operational factors. J Econ Entomol 83: 1184–1193PubMedGoogle Scholar
  100. Roush RT (1989) Designing resistance management programs: how can you choose? Pestic Sci 26: 423–441Google Scholar
  101. Roush RT (1997) Managing resistance to transgenic crops. In: Carozzi N, Koziel M (eds) Advances in insect control: the role of transgenic plants. Taylor and Francis, London, pp 271–294Google Scholar
  102. Roush RT, Daly JC (1990) The role of population genetics in resistance research and management. In: Roush RT, Tabashnik BE (eds) Pesticide resistance in arthropods. Chapman and Hall, New York, pp 97–152Google Scholar
  103. Sangadala S, Walters FS, English LH, Adang M (1994) A mixture of Manduca sexta aminopeptidase and phosphatase enhances Bacillus thuringiensis insecticidal crylA(c) toxin binding and 86RB+-K+ efflux in vitro. J Biol Chem 269: 10088–10092PubMedGoogle Scholar
  104. Schuler TH, Potting RPJ, Denholm I, Poppy GM (1999) Parasitoid behavior and Bt plants. Nature 400: 825–826PubMedGoogle Scholar
  105. Schuler TH, Potting RPJ, Denholm I, Poppy GM (2003) Effects of Bt plants on natural enemies of Brassica pests. (in press)Google Scholar
  106. Scriber JM, Slansky F (1981) The nutritional ecology of immature insects. Annu Rev Entomol 26: 183–211Google Scholar
  107. Shelton AM, Tang JD, Roush RT, Metz TD, Earle ED (2000) Field tests on managing resistance to Bt-engineered plants. Nat Biotech 18: 339–342Google Scholar
  108. Shelton AM, Zhao J-H, Roush RT (2002) Economic, ecological, food safety, and social consequences of deployment of Bt transgenic plants. Annu Rev Entomol 47: 845–881PubMedGoogle Scholar
  109. Sims MA, Dennehy TJ, Shriver L, Holley D, Carrière Y, Tabashnik BE ( 2002 ) Susceptibility of Arizona pink bollworm to CrylAc. 2002 Belt Cot ConfGoogle Scholar
  110. Stern VM, Smith RF, van den Bosh R, Hagen KS (1959) The integrated control concept. Hilgardia 29: 81–101Google Scholar
  111. Storer NP, Peck SL, Gould F, Van Duyn JW, Kennedy GG (2003) Spatial processes in the evolution of resistance in Helicoverpa zea (Lepidoptera: Noctuidae) to Bt transgenic corn and cotton in a mixed agroecosystem: a biology-rich stochastic simulation model. J Econ Entomol 96: 156–172PubMedGoogle Scholar
  112. Symondson WOC, Sunderland KD, Greenstone GH (2002) Can generalist predators be effective biocontrol agents? Annu Rev Entomol 47: 561–594Google Scholar
  113. Tabashnik BE (1994a) Delaying insect adaptation to transgenic plants: seed mixtures and refugia reconsidered. Proc R Soc Lond B 255: 7–12Google Scholar
  114. Tabashnik BE (1994b) Evolution of resistance to Bacillus thuringiensis. Annu Rev Entomol 39: 47–79Google Scholar
  115. Tabashnik BE, Croft BA (1982) Managing pesticide resistance in crop-arthropod complexes: interaction between biological and operational factors. Environ Entomol 11: 1137–1144Google Scholar
  116. Tabashnik BE, Johnson MW (1999) Evolution of pesticide resistance in natural enemies. In: Fisher TD, Bellows TS (eds) Handbook of biological control. Academic Press, New York, pp 673–689Google Scholar
  117. Tabashnik BE, Liu Y-B, Malvar T, Heckel DG, Masson L, Ferré J (1998) Insect resistance to Bacillus thuringiensis: uniform or diverse? Philos Trans R Soc B 353: 1751–1756Google Scholar
  118. Tabashnik BE, Patin AL, Dennehy TJ, Liu Y-B, Carrière Y, Antilla L (2000) Tracking the frequency of resistance to Bacillus thuringiensis in field populations of pink bollworm. Proc Natl Acad Sci USA 21: 12980–12984Google Scholar
  119. Tabashnik BE, Dennehy TJ, Carrière Y (2001) Supporting a cautious approach to agricultural biotechnology. BioScience 51: 905–906Google Scholar
  120. Tabashnik BE, Liu Y-B, Dennehy TJ, Sims MA, Sisterson M, Biggs R, Carrière Y (2002) Inheritance of resistance to Bt toxin CrylAc in a field-derived strain of pink bollworm ( Lepidoptera: Gelechiidae). J Econ Entomol 95: 1018–1026Google Scholar
  121. Tabashnik BE, Carrière Y, Dennehy TJ, Morin S, Sisterson M, Roush RT, Shelton AM, Zhao J-Z (2003) Insect resistance to transgenic Bt crops: lessons from the laboratory and field. J Econ Entomol 96: 1031–1038PubMedGoogle Scholar
  122. Takeichi M (1990) Cadherin: a molecular family important in selective cell-cell adhesion. Annu Rev Biochem 59: 237–252PubMedGoogle Scholar
  123. Tang JD, Gilboa S, Roush RT, Shelton AM (1997) Inheritance, stability, and lack-of-fitness costs of field-selected resistance to Bacillus thuriengensis in diamondback moth ( Lepidoptera: Plutellidae) from Florida. J Econ Entomol 90: 732–741Google Scholar
  124. Tang JD, Collins HL, Roush RT, Metz TD, Earle ED, Shelton AM (1999) Survival, weight gain, and oviposition of resistant and susceptible Plutella xylostella (L.) on broccoli expressing CrylAc toxin of Bacillus thuringiensis. J Econ Entomol 92: 47–55Google Scholar
  125. Tang JD, Collins HL, Metz TD, Earle ED, Zhao JZ, Roush RT, Shelton AM (2001) Greenhouse tests on resistance management of Bt transgenic plants using refuge strategies. J Econ Entomol 94: 240–247PubMedGoogle Scholar
  126. Taylor CE, Georghiou GP (1979) Suppression of insecticide resistance by alteration of gene dominance and migration. J Econ Entomol 72: 105–109Google Scholar
  127. van Emden HF (1999) Transgenic host plant resistance to insects–some reservations. Ann Entomol Soc Am 92: 788–797Google Scholar
  128. Van Rie J, McGaughey WH, Johnson DE, Barnett DB, Van Mellaert H (1990) Mechanism of insect resistance to the microbial insecticide Bacillus thuringiensis. Science 247: 72–74PubMedGoogle Scholar
  129. Walker K, Liebman J, Pease W (1995) Pesticide-induced disruptions of agricultural ecosystems.California Policy Seminar Report. University of California, BerkeleyGoogle Scholar
  130. Werner G, Moore L, Watson TF (1979) Arizona cotton insects. Cooperative Extension Service Publication, The University of ArizonaGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Y. Carrière
  • M. S. Sisterson
  • B. E. Tabashnik
    • 1
  1. 1.Department of EntomologyUniversity of ArizonaTucsonUSA

Personalised recommendations