Volatile Anästhetika und Herzinsuffizienz

  • P. Foëx
Conference paper
Part of the Anaesthesiologie und Intensivmedizin / Anaesthesiology and Intensive Care Medicine book series (A+I, volume 184)

Zusammenfassung

Die modernen Inhalationsanästhetika Halothan, Enfluran und Isofluran setzen bekanntlich die myokardiale Kontraktilität herab. Gezeigt wurde dies wiederholt an isolierten Herzmuskelpräparaten und intakten Herzen, und zwar im Tierversuch und am Menschen gleichermaßen. Diese Herabsetzung verhält sich direkt porportional zur Konzentration der verabreichten Inhalationssubstanz. Der Gesamteffekt dieser Pharmaka auf den Kreislauf hängt nicht nur von ihrer unmittelbaren Wirkung auf die myokardiale Kontraktilität ab, sondern auch von ihrem Einfluß auf Gefäßwiderstand und-kapazitanz. Darüber hinaus kommt es während der Verabreichung von Inhalationsanästhetika zu Veränderungen der Barorezeptor-sensivität, und dies wiederum beeinflußt Blutdruckregulation und Herzfrequenz.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Abbot BC, Gordon DC (1975) A commentary on muscle mechanics. Circ Res 36:1–7CrossRefGoogle Scholar
  2. 2.
    Abbot, BC, Mommaerts WFHM (1959) A study of inotropic mechanism in the papillary muscle preparation. J Gen Physiol 42:533–551CrossRefGoogle Scholar
  3. 3.
    Brutsaert DL, Paulus WJ (1977) Loading and performance of the heart as muscle and pump. Cardio-vasc Res 11:1–16CrossRefGoogle Scholar
  4. 4.
    Covell JW, Ross J Jr, Sonnenblick EH, Braunwald E (1966) Comparison of the force-velocity relation and the ventricular function curve as measures of the contractile state of the intact heart. Circ Res 19:364–372PubMedCrossRefGoogle Scholar
  5. 5.
    Cutfiled GR, Francis CM, Foëx P, Lowenstein E, Davies WL, Ryder WA (1980) Myocardial function and critical constriction of the left anterior descending coronary artery: Effect of enflurane. Br J Anaesth 52:953P-954PGoogle Scholar
  6. 6.
    Elzinga G, Westerhof N (1979) How to quantify pump function of the heart. The value of variables derived from measurement on isolated muscle. Circ Res 44:303–308PubMedCrossRefGoogle Scholar
  7. 7.
    Francis CM (1981) The pressure-length loop in the assessment of regional myocardial contractility. J Physiol (Lond) 320:95PGoogle Scholar
  8. 8.
    Francis CM, Foëx P, Lowenstein E, Glazebrook CW, Davies WL, Ryder WA, Jones LA (1982) Interaction between regional myocardial ischaemia and left ventricular performance under halothane anaesthesia. Br J Anaesth 54:965–980PubMedCrossRefGoogle Scholar
  9. 9.
    Frank O (1895) Zur Dynamik des Herzmuskels. Z Biol 32:370–437Google Scholar
  10. 10.
    Grossman W, Braunwald E, Mann T, McLavin LP, Green LH (1977) Contractile state of the left ventricle in man as evaluated from endsystolic pressure volume relations. Circulation 56:845–852PubMedCrossRefGoogle Scholar
  11. 11.
    Hill AV (1938) Heat of shortening and dynamic constants of muscle. Proc R Soc Lond [Biol] 126: 136–195CrossRefGoogle Scholar
  12. 12.
    Lowenstein E, Foëx P, Francis CM, Davies WL, Yusuf S, Ryder WA (1981) Regional ischemic ventricular dysfunction in myocardium supplied by a narrowed coronary artery with increasing halothane concentration in the dog. Anesthsiology 55:349–359CrossRefGoogle Scholar
  13. 13.
    Mason DT, Spann JF Jr, Zelis R (1970) Quantifications of the contractile state of the intact human heart. Am J Cardiol 26:248–257PubMedCrossRefGoogle Scholar
  14. 14.
    Noble MIM, Trenchard D, Guz A (1966) Left ventricular ejection in conscious dogs: I. Measurement of the maximum acceleration of blood from left ventricle. Circ Res 19:139–147CrossRefGoogle Scholar
  15. 15.
    Pollack GH (1970) Maximum velocity as an index of contractility in cardiac muscle. Circ Res 26: 111–127PubMedCrossRefGoogle Scholar
  16. 16.
    Sagawa K (1978) The ventricular pressure-volume diagram revisited. Circ Res 43:477–687CrossRefGoogle Scholar
  17. 17.
    Siegel JH, Sonnenblick EH (1963) Isometric time-tension relationships as an index of myocardial contractility. Circ Res 12:597–610PubMedCrossRefGoogle Scholar
  18. 18.
    Siegel JH, Sonnenblick EH, Judge RD, Wilson WS (1964) The quantification of myocardial contractility in dog and man. Cardiologia 45:189–200PubMedCrossRefGoogle Scholar
  19. 19.
    Sonnenblick EH (1966) The mechanics of myocardial contraction. In: Briller SA, Conn HL Jr (eds) The myocardial cell structure, function and modification by cardiac drugs. University of Pennsylvania, Philadelphia, pp 173–250Google Scholar
  20. 20.
    Sonnenblick EH, Ross J Jr, Covell JW, Braunwald E (1966) Alterations in resting length-tension relations of cardiac muscle induced by changes in contractile force. Circ Res 19:980–988PubMedCrossRefGoogle Scholar
  21. 21.
    Suga H, Sagawa K (1974) Instantaneous pressure-volume relationships and their ratio in the excised, supported canine left ventricle. Circ Res 35:117–126PubMedCrossRefGoogle Scholar
  22. 22.
    Suga H, Sagawa K, Shoukas AA (1973) Load independence of the instantaneous pressure-volume ratio of the canine left ventricle and effects of epinephrine and heart rate on the ratio. Circ Res 32:314–322PubMedCrossRefGoogle Scholar
  23. 23.
    Taylor RR (1970) Theoretical analysis of the isovolumic phase of left ventricular contractions in terms of cardiac muscle mechanics. Cardio vase Res 4:429–435CrossRefGoogle Scholar
  24. 24.
    Veragut UP, Krayenbuhl HP (1965) Estimation and quantification of myocardial contractility in the closed-chested dog. Cardiologia 47:96–112PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • P. Foëx

There are no affiliations available

Personalised recommendations