Advertisement

Natürlicher Abbau und Rückhalt von Schadstoffen

Chapter
Part of the VDI-Buch book series (VDI-BUCH)

Zusammenfassung

Natürlicher Abbau und Rückhalt von Schadstoffen beruht im wesentlichen auf zwei Prozessen: 1) dem biologischen oder abiotischen Abbau von organischen Verbindungen und 2) der Wechselwirkung von Schadstoffen mit den festen Bodenbestandteilen, die in der Regel jedoch nur eine temporäre Festlegung (Sorption/Desorption) und damit einen verlangsamten Transport im Untergrund bewirkt (Retardation). Dispersion führt lediglich zur einer (lokal oft nur geringen) „Verdünnung“ der Schadstoffkonzentrationen bei ungeminderter Schadstoff-Fracht. Im folgenden werden die zum Verständnis der reaktiven Transportprozesse wichtigen Grundlagen eingeführt. Dabei werden im wesentlichen organische Schadstoffe angesprochen — die dargestellten Modelle sind z.T. aber auch auf anorganische Stoffe anwendbar.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Allen-King R, Grathwohl P, Ball WP (2002) New Modeling Paradigms for the Sorption of Hydrophobic Organic Chemicals to Heterogeneous Carbonaceous Matter in Soils, Sediments, and Rocks. Advances in Water Research (Invited Paper for Anniversary Issue, in print)Google Scholar
  2. Altfelder S, Streck T, Richter J (2000) Nonsingular sorption of organic compounds in soil: The role of slow kinetics. J Environ Qual 29: 917–925Google Scholar
  3. Aral (2002) www.aral.de/corporate/_struktur/ Google Scholar
  4. Archie GE (1942) The electrical resistivity log as an aid in determining some reservoir characteristics. Trans.AIME 146: 54–62Google Scholar
  5. Ball WP, Roberts PV (1991) Long-term sorption of halogenated organic chemicals by aquifer material. 2. Intraparticle diffusion. Environ Sci Technol 25 (7): 1237–1249Google Scholar
  6. Banerjee S (1984) Solubility of organic mixtures in water. Environ Sci Techno. 18 (8): 587–591Google Scholar
  7. Barr-Howell BD, Peppas NA, Winslow DN (1986) Transport of penetrants in the macromolecular structure of coals. II. Effect of porous structure on pyridine transport mechanisms. Chem Eng Comm 43 (4–6): 301–315Google Scholar
  8. BBodSchV (1999) Bundes-Bodenschutz-and Altlastenverordnung vom 16. Juli 1999. Bundesgesetzblatt Jahrgang 1999, Teil I Nr. 36: 1554–1682Google Scholar
  9. Bear J, Nichols E, Ziagos J, Kulshrestha A (1994) Effect of contaminant diffusion into and out of low-permeability zones. UCRL-ID-115626, Lawrence Livermore National Laboratory, University of CaliforniaGoogle Scholar
  10. Bird, MJ, Cali, JA (1998) A million year record of fire in sub-Saharan Africa. Nature, 394: 767–769Google Scholar
  11. Boving T Grathwohl P (2001) Matrix diffusion coefficients in sandstones and limestones: Relationship to permeability and porosity. J Cont Hydro 53 (1–2): 85–100Google Scholar
  12. Briggs GG (1969) Molekular structure of herbicides and their sorption by soils. Nature, 223: 1288Google Scholar
  13. Brookman, G.T., Flanagan, M., Kebe, J.O. (1995) Literature Survey: Hydrocarbon Solubility and Attenuation Mechanisms. Am Petroleum Inst, Washington, DC, Pub. No. 441.Google Scholar
  14. Brusseau ML, Jessup RE, Rao PSC (1990) Sorption kinetics of organic chemicals: Evaluation of gas-purge and miscible-displacement techniques. Environ Sci Technol 24: 727–735Google Scholar
  15. Brusseau ML, Jessup RE, Rao PSC (1991) Nonequilibrium sorption of organic chemicals: Elucidation of rate-limiting processes. Environ Sci Technol 25: 134–142Google Scholar
  16. Brusseau M, Sabatini DA., Gierke J, Annable M, eds. (1999) Field Testing of Innovative Subsurface Remediation and Characterization Technologies. ACS Symposium Series, American Chemical Society, Washington, D.C., 299 pp.Google Scholar
  17. Büchi TG, Gustafsson Ö (2000) Quantification of the soot-water distribution coefficient of PAHs provides mechanistic basis for enhanced sorption observations. Environ Sci Technol 34: 5144–5151Google Scholar
  18. Carmo AM, Hundal LS, Thompson ML (2000) Sorption of hydrophobic organic compounds by soil materials: application of unit equivalent Freundlich coefficients. Environ Sci Technol 34: 4363–4369Google Scholar
  19. Carroll KM, Harkness MR, Bracco AA, Balarcel RR (1994) Application of a permeandpolymer diffusional model to the desorption of polychlorinated biphenyls from Hudson River sediments. Environ Sci Technol 28 (2): 253–258Google Scholar
  20. Chen W, Kan AT, Tomson MB (2000) Irreversible adsorption of chlorinated benzenes to natural sediments: Implications for sediment quality criteria. Environ Sci Technol 34, 3, 385–392Google Scholar
  21. Chiou CT (1989) Theoretical considerations of the partition uptake of nonionic organic compounds by soil organic matter. SSSA 22: 1–29Google Scholar
  22. Chiou CT, Peters LJ, Freed VH (1979) A physical concept of soil-water equilibria for nonionic organic compounds. Science 206, 830–832Google Scholar
  23. Chiou CT, Peters Li, Freed VH (1981): Soil-water equilibria for nonionic organic compounds. Science 213 (8): 683–684Google Scholar
  24. Chiou CT, Schmedding DW, Manes M (1982): Partitioning nonionic organic compounds in octanol-water systems. Environ Sci Technol 16: 4–10Google Scholar
  25. Chiou CT, Porter PE, Schmedding DW (1983) Partition equilibria of nonionic organic compounds between soil organic matter and water. Environ Sci Technol 17: 227 — 231Google Scholar
  26. Chiou CT, Shoup TD, Porter PE (1985): Mechanistic roles of soil humus and minerals in the sorption of nonionic organic compounds from aqueous and organic solutions. Org Geochem 8 (1): 9–14Google Scholar
  27. Christensen TH, Bjerg PL, Banwart SA, Jakobsen R, Heron G, Albrechtsen H-J (2000) Characterisation of redox conditions in groundwater contaminant plumes. J Cont Hydrol 45: 165 241Google Scholar
  28. Chrysikopoulos CV, Voudrias EA, Fyrillas MM (1994): Modeling of contaminant transport resulting from dissolution of nonaqueous phase liquid pools in saturated porous media. Transport in Porous Media 16: 125–145.Google Scholar
  29. Chu W, Chan K-H (2000) The prediction of partitioning coefficients for chemicals causing environmental concern. The science of the total environment. 248: 1–10Google Scholar
  30. Cousins IT, Mackay D (2001) Gas particle partitioning of organic compounds and its interpretation using relative solubilities. Environ Sci Technol 35 (4): 643–647Google Scholar
  31. Crank J (1975) The Mathematics of Diffusion, 2nd ed.- Oxford, U.K. (University Press)Google Scholar
  32. Crittenden JC, Sanongraj S, Bulloch JL, Hand DW, Rogers TN, Speth TF, Ulmer M (1999)Google Scholar
  33. Correlation of aqueous-phase adsorption isotherms. Environ Sci Technol 33 (17): 2926–2933Google Scholar
  34. Dachs J, Eisenreich SJ (2000) Adsorption onto aerosol soot carbon dominates gas-particle partitioning of polycyclic aromatic hydrocarbons. Environ Sci Technol 34, (17): 36903697Google Scholar
  35. Danzer J (1998) Transport of Surfactants and Coupled Transport of Polycyclic Aromatic Hydrocarbons (PAHs) and Surfactants in Natural Aquifer Material–LaboratoryGoogle Scholar
  36. Experiments.- Tübinger Geowissenschaftliche Arbeiten (TGA), Reihe C, Nr. 49, 75 S Darcy H (1856) Les fontaines publiques de la ville de Dijon. Victor Dalmont, Paris.Google Scholar
  37. De Josselin de Jong G (1958) Longitudinal and transverse diffusion in granular deposits, Transactions, American Geophysical Union, 39: 67–74Google Scholar
  38. de Seze G, Valsraj KT, Reible DD, Thibodeaux LJ (2000) Sediment-air equilibrium partitioning of semi-volatile hydrophobic organic compounds. Part 2. Saturated vapor pressures, and the effects of sediment moisture content and temperature on the partitioning of polyaromatic hydrocarbons. The Science of the Total Environment 253: 27–44Google Scholar
  39. Ditoro DM, Horzempa LM (1982) Reversible and resistant components of PCB adsorption–desorption isotherms. Environ Sci Technol 16 (9): 594–602Google Scholar
  40. Dubinin MM (1975) Physical Adsorption of gases and vapors in micropores. Progr. Surface Membran Sci. (1975c): 1–71Google Scholar
  41. Dubinin MM, Astakhov VA (1971) Development of concepts of volume filling of micropores in adsorption of gases and vapors by microporous adsorbents. Izv. Akad. Nauk SSSR, Ser. Khim 1: 5–11Google Scholar
  42. Eberhardt C, Grathwohl P (2002) Time scales of pollutants dissolution from complex organic mixtures: blobs and pools. J Cont Hydrol (Special Issue on Site Remediation, in print)Google Scholar
  43. Einsele G (1992) Sedimentary Basins. Springer, 628 p.Google Scholar
  44. Farrell J, Reinhard M (1994) Desorption of halogenated organics from model solids, sediments, and soil under unsaturated conditions. 1. Isotherms. 2. Kinetics. Environ Sci Technol 28 (1): 53–72Google Scholar
  45. Reckhorn FSB, Zuquette LV, Grathwohl P (2001) Experimental investigations of oxygenated gasoline. Journal of Environmental Engineering 27 (3): 208–216Google Scholar
  46. Fiori A, Dagan G, (1999) Concentration fluctuations in transport by groundwater: Comparison between theory and field experiments. Water Resources Research 35 (1): 105–112Google Scholar
  47. Fitzer E, Fritz W, Emig G (1995) Technische Chemie. Einführung in die chemische Reaktionstechnik. 4. Aufl., 541 S.; Springer, Heidelberg.Google Scholar
  48. Frank H, Evans M (1945) Free Volume and Entropy in condensed Systems. III. Mixed Liquids. J Chem Phys 13: 507–532Google Scholar
  49. Freeman DH, Chang LS (1981): A gel partition model for organic desorption from a pond sediment. Science 214: 790–792Google Scholar
  50. Freundlich H (1909) Kapillarchemie.- Leipzig (Akademische Verlagsgesellschaft m.b.H.), 591 pGoogle Scholar
  51. Fried JJ, Muntzer P, Zilliox L (1979) Ground-water pollution by transfer of oil hydrocarbons. Ground Water 17 (6): 586–594Google Scholar
  52. Frisch HL (1980) Sorption and transport in glassy polymers–A review. Polymer Engineering and Science 20 (1): 2–13Google Scholar
  53. Garbarini DR, Lion LW (1986) Influence of the nature of soil organics on the sorption of toluene and trichloroethylene. Environ Sci Technol 20 (12): 1263–1269Google Scholar
  54. Gauthier TH, Seitz WR, Grant CL (1987) Effects of structural and compositional variation of dissolved humic materials an Pyren-Koc values. Environ Sci Technol 21 (3): 243–248Google Scholar
  55. Geller JT, Hunt JR (1993) Mass transfer from nonaqueous phase liquids in water-saturated porous media. Water Resources Research 29: 833–845.Google Scholar
  56. Goldberg ED (1985) Black carbon in the environment. John Wiley and Sons, New York, 187 ppGoogle Scholar
  57. Glaser B, Balashov E, Haumaier L, Guggenberger G, Zech W (2000) Black carbon in density fractions of anthropogenic soils of the Brazilian Amazon region. Organic Geochemistry 31: 669–678Google Scholar
  58. Goss K-U, Schwarzenbach RP (2001) Linear free energy relationships used to evaluate equilibrium partitioning of organic compounds. Environ Sci Technol 35 (1): 1–9Google Scholar
  59. Grathwohl P (1989) Verteilung unpolarer organischer Verbindungen in der wasserungesättigten Bodenzone am Beispiel leichtflüchtiger aliphatischer Chlorkohlenwasserstoffe:Modellversuche.- Tübinger Geowissenschaftliche Arbeiten (TGA), Reihe C, Nr. 1, 102 S.Google Scholar
  60. Grathwohl, P. (1990) Influence of organic matter from soils and sediments from various origins on the sorption of some chlorinated aliphatic hydrocarbons: Implications on Koc correlations. Environ Sci Technol 24 (11): 1687–1693Google Scholar
  61. Grathwohl P (1992) Diffusion controlled desorption of organic contaminants in various soils and rocks. In Kharaka, K.Y., Maest, A.S. (Hrsg.): Water-Rock Interaction.-(Proceedings of the Utah Conference): 283–286.Google Scholar
  62. Grathwohl P (1997) Gefährdung des Grundwassers durch Freisetzung organischer Schadstoffe: Methoden zur Berechnung der in-situ Schadstoffkonzentrationen. Grundwasser 4: 157–166Google Scholar
  63. Grathwohl P (1997b) Grundlagen der Sorption/Desorption hydrophober organischer Schadstoffe in Aquifermaterial und Sedimenten. In Matschullat, J, Tobschall, H.J., Voigt, H.-J. (Hrsg.): Geochemie und Umwelt. Springer Verlag, S. 409–424Google Scholar
  64. Grathwohl P (1998) Diffusion in Natural Porous Media: Contaminant Transport, Sorption/Desorption and Dissolution Kinetics. Kluwer Academic Publishers, 224 p.Google Scholar
  65. Grathwohl P (1999) Limitierungen in der Anwendbarkeit empirischer Korrelationen zur Sickerwasserprognose. Bodenschutz 2: 44–45Google Scholar
  66. Grathwohl P, Rahman M (2002) Partitioning and pore-filling: Solubility-normalized sorption isotherms of nonionic organic contaminants in soils and sediments. Israel J. of Chemistry (Invited Paper for Anniversary Issue, in print)Google Scholar
  67. Grathwohl P, Reinhard M (1993) Desorption of trichloroethylene in aquifer material: Rate limitation at the grain scale. Environ Sci Technol 27 (12): 2360–2366Google Scholar
  68. Grathwohl P, Kleineidam S (1995) Impact of heterogeneous aquifer materials on sorption capacities and sorption dynamics of organic contaminants. In Kovar, K., Krâsnÿ, J. (Hrsg.):Google Scholar
  69. Groundwater Quality: Remediation and Protection.- (Proceedings of the Prague Conference, May 1995), IAHS Publ. no. 225: 79–86Google Scholar
  70. Grathwohl P, Merkel P, Einsele G (1996) Release of Organic Pollutants from Contaminated Soils and their Impact on Groundwater Quality. Abschlußbericht der PWAB Projekte 89081 und 92113:Google Scholar
  71. Gefährdung des Grundwassers durch Elution organischer Schadstoffe aus kontaminiertem Erdreich. Lehrstuhl für Angewandte Geologie der Universität Tübingen, 122 S., TübingenGoogle Scholar
  72. Grathwohl P, Reisinger C (1996) Formulierung einer Verfahrensempfehlung zur Bestimmung der Emission leichtflüchtiger organischer Schadstoffe (LCKW, BTEX etc.) aus kontaminierten Böden (Berechnungsverfahren und Methoden). Abschlußbericht, Landesanstalt für Umweltschutz, Baden Württemberg, 84 S.Google Scholar
  73. Grathwohl P, Kleineidam S (2001) Sorption of Hydrophobic Organic Compounds in Soils and Sediments. Special Session on “Mechanistic Aspects of Retention of Hydrophobic Organic Compounds by Soils and Sediments”, Soil Science Society of America (SSSA) Annual Meeting, October 21–25, 2001 in Charlotte, North CarolinaGoogle Scholar
  74. Guedes de Carvalho, D. (1999) Mass transfer from a large sphere buried in a packed bed along which liquid flows. Chem Eng Sci 54 1121–1129Google Scholar
  75. Harleman DRF, Rumer RR (1963) Longitudinal and lateral dispersion in an isotropic porous medium. Fluid Mech 16: 385 — 394Google Scholar
  76. Hayduk W, Laudie H (1974) Prediction of diffusion coefficients for nonelectrolytes in dilute aqueous solutions. American Institute of Chemical Engineers, Journal 20 (3): 611–615Google Scholar
  77. Hellmann H (1995) Umweltanalytik von Kohlenwasserstoffen. VCH Weinheim, 260 S. Hinz C (2001) Description of sorption data with isotherm equations. Geoderma 99: 225–243Google Scholar
  78. Hu W-G, Mao J, Xing B, Schmidt-Rohr K (2000) Poly(methylene) crystallites in humic substances detected by nuclear magnetic resonance. Envrion Sci Technol 34 (3): 530–534Google Scholar
  79. Hunt JM (1979) Petroleum geochemistry and geology. W.H. Freeman and Company, San Francisco, 617 p.Google Scholar
  80. Hurt RH, Chen Z-Y (2000) Liquid crystals and carbon materials. Physics Today (03/2000): 39–44Google Scholar
  81. Imhoff PT, Jaffe PR, Pinder GF (1993) An experimental study of complete dissolution of a nonaqueous phase liquid in saturated porous media. Water Resources Research 30 (2): 307–320Google Scholar
  82. Imhoff PT, Miller CT (1996) Dissolution fingering during the solubilization of nonaqueous phase liquids in saturated porous media. 1. Modell predictions. Water Resources Research 32 (7): 1919–1928.Google Scholar
  83. Imhoff PT, Thyrum GP, Miller CT (1996) Dissolution fingering during the solubilization of nonaqueous phase liquids in saturated porous media. 2. Experimental observations. Water Resources Research 32 (7): 1929–1942.Google Scholar
  84. Isaacson PJ, Frink CR (1984) Nonreversible sorption of phenolic compounds by sediment fractions: The role of organic matter. Environ Sci Technol 18: 43–48Google Scholar
  85. Jensen KH, Bitsch K, Bjerg PL (1993) Large-scale dispersion experiments in a sandy aquifer in Denmark. Observed tracer movements and numerical analyses, Water Resources Research 29 (3): 673–696Google Scholar
  86. Johnson RL, Pankow J.F. (1992) Dissolution of dense chlorinated solvents into ground- water. 2. Source functions for pools of solvent. Environ Sci Technol 26 (5): 896–901Google Scholar
  87. Karapanagioti H, Sabatini D, Kleineidam S, Grathwohl P (2000) Impacts of heterogeneous organic matter on phenanthrene sorption: Equilibrium and kinetic studies with aquifer material. Environ Sci Technol 34 (3): 406–414Google Scholar
  88. Karickhoff SW (1984) Organic pollutant sorption in aquatic systems. Journal of Hydraulic Engineering 10 (6): 707–735, New YorkGoogle Scholar
  89. Karickhoff SW, Brown DS, Scott TA (1979) Sorption of hydrophobic pollutants on natural sediments. Water Research 13 (3): 241–248Google Scholar
  90. Kleineidam S (1998) Der Einfluß von Sedimentologie and Sedimentpetrographie auf den Transport gelöster organischer Schadstoffe im Grundwasser. Tübinger Geowissenschaftliche Arbeiten (TGA), Reihe C, Nr. 41, 82 S.Google Scholar
  91. Kleineidam S, Rügner H, Ligouis B, Grathwohl P (1999) Organic matter facies and equilibrium sorption of phenanthrene. Environ Sci Technol 33 (10): 1637–1644Google Scholar
  92. Kleineidam S, Rada H, Grathwohl P (2000) Charakterisierung von Adsorbermaterialien zur in-situ Abreinigung von Grundwasser.- Unveröff. Forschungsbericht LAG 00–01/46004, Universität TübingenGoogle Scholar
  93. Klenk ID (2000) Transport of volatile organic compounds (VOCs) from soil-gas to groundwater. Tübinger Geowissenschaftliche Arbeiten (TGA), Reihe C, Nr. 55, 70 S.Google Scholar
  94. Klenk ID, Grathwohl P (2001) Transverse vertical dispersion in groundwater and the capillary fringe. J. Cont. Hydrology: 58, 111–128Google Scholar
  95. Koskinen WC, O’Connor GA, Cheng HH (1979) Characterization of hysteresis in the desorption of 2,4,5-T from soils. Soil Sci Soc. Am J 43: 871–874Google Scholar
  96. Kuhlbusch TAJ (1998) Black carbon and the carbon cycle. Science 280: 1903–1904Google Scholar
  97. Kunze H, Niemann J, Röschmann G, Schwerdtfeger G (1994) Bodenkunde. Ulmer, StuttgartGoogle Scholar
  98. Lane WF, Loehr RC (1992) Estimating the equilibrium aqueous concentration of poly-nuclear aromatic hydrocarbons in complex mixtures.- Environ Sci Technol 26 (5): 983–990Google Scholar
  99. Lambert SM (1966) The influence of soil–moisture on herbizidal response. Weeds 14: 273–275Google Scholar
  100. Lambert SM (1967) Functional relationship between sorption in soil and chemical structure. J Agric Food Chem 15: 572–576Google Scholar
  101. Lambert SM, Porter PE, Schieferstein H (1965) Movement and sorption of chemicals applied to the soil. Weeds 13: 185–190Google Scholar
  102. Lebouef EL, Weber Jr. WJ (1997) A distributed reactivity model for sorption by soils and sediments. 8. Sorbent organic domains: discovery of a humic acid glass transition and an argument for a polymer based model. Environ Sci Technol 31: 1697–1702Google Scholar
  103. Lee LS, Rao SP, Okuda J (1992) Equilibrium partitioning of polycyclic aromatic hydrocarbons from coaltar into water.- Environ Sci Technol 26 (11): 2110–2115Google Scholar
  104. Lever DA, Bradbury MH, Hemingway SJ (1985) The effect of dead end porosity on rock matrix diffusion. J Hydrology 80: 45–76Google Scholar
  105. Liedl R (1994) Persönliche KommunikationGoogle Scholar
  106. Loyek D (1998) Die Löslichkeit und Lösungskinetik von polyzyklischen aromatischen Kohlenwasserstoffen (PAK) aus der Teerphase. Tübinger Geowissenschaftliche Arbeiten (TGA), Reihe C, Nr. 44, 81 S.Google Scholar
  107. Loyek D, Grathwohl P. (1996) PAK-Freisetzung aus der residualen Teerphase und Erhöhung der Freisetzungsraten durch den Einsatz von Tensiden.- In Kreysa, G., Wiesener, J. (Ed.): 12. Dechema-Fachgespräch Umweltschutz “Möglichkeiten und Grenzen der Reinigung kontaminierter Grundwässer”, 8–10. Okt. 1996, Leipzig, 511524Google Scholar
  108. Mackay D, Shiu WY, Maijanen A, Feenstra S (1991). Dissolution of non-aqueous phase liquids in groundwater. J Cont Hydrology 8: 23–52.Google Scholar
  109. Maier U, Eberhardt Ch, Grathwohl P (2001) Ausbreitungsverhalten von PAK in der gesättigten Bodenzone: Ausbildung stationärer Schadstofffahnen im Grundwasser. In: “Sanierung und Entwicklung teerkontaminierter Standorte” Dechema Workshop, Dresden, 20/21. 3. 2001Google Scholar
  110. Manes M (1998) “Activated Carbon Adsorption Fundamentals”. In: Meyers, R. A. (Editor), Encyclopedia of Environmental Analysis and Remediation. John Wiley, New York.Google Scholar
  111. Masiello CA, Druffel ERM (1998) Black carbon in deep-sea sediments. Science 280: 1911–1913Google Scholar
  112. Mattes A (1993) Vergleichende Untersuchungen zur Sorption und Sorptionsdynamik organischer Schadstoffe (Trichlorethen) in Aquifersanden aus geologisch unterschiedlichen Liefergebieten. Unveröff. Diplomarbeit, Institut für Geologie und Paläontologie der Universität TübingenGoogle Scholar
  113. Mayer AS, Miller CT (1996) The Influence of mass transfer characteristics and porous media heterogeneity on non-aqueous phase dissolution. Water Resources Research 32 (5): 1551–1567Google Scholar
  114. McCarthy JF, Robertson LE, Burns LW (1989) Association of Benzo(a)pyrene with dissolved organic matter: prediction of Kdom from structural and chemical properties of the organic matter. Chemosphere 19 (12): 1911–1920Google Scholar
  115. McCarthy KA, Johnson RL (1993) Transport of Volatile Organic Compounds Across the Capillary Fringe. Water Resources Research 29 (6): 1675–1683Google Scholar
  116. Miller CT, Poirier-McNeill MM, Mayer AS (1990) Dissolution of trapped nonaqueous phase liquids: Mass transfer characteristics. Water Resources Research 26 (11): 2783–2796Google Scholar
  117. Niewöhner C, Hensen C, Kasten S, Zabel M, Schulz HD (1998) Deep sulfate reduction completely mediated by anaerobic methane oxidation in sediments of the upwelling area off Namibia. Geochimica et Cosmochimica Acta 62 (3): 455–464Google Scholar
  118. Nkedi-Kizza P, Rao PSC, Johnson JW (1989) Adsorption of Diuron and 2,4,5-T on soil particle-size separates. J Environ Qual 12: 195–197Google Scholar
  119. Pignatello JJ (1989) Sorption dynamics of organic compounds in soils and sediments. In: (Eds.):Sawhney, B.L., Brown, K Reactions and Movement of organic Chemicals in soils, 474 S. Madison, Wisconsin, USA (Soil Science Society of America), p 45–81Google Scholar
  120. Pignatello JJ, Ferrandino FJ, Huang LQ (1993) Elution of aged and freshly added herbicides from a soil. Environ Sci Technol 27 (8): 1563–1571Google Scholar
  121. Pinal R, Rao PSC, Lee LS (1990) Cosolvency and sorption of organic chemicals. Environ Sci Technol 24 (5): 647–654Google Scholar
  122. Polanyi M (1916) Adsorption von Gasen (Dämpfen) durch ein festes nichtflüchtiges Adsorbens. Ber. Deutsche Phys Ges 18: 55–80Google Scholar
  123. Poole SK, Poole CF (1996) Model for the sorption of organic compounds by soil from water. Analytical Communications 33: 417–419Google Scholar
  124. Powers SE, Abriola LM, Dunkin JS, Weber WJ Jr. (1994) Phenomenological models for transient NAPL-water mass-transfer processes. J Cont Hydrol 16: 1–33Google Scholar
  125. Powers SE, Loureiro CO, Abriola LM, Weber WJ Jr. (1991) Theoretical study of the significance of nonequilibrium dissolution of nonaqueous phase liquids in subsurface systems. Water Resources Research 27 (4): 463–477Google Scholar
  126. Probst K, Wohlfahrt K (1979) Empirische Abschätzung effektiver Diffusionskoeffizienten in porösen Systemen. Chem-Ing-Tech 1 (7): 737–739Google Scholar
  127. Pyka W (1994): Freisetzung von Teerinhaltstoffen aus residualer Teerpahse in das Grundwasser: laborutersuchungen zur Lösungsrate und Lösungsvermittlung.- Tübinger Geowissenschaftliche Arbeiten (TGA), Reihe C, Nr. 21, 76 S.Google Scholar
  128. Rippen G (1997) Handbuch der Umweltchemikalien. Stoffdaten, Prüfverfahren, Vorschriften.–Loseblattsammlung, 7 Bd., 41.Google Scholar
  129. Rounds SA, Tiffany BA, Pankow JF (1993) Description of gas/particle sorption kinetics with an intraparticle diffusion model: desorption experiments. Environ Sci Technol 27 (2): 366–377Google Scholar
  130. Rügner H, Kleineidam S, Grathwohl P (1997) Sorptions-und Transportverhalten organischer Schadstoffe in heterogenen Materialien am Beispiel des Phenanthrens. Grundwasser 3: 133–138.Google Scholar
  131. Sabatini DA, Knox RC, Harwell JH, eds. (1995) Surfactant Enhanced Subsurface Remediation: Emerging Technologies. ACS Symposium Series 594, American Chemical Society, Washington, D.C., 312 pp.Google Scholar
  132. Scheffer F, Schachtschabel P (1998) Lehrbuch der Bodenkunde. 14. Aufl., 494 S.; Stuttgart (Enke)Google Scholar
  133. Schmidt MW, Noack AG (2000) Black carbon in soils and sediments: Analysis, distribution, implicatiosn, and current challenges. Global Biogeochemical Cycles 14 (3): 777–793Google Scholar
  134. Schmidt MWI, Skjemstad JO, Gehrt E, Kögel-Knabner I (1999) Charred organic carbon in German chernozemic soils. European Journal of Soil Science 50: 351–365Google Scholar
  135. Schulz HD, Zabel M (2000) Marine Geochemistry. Springer, Berlin, Heidelberg, New York. 455 p.Google Scholar
  136. Schulz HD (1988) Labormessungen der Sättigungslänge als Maß für die Lösungskinetik von Karbonaten im Grundwasser.- Geochimica et Cosmochimica Acta 52: 2651–2657Google Scholar
  137. Schwarzenbach RP, Gschwend PM, Imboden DM (1993) Environmental Organic Chemistry. Wiley, New York.Google Scholar
  138. Schwille F (1984) Leichtflüchtige Chlorkohlenwasserstoffe in porösen und klüftigen Medien. Modellversuche. Besondere Mitteilungen zum deutschen gewässerkundlichen Jahrbuch, Nr. 46; Koblenz.Google Scholar
  139. Seth R, Mackay D, Muncke J (1999) Estimating the organic carbon partition coefficient and its variability for hydrophobic chemicals. Environ Sci Technol 33 (14): 2390–2394Google Scholar
  140. Sing KSW, Everett DH, Hanel RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure and Appl Chem 57 (4): 603–619Google Scholar
  141. Skjemstad JO, Janik LJ, Taylor JA (1998) Non-living soil organic matter: what do we know about it?“ Aust J Exp Ag 38: 667–680.Google Scholar
  142. Sontheimer H, Frick BR, Fettig J, Hörner G, Hubele C, Zimmer G (1985) Asorptionsverfahren zur Wasserreinigung. DVGW-Forschungstelle am Engler-BunteInstitut der Univ. Karlsruhe.Google Scholar
  143. Taylor GH, Brooks JD (1965) Nature 206: 697Google Scholar
  144. Taylor GH, Teichmüller M, Davis A, Diessel CFK, Littke R, Robert P (1998) Organic petrology. Gebrüder Bornträger, Berlin, Stuttgart, 704 p.Google Scholar
  145. Travis C T, Doty CB(1990) Can contaminated aquifers at Superfund sites be remediated? Environ Sci Technol 24: 1464–1466.Google Scholar
  146. van Krevelen DW (1993): Coal. 3rd ed., Elsevier, AmsterdamGoogle Scholar
  147. van Krevelen DW (1997): Properties of Polymers. 3rd ed. (paperback), Elsevier, 875 pGoogle Scholar
  148. VwV (1993) Verwaltungsvorschrift über Orientierungswerte für die Bearbeitung von Altlasten und Schadensfällen. Ministerium für Arbeit, Gesundheit und Sozialordnung, Umweltministerium Baden-Württemberg, Stuttgart.Google Scholar
  149. Wakao N, Smith JM (1962) Diffusion in catalyst pellets. Chem Eng Sci 17: 825–834Google Scholar
  150. Weber Jr. WJ, McGinley PM, Katz LE (1992) A distributed reactivity model for sorption by soils and sediments. 1. Conceptual basis and equilibrium assessments. Environ Sci Technol 26: 1955–1962Google Scholar
  151. Weiß T (1998) Einfluß des partikelgetragenen Schadstofftransports auf die Wirkung von in-situ Reaktionswänden. Unveröff. Diplomarbeit, Lehrstuhl für Angewandte Geologie, Universität TübingenGoogle Scholar
  152. Wiedemeier TH, Rifai HS, Newell CJ u. Wilson JT (1999) Natural attenuation of fuels and chlorinated solvents in the subsurface. Wiley, New York, 615 pp.Google Scholar
  153. Wilke CR, Chang P (1955) Correlation of diffusion coefficients in dilute solutions.- AIChE J 1: 264–270Google Scholar
  154. Wood GO (2001) Affinity coefficients of the Polanyi/Dubinin adsorption isotherm equations. A review with compilations and correlations. Carbon 39: 343–356Google Scholar
  155. Worch E. (1993) Eine neue Gleichung zur Berechnung von Diffusionskoeffizienten gelöster Stoffe. Vom Wasser 81: 289–297Google Scholar
  156. Xia G, Ball WP (1999) Adsorption-Partitioning Uptake of Nine Low-Polarity Organic Chemicals on A Natural Sorbent. Environ Sci Technol 33 (2): 262–269Google Scholar
  157. Xing B, Pignatello JJ (1997) Dual-mode sorption of low polarity compounds in glassy polyvinylchloride and soil organic matter. Environ Sci Technol 31: 792–799Google Scholar
  158. Zhao D, Pignatello JJ, White JC, Braida W, Ferrandino F (2001) Dual-mode modeling of competitive and concentration-dependent sorption and desorption kinetics of poly-cyclic aromatic hydrocarbons. Water Resources Research 37: 2205–2212Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

There are no affiliations available

Personalised recommendations