Entwicklung des Immunsystems von Fetus und Neugeborenem

  • E. P. Zilow
  • G. Zilow

Zusammenfassung

Eine wichtige Aufgabe des Immunsystems ist die Abwehr von Krankheitserregern. Mit Beginn der Geburt und manchmal bereits pränatal in utero wird der Mensch mit einer Vielzahl von Mikroorganismen konfrontiert. Diese Mikroorganismen unterscheiden sich in Struktur, Biochemie und ihrer Fähigkeit, den Wirt zu besiedeln oder gefährliche Infektionen hervorzurufen. Bei einem Teil der Mikroorganismen besteht eine Symbiose mit dem Wirt. Die normale Bakterienflora z. B. auf Schleimhaut und Haut befindet sich in einem dynamischen aber stabilen Gleichgewicht und verursacht keine Erkrankung. Dieses Gleichgewicht kann gestört werden und harmlose Mikroorganismen werden pathogen. Diese Störungen können sein: Schädigung der Haut oder Schleimhaut durch Verletzungen (z.B. Durchtrennung der Nabelschnur) oder Ischämie (v.a. des Darmes), Öffnen oder Überbrücken der äußeren Barrieren durch Insertion von Fremdkörpern (venöse Zugänge, Magensonden, endotracheale Intubation), Schwächung der Immunabwehr (physiologisch durch Unreife). Sind Bakterien oder Viren über die mechanische Barriere hinweg ins Körperinnere eingedrungen, stehen dem Wirtsorganismus weitere Abwehrmechanismen zur Verfügung. Sie stellen die angeborenen (unspezifischen) sowie die erworbenen (spezifischen) Bestandteile der Immunabwehr dar (Tabelle 1).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Adinolfi M (1977) Human complement. Onset and site of synthesis during fetal life. Am J Dis Child 131:1015–1023PubMedGoogle Scholar
  2. Anderson DC, Hughes BJ, Edwards MS, Buffone GJ, Baker CJ (1983) Impaired chemotaxi-genesis by type III group B streptococci in neonatal sera: relationship to diminished concentration of specific anticapsular antibody and abnormalities of serum complement. Pediatr Res 17:496–502PubMedCrossRefGoogle Scholar
  3. Ballow M, Fang F, Good RA, Day NK (1974) Developmental aspects of complement components in the newborn. Clin Exp Immunol 18:257–266PubMedGoogle Scholar
  4. Berger M (1990) Complement deficiency and neutrophil dysfunction as risk factors for bacterial infection in newborns and the role of granulocyte transfusion in therapy. Rev Infect Diseases 12:S401–S409CrossRefGoogle Scholar
  5. Cates KL, Rowe C, Ballow M (1983) The premature infant as a compromised host. Curr Probl Pediatr 13:1–63PubMedGoogle Scholar
  6. Christensen RD, Rothstein G (1980) Exhaustion of mature marrow neutrophils in neonates with sepsis. J Pediatr 96:316–317PubMedCrossRefGoogle Scholar
  7. Colten HR (1972) Ontogenity of human complement system: In vitro biosynthesis of individual complement components by fetal tissues. J Clin Invest 51:725–730PubMedCrossRefGoogle Scholar
  8. Fearon DT, Ansten KF (1980) Current concepts in immunology: The alternative pathway of complement — A system for host resistance to microbial infection. N Engl J Med 303:259–263PubMedCrossRefGoogle Scholar
  9. Flidel O, Barrak Y, Lipschitz-Mercer B, Frumkin A, Mogilner BM (1992) Graft-versus-host disease in extremely low birth weight neonate. Pediatrics 89:689–690PubMedGoogle Scholar
  10. Harvey JE, Jones DB, Wright DH (1990) Differential expression of MHC- and macrophage-associated antigens in human fetal and postnatal small intestine. Immunology 69:409–415PubMedGoogle Scholar
  11. Hayward AR, Lawton AR (1977) Induction of plasma cell differentiation of human fetal lymphocytes: Evidence for functional immaturity of T and B cells. J Immunol 119:1213–1217PubMedGoogle Scholar
  12. Jacobs RF, Wilson CB, Palmer S, Springmeyer SC, Henderson WR, Slover DM (1985) Factors related to the appearence of alveolar macrophages in the developing lung. Am Rev Respir Dis 131:548–553PubMedGoogle Scholar
  13. Johnston RB, Altenburger KM, Atkinson AW, Curry RH (1979) Complement in the newborn infant. Pediatrics 65:781–786Google Scholar
  14. Kohler PE (1973) Maturation of the complement system. I. Onset time and site of fetal C1q, C4, C3 and C5 synthesis. J Clin Invest 52:671–677PubMedCrossRefGoogle Scholar
  15. Kretschmer RR, Stewardson PB, Papierniak CK, Gotoff SP (1976) Chemotactic and bactericidal capacities of human newborn monocytes. J Immunol 117:1303–1307Google Scholar
  16. Lata JA, Tuan RS, Shepley KJ, Mulligan MM, Jackson LG, Smith JB (1992) Localization of major histocompatibility complex class I and II mRNA in first trimester chorionic villi by in situ hybridisation. J Exp Med 175:1027–1032PubMedCrossRefGoogle Scholar
  17. Miller ME (1975) Developmental maturation of human neutrophil motility and its relationship to membrane deformability. In: Bellanti JA, Dayton DH (eds) The phagocytic cell in host resistance. Raven, New York, pp 295–307Google Scholar
  18. Miller ME (1979) Phagocyte function in the neonate: Selected aspects. Pediatrics 64:709–712PubMedGoogle Scholar
  19. Mills EL, Thompson T, Bjorkstein B, Filipovich D, Quie PG (1979) The chemiluminescense response and bactericidal activity of polymorphnuclear leukocytes from newborns and their mothers. Pediatrics 63:429–434PubMedGoogle Scholar
  20. Miyawaki T, Moriya N, Nagaoki T, Taniguchi N (1981) Maturation of B cell differentiation ability and T cell regulatory function in infancy and childhood. Immunol Rev 57:61PubMedCrossRefGoogle Scholar
  21. Moore MAS, Owen JJT (1967) Stem cell migration in developing lympoid systems. Lancet 2:658–659CrossRefGoogle Scholar
  22. Nonoyama S, Penix LA, Edwards CP, Aruffo A, Wilson CP, Ochs HD (1995) Diminished expression of CD40 ligand by activated neonatal T cells. J Clin Invest 95:66–75PubMedCrossRefGoogle Scholar
  23. Olding LB, Oldstone MBA (1976) Thymus-derived peripheral lymphocytes from human newborns inhibi division of their mothers lymphocytes. J Immunol 116:682–686PubMedGoogle Scholar
  24. Pahwa S, Pahwa R, Grimes E, Smithwick E (1977) Cellular and humoral components of monocyte and neutrophil Chemotaxis in cord blood. Pediatr Res 11:677–680PubMedCrossRefGoogle Scholar
  25. Poggi A, Sargiacomo M, Biassoni R, Pella N, Sivori S, Revello V et al. (1993) Extrathymic differentiation of T lymphocytes and natural killer cells from human embryonic liver precursors. Proc Natl Acad Sci USA 90:4465–4469PubMedCrossRefGoogle Scholar
  26. Propp RP, Alper CA (1968) C3 synthesis in the human fetus and lack of transplacental passage. Science 162:672–673PubMedCrossRefGoogle Scholar
  27. Ragunathan R, Miller ME, Everett S, Leake RD (1982) Phagocyte Chemotaxis in the perinatal period. J Clin Immunol 2:242–245CrossRefGoogle Scholar
  28. Root RK, Cohen MS (1981) The microbicidal mechanisms of human neutrophils and eosinophils. Rev Infect Dis 3:565–598PubMedCrossRefGoogle Scholar
  29. Sacchi F, Rondini G, Mingrat G (1982) Different maturation of neutrophil Chemotaxis in term and premature newborn infants. J Pediatr 101:273–274PubMedCrossRefGoogle Scholar
  30. Schuit KE, DeBiasio R (1980) Kinetics of phagocyte response to group B streptococcal infection in newborn rats. Infect Immun 28:319–324PubMedGoogle Scholar
  31. Shigeoka AO, Santos JI, Hill HR (1979) Functional analysis of neutrophil granulocytes from healthy, infected and stressed neonates. J Pediatr 95:454–460PubMedCrossRefGoogle Scholar
  32. Shigeoka AO, Charette RP, Wyman ML, Hill HR (1981) Defective oxidative responses of neutrophils from stressed neonates. J Pediatr 98:392–398PubMedCrossRefGoogle Scholar
  33. Stroobant J, Harris MC, Cody CS, et al. (1983) Diminished bactericidal capacity for group B streptococci of neutrophils from children with chronic granulomatous disease. Infect Immun 39:966–969PubMedGoogle Scholar
  34. Tosato G, Magrath IT, Koski IR, Dooley NJ, Blaese RM (1980) B cell differentiation and immu-noregulatory T cell function in human cord blood lymphocytes. J Clin Invest 66:383–388PubMedCrossRefGoogle Scholar
  35. Van Iwaarden F, Weimers B, Verhoef J, Haagsman HP, van Golde LMG (1990) Pulmonary surfactant protein A enhances the host-defence mechanism of rat alveolar macrophages. Am J Respir Cell Mol Biol 2:91–98PubMedCrossRefGoogle Scholar
  36. Wilson CB (1984) Lung antimicrobial defenses in the newborn. Semin Respir Med 6:149–156CrossRefGoogle Scholar
  37. Wilson CB, Weaver WM (1985) Comparative susceptibility of group B streptococci and Staphylococcus aureus to killing by oxygen metabolites. J Infect Dis 152:323–329PubMedCrossRefGoogle Scholar
  38. Wu LYF, Lawton AR, Cooper MD (1973) Differentiation capacity of cultured B lymphocytes from immunodefîcient patients. J Clin Invest 52:3180–3189PubMedCrossRefGoogle Scholar
  39. Zach TL, Hostetter MK (1989) Biochemical abnormalities of the third complement in neonates. Pediatric Research 26:116–120PubMedCrossRefGoogle Scholar
  40. Zilow EP, Brüssau J, Linderkamp O, Zilow G (1995) In vitro activation of classical and alternative pathway of the complement system in term and preterm infants and adults. Pediatr Res 38:462Google Scholar
  41. Zilow EP, Hauck W, Linderkamp O, Zilow G (1997) Alternative pathway activation of the complement system in preterm infants with early onset infection. Pediatr ResGoogle Scholar
  42. Zilow G, Zilow EP, Burger R, Linderkamp O (1993) Complement activation in newborn infants with early onset infection. Pediatr Res 34:199–203PubMedCrossRefGoogle Scholar
  43. Zilow G, Brüssau J, Hauck W, Zilow EP (1994) Complement factor 9 deficiency in term and preterm neonates. Immunobiology 191:306Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • E. P. Zilow
  • G. Zilow

There are no affiliations available

Personalised recommendations