Skip to main content

Endokrine Organe

  • Chapter
Humanembryologie

Zusammenfassung

Seit der Übertragung des Begriffes und Phänomens „Neurosekretion“ auf Säugetiere und Mensch [Bargmann 1949, Scharrer und Scharrer 1954] und der Entdeckung der Releasing-Hormone [Saffran und Schally 1955] können Hypothalamus und Hypophyse als funktionelle Einheit zur Steuerung der nachgeordneten inkretorischen Organe betrachtet werden. Sie gelten auch als genetische Einheit [Gilbert 1935], obwohl die Hypophyse aus zwei verschiedenen Anteilen aufgebaut wird. Während die Adenohypophyse eine frühe ektodermale Bildung ist (siehe Kapitel 20.5 Kopfdarmderviate und Abbildungen 20–13 bis 20–15), wird die Neurohypophyse aus einer Ausstülpung am Zwischenhirnboden entwickelt. Beide Teile stehen schon früh in engem geweblichen Kontakt (Abb. 22-lb und 20–13 und 20–14), was zu der Formulierung „neuroektodermale Platte“ Anlaß gab [Gilbert 1935]. Aus dieser Zone entwickelt sich ein Teil der Pars intermedia der Adenohypophyse.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literaturverzeichnis

  • Alexander P, Britton HG, Nixon DA, Cameron E, Foster CL, Buckle RM, Smith FG (1973) Calcium, parathyroid hormone and calcitonin in the foetus. In: Cromline KS, Cross KW, Dawes GS, Nathanilsz PW (eds) Foetal and neonatal physiology. University Press, Cambridge, pp 421–429

    Google Scholar 

  • Allen JP, Greer MA, McGilvra R, Castro A, Fisher DA (1974) Endocrine function in an anencephalic infant. J Clin Endocrinol Metab 38:94–98

    PubMed  CAS  Google Scholar 

  • Andersen H, von Bülow FA, Mollgard K (1970) The histochemical and structural basis of the cellular function of the human foetal adenohypophysis. Prog Histochem Cytochem 1:153–184

    Google Scholar 

  • Andersen H, von Bülow FA, Mollgard K (1971) The early development of the pars distalis of human foetal pituitary gland. Z Anat Entw Gesch 135:117–138

    CAS  Google Scholar 

  • Andrew A (1969) A study of the relationship between enterochromaffine cells and the neural crest. J Embryol Exp Morphol 11:307–324

    Google Scholar 

  • Andrew A (1974) Further evidence that chromaffine cells are not derived from the neural crest. J Embryol Exp Morphol 31:589–598

    PubMed  CAS  Google Scholar 

  • Andrew A (1975) APUD cells in the endocrine pancreas and intestine of chick embryos. Gen Comp Endocrinol 26:485–495

    PubMed  CAS  Google Scholar 

  • Andrew A, Kramer B (1979) An experimental investigation into the possible origin of pancreatic islet cells from rhombencephalic neuroectoderm. J Embryol Exp Morphol 52:23–28

    PubMed  CAS  Google Scholar 

  • van Assche FA, Aerts L (1979) The fetal endocrine pancreas. Contrib Gynecol Obstet 5:44–57

    PubMed  Google Scholar 

  • Atwell WJ (1926) The development of the hypophysis cerebri in man, with special reference to the pars tuberalis. Am J Anat 37:159–193

    Google Scholar 

  • Bachmann R (1954) Die Nebenniere. In: von Möllendorff W, Bargmann W (Hrsg) Handbuch der mikroskopischen Anatomie des Menschen, Bd VI/5. Springer, Berlin Göttingen Heidelberg, S 1–952

    Google Scholar 

  • Baker BL, Jaffe RB (1975) The genesis of cell types in the adenohypophysis of the human fetus as observed with immunocytochemistry. Am J Anat 143:137–162

    PubMed  CAS  Google Scholar 

  • Bargmann W (1939a) Epithelkörperchen. In: von Möllendorff W (Hrsg) Handbuch der mikroskopischen Anatomie des Menschen, Bd 6/2. Springer, Berlin, S 137–196

    Google Scholar 

  • Bargmann W (1939b) Die Schilddrüse. In: von Möllendorff W (Hrsg) Handbuch der mikroskopischen Anatomie des Menschen, Bd 6/2. Springer, Berlin, S 2–136

    Google Scholar 

  • Bargmann W (1949) Über die neurosekretorische Verknüpfung vopn Hypothalamus und Neurohypophyse. Z Zellforsch 34:610–634

    PubMed  CAS  Google Scholar 

  • Bargmann W (1968) Neurohypophysis, structure and function. In: Berde B (ed) Neurohypophysial hormones and similar peptides. Handbuch der experimentellen Pharmakologie 23. Springer, Berlin Heidelberg New York, pp 1–39

    Google Scholar 

  • Barnes AC (1968) Intra-uterine development. Lea und Febiger, Philadelphia

    Google Scholar 

  • Benirschke K (1956) Adrenals in anencephaly and hydrocephaly. Obstet Gynecol 8:412–425

    PubMed  CAS  Google Scholar 

  • Böck P (1982) The Paraganglia. In: Oksche A, Vollrath L (Hrsg) Handbuch der mikroskopischen Anatomie des Menschen, Bd. VI, 8. Teil. Springer, Berlin Heidelberg

    Google Scholar 

  • Boyd JD (1950) Development of the thyroid and parathyroid glands and the thymus. Ann R Coll Surg Engl 7:455–471

    PubMed  CAS  Google Scholar 

  • Boyd JD (1964) Development of the human thyroid gland. In: Pitt-Rivers R, Trotter WR (eds) The thyroid gland, vol 1. Butterworths, London, pp 9–31

    Google Scholar 

  • Bugnon C, Fellmann D, Bloch B (1977) Immuncytochemical study of the ontogenesis of the hypothalamic somatostatin-containing neurons in the human fetus. Cell Tissue Res 183:319–328

    PubMed  CAS  Google Scholar 

  • Bugnon C, Fellmann D, Bloch B, Bresson JL, Gouget A, Lenys D, Clavequin MC (1987) Apport de l’immunocytochimie à l’élude du développement des systèmes neuroglandulaires peptidergiques dans l’hypothalamus foetal humain. Ann Endocrinol (Paris) 48:343–351

    CAS  Google Scholar 

  • Burke BA, Johnson D, Gilbert EF, Drut RM, Ludwig J, Wilk MR (1987) Thyrocalcitonin-containing cells in the Di George anomaly. Hum Pathol 18:355–360

    PubMed  CAS  Google Scholar 

  • Celio MR, Höllt V, Buetti G, Pasi A, Bürgisser E, Eberle A, Kopp G, Siebenmann R, Friede RL, Landolt A, Binz H, Zenker W (1980) Immunohistochemical study of β-endorphin and related peptides in the „invading cells“ of the human neurohypophysis during ontogenesis and adulthood. In: Costa E, Trabucchi M (eds) Neural peptides and neuronal communication. Raven Press, New York, pp 271–283

    Google Scholar 

  • Christeller E (1914) Die Rachendachhypophyse des Menschen unter normalen und pathologischen Verhältnissen. Virchows Arch 218:185–223

    Google Scholar 

  • Conklin JL (1968) The development of the human fetal adenohypophysis. Anat Rec 160:79–92

    PubMed  CAS  Google Scholar 

  • Coupland RE (1952) The prenatal development of the abdominal para-aortic bodies in man. J Anat (London) 86:357–372

    CAS  Google Scholar 

  • Coupland RE (1954) Postnatal fate of the abdominal paraaortic bodies in man. J Anat (London) 88:455–464

    CAS  Google Scholar 

  • Crowder RE (1957) The development of the adrenal gland in man, with special reference to origin and ultimate location of cell types and evidence in favor of the „cell migration“ theory. Contrib Embryol Carnegie Inst Wash 36:193–210

    Google Scholar 

  • Daikoku S (1958a) Studies on the human foetal pituitary. 1: Quantiative observations. Tokushima J Exp Med 5:200–213

    Google Scholar 

  • Daikoku S (1958b) Studies of the human foetal pituitary. 2: On the form and histological development, especially that of the anterior pituitary. Tokushima J Exp Med 5:214–231

    Google Scholar 

  • Dhom G (1965) Die Nebennierenrinde im Kindesalter. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Dhom G, Ross W, Widok K (1958) Die Nebennierenrinde des Feten und des Neugeborenen. Eine quantitative und qualitative Analyse. Beitr Pathol Anat 119.T17–216

    Google Scholar 

  • Dubois P (1967) Étude au microscopie électronique de la pars distalis de l’hypophyse de l’embryon humain. C R Ass Anat 138:434–441

    Google Scholar 

  • Dubois P, Dumont L (1966) Nouvelles observations au microscopie électronique sur l’adenohypophyse humain du troisième au cinquième mois du développement embryonnaire. C R Soc Biol (Paris) 11:2105–2108

    Google Scholar 

  • Dubois P, Vargues-Ragairaz H, Dubois MP (1973) Human foetal anterior pituitary. Immunfluorescent evidence for corticotropin and melanotropin activities. Z Zeilforsch 145:131–143

    CAS  Google Scholar 

  • Ellis ST, Swanson Beck J, Currie AR (1966) The cellular localisation of growth hormone in the human foetal adenohypophysis. J Pathol Bact 92:179–183

    CAS  Google Scholar 

  • Falin LI (1961) The development of human hypophysis and differentiation of cells of its anterior lobe during embryonic life. Acta Anat 44:188–205

    PubMed  CAS  Google Scholar 

  • Falkmer S, Dafgârd E, El-Salhey M, Engström W, Grimelius L, Zetterberg A (1985) Phylogenetical aspects on islet hormone families: A minireview with particular reference to insulin as a growth factor and to the phylogeny of PYY and NPY immunoreactive cells and nerves in the endocrine and exocrine pancreas. Peptides 6 (Suppl 3): 315–320

    PubMed  CAS  Google Scholar 

  • Ferner H (1952) Das Inselsystem des Pankreas. Thieme, Stuttgart

    Google Scholar 

  • Ferrier PE (1969) Congenital absence or hypoplasia of the endocrine glands. J Genet Hum 17:325–348

    PubMed  CAS  Google Scholar 

  • Feyrter F (1953) Über die peripheren endokrinen (parakrinen) Drüsen des Menschen, 2. Aufl. Maudrich, Wien

    Google Scholar 

  • Fisher WK, Voorhess ML, Gardner LI (1963) Congenital hypothyroidism in infant following maternal 131J. J Pediatr 62:132–135

    PubMed  CAS  Google Scholar 

  • Fontaine J, Le Douarin NM (1977) Analysis of endoderm formation in the avian blastoderm by the use of quail-chick chimaeras. The problem of the neuroectodermal origin of the cells of the APUD series. J Embryol Exp Morphol 41:209–222

    PubMed  CAS  Google Scholar 

  • Fujita H, Ihara T (1973) Electron-microscopic observations on the cytodifferentiation of adrenocortical cells of the human embryo. Z Anat Entw Gesch 142:267–281

    CAS  Google Scholar 

  • Gilbert MS (1935) Some factors influencing the early development of the mammalian hypophysis. Anat Rec 62:337–359

    Google Scholar 

  • Gilmore DP, Dobbie HG, McNeille AS, Mortimer CH (1978) Presence and activity of LH-RH in the midterm human fetus. J Reprod Fertil 52:355–359

    PubMed  CAS  Google Scholar 

  • Gilmour JR (1937) The embryology of the parathyroid glands, the thymus and certain associated rudiments. J Pathol Bact 45:507–522

    Google Scholar 

  • Goodyer CG, Guyda HJ, Giroud CJP (1979) Development of the hypothalamic-pituitary axis in the human fetus. In: Tolis G, Labrie F, Martin JB, Naftolin F (eds) Clinical neuroendocrinology. Raven Press, New York, pp 199–214

    Google Scholar 

  • Graumann W, Hinrichsen K (1960) Über die Basophilic der cyanophilen Zellen der Hypophyse. Z Zellforsch 52:328–345

    PubMed  CAS  Google Scholar 

  • Greenberg AH, Czernichow P, Reba RC, Tyson J, Blizzard RM (1970) Observations on the maturation of thyroid function in early fetal life. J Clin Invest 49:1790–1803

    PubMed  CAS  Google Scholar 

  • Grube D, Forssmann WG (1979) Morphology and function of the entero-endocrine cells. Horm Metab Res 11:589–646

    PubMed  CAS  Google Scholar 

  • Haberfeld W (1909) Rachendachhypophyse, andere Hypophysengangreste und deren Bedeutung für die Pathologie. Beitr Pathol Anat 46:133–232

    Google Scholar 

  • Hahn von Dorsche H, Reiher H, Hahn H-J (1984) Quantitative-histologic investigations of human fetal pancreas in non-diabetic and insulin-dependent diabetic women. Acta Anat 118:139–143

    Google Scholar 

  • Hahn von Dorsche H, Reiher H, Hahn H-J (1986) Quantitativ-histologische Untersuchungen am fetalen Inselorgan des Menschen. Verh Anat Ges 80:187–188

    Google Scholar 

  • Hahn von Dorsche H, Reiher H, Hahn H-J (1987a) Phases in the early development of the human islet organ. Anat Anz 166:69–76

    Google Scholar 

  • Hahn von Dorsche H, Reiher H, Hahn H-J, Fält K, Falkmer S (1987b) Tissue cultivation as a method for preservation of human foetal islet parenchyma — a correlated biochemical, immunohistochemical and morphometric investigation. Diabetes Res 5:157–161

    Google Scholar 

  • Hahn von Dorsche H, Fält K, Hahn H-J, Reiher H (1988) Immuncytochemische Untersuchungen zur Entwicklung der Grundzelltypen des menschlichen Inselorgans. Acta Histochem (Suppl) 35:137–143

    Google Scholar 

  • Hahn von Dorsche H, Fält K, Titlbach M, Reiher H, Hahn H-J (1989) Immunohistochemical, morphometric and ultrastructural investigations on early fetogenesis of four basic cell types of human pancreatic islets. Diabetes Res

    Google Scholar 

  • Hammill GC, Jarman JA, Wymme MD (1961) Fetal effects of radioactive jodine therapy in a pregnant woman with thyroid cancer. Am J Obstet Gynecol 81:1018–1023

    Google Scholar 

  • Hervonen A (1971) Development of catecholamine-storing cells in the human fetal paraganglia and adrenal medulla. Acta Physiol Scand [Suppl] 368:1–94

    CAS  Google Scholar 

  • Hett J (1925) Ein Beitrag zur Histogenese der menschlichen Nebenniere. Z Mikrosk Anat Forsch 3:179–281

    Google Scholar 

  • Hinrichsen KV (1986) Slides on human embryology. Bergmann, München

    Google Scholar 

  • Hochstetter F (1924) Beiträge zur Entwicklungsgeschichte des menschlichen Gehirns. II: Die Entwicklung des Hirnanhangs. Deuticke, Wien Leipzig

    Google Scholar 

  • Hyyppa M (1972) Hypothalamic monoamines in human fetuses. Neuroendocrinology 9:257–266

    PubMed  CAS  Google Scholar 

  • Jirásek JE (1963) Die Histochemie hydrolytischer Enzyme in der fetalen Schilddrüse des Menschen. Acta Histochem 15:37–41

    PubMed  Google Scholar 

  • Jirásek JE (1980) Human fetal endocrines. Nijhoff, The Hague

    Google Scholar 

  • Johnston MC, Bhakdinaronk A, Reid YC (1973) An expanded role of the neutral crest in oral and pharyngeal development. In: Bosma JF (ed) Development of the fetus and infant (4. Symposium on oral sensation and perception). US Department Health Education Welfare, Bethesda, pp 37–52

    Google Scholar 

  • Jordan RK, McFalane B, Scothorne RJ (1975) An electron microscopic study of the histogenesis of the parathyroid gland in the sheep. J Anat 119:235–254

    PubMed  CAS  Google Scholar 

  • Kaplan SL, Grumbach MM, Shepard TH (1972) The ontogenesis of human fetal hormones. I: Growth hormone and insulin. J Clin Invest 51:3080–3093

    PubMed  CAS  Google Scholar 

  • Kaplan SL, Grumbach MM, Aubert ML (1976) The ontogenesis of pituitary hormones and hypothalamic factors in the human fetus: Regulation of anterior pituitary function. Recent Prog Horm Res 32:161–243

    PubMed  CAS  Google Scholar 

  • Kohn A (1902) Das chromaffine Gewebe. Ergeb Anat Entw Gesch 12:253–348

    Google Scholar 

  • Kohn A (1903) Die Paraganglien. Arch Mikr Anat 62:263–365

    Google Scholar 

  • Laguesse E (1893) Sur la formation des ilots de Langerhans dans le pancréas. C R Soc Biol 5:819–820

    Google Scholar 

  • Lanman JT (1961) The adrenal gland in the human fetus. An interpretation of its physiology and unusual developmental pattern. Pediatrics 27:140–158

    PubMed  CAS  Google Scholar 

  • Lanman JT (1962) An interpretation of human foetal adrenal structure and function. In: Currie AR, Symington T, Grant JK (eds) The human adrenal cortex. Livingstone, Edinburgh London, pp 547–558

    Google Scholar 

  • Le Douarin NM (1982) The neural crest. Developmental and Cell Biology Series, 12. Cambridge University Press, Cambridge London New York New Rochelle Melbourne Sydney, pp 1–259

    Google Scholar 

  • Le Douarin NM, Le Lièvre C (1971) Sur l’origine des cellules à calcitonine du corps ultimobranchial de l’embryon d’oiseau. C R Ass Anat 152:558

    Google Scholar 

  • Le Douarin NM, Teillet MA (1973) The migration of neural crest cells to the wall of the digestive tract in avian embryo. J Embryol Exp Morphol 30:31–48

    PubMed  Google Scholar 

  • Levi-Montalcini R, Aloe L (1980) Tropic, trophic, and transforming effects of nerve growth factor. Adv Biochem Psychopharm 25:3–15

    CAS  Google Scholar 

  • Levi-Montalcini R, Angeletti PU (1966) Immunosympathectomy. Pharmacol Rev 18:619–628

    PubMed  CAS  Google Scholar 

  • Levy NB, Andrew A, Rawdon BB, Kramer B (1980) Is there a ventral neural ridge in chick embryos? Implications for the origin of adenohypophyseal and other APUD cells. J Embryol Exp Morphol 57:71–78

    PubMed  CAS  Google Scholar 

  • Li JY, Dubois MP, Dubois PM (1977) Somatotrophs in the human fetal anterior pituitary. Cell Tissue Res 181:545–552

    PubMed  CAS  Google Scholar 

  • Lietz H, Wöhler J, Pomp H (1971) Zur Entwicklung der Ultrastruktur der embryonalen Schilddrüse des Menschen. Z Zellforsch 113:94–110

    PubMed  CAS  Google Scholar 

  • Lutz P, Kane O, Pfersdorff A, Seiller F, Sauvage P, Levy JM (1986) Neonatal primary Hyperparathyroidism: Total Parathyroidectomy with autotransplantation of cryopreserved parathyroid tissue. Acat Paediatr Scand 75:179–182

    CAS  Google Scholar 

  • Mäusle E (1972) Eletronenmikroskopische Befunde an der menschlichen Neugeborenen-Nebenniere. Beitr Pathol 146:221–247

    PubMed  Google Scholar 

  • Müller F, O’Rahilly R (1983) The first appearance of the major devisions of the human brain at stage 9. Anat Embryol 168:419–432

    PubMed  Google Scholar 

  • Müller F, O’Rahilly R (1985) The first appearance of the neural tube and optic primordium in the human embryo at stage 10. Anat Embryol 172:157–169

    PubMed  Google Scholar 

  • Müller F, O’Rahilly R (1986) Somitic-vertebral correlations and vertebral levels in the human embryo. Am J Anat 177:3–19

    PubMed  Google Scholar 

  • Murphy BEP, Diez d’Aux RC (1972) Steroid levels in the human fetus: Cortisol and Cortisone. J Clin Endocrinol Metab 35:678–683

    PubMed  CAS  Google Scholar 

  • Nakagami K, Yamazaki Y, Tsunoda Y (1968) An electron microscopic study of the human fetal parathyroid gland. Z Zeilforsch 85:89–95

    CAS  Google Scholar 

  • Niemineva K (1949) Observations on the development of the hypophysial-portal system. Acta Paediatr Scand 39:366–377

    Google Scholar 

  • Neubert K (1927) Bau und Entwicklung des menschlichen Pankreas. Roux Arch Entw Mech Org 111:29–118

    Google Scholar 

  • Neville AM, O’Hare MJ (1982) The human adrenal cortex. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Norris EH (1937) The parathyroid glands and the lateral thyroid in man: their morphogenesis, histogenesis, topographic anatomy and prenatal growth. Contrib Embryol Carnegie Inst Wash 26:247–294

    Google Scholar 

  • Norris EH (1918) The early morphogenesis of the human thyroid gland. Am J Anat 24:443–465

    Google Scholar 

  • Norris EH (1946) Anatomical evidence of pre-natal function of the human parathyroid glands. Anat Rec 96:129–141

    PubMed  CAS  Google Scholar 

  • Okado N, Yokota N (1980) An electron microscopic study on the structural development of the neural lobe in the human fetus. Am J Anat 159:261–273

    PubMed  CAS  Google Scholar 

  • O’Rahilly R (1983) The timing and sequence of events in the development of the human endocrine system during the embryonic period proper. Anat Embryol 166:439–451

    PubMed  Google Scholar 

  • O’Rahilly R, Müller F (1981) The first appearance of the human nervous system at stage 8. Anat Embryol 163:1–13

    PubMed  Google Scholar 

  • Orts-Llorca F, Genis Galvez JM (1958) On the morphology of the primordium of the thyroid gland in the human embryo. Acta Anat 33:110–115

    PubMed  CAS  Google Scholar 

  • Partanen S, Hervonen A (1973) Monoamine-containing structures in the hypothalamo-hypophyseal system in the human fetus. Z Anat Entw Gesch 140:53–60

    CAS  Google Scholar 

  • Paulin C, Dubois MP, Barry J, Dubois PM (1977) Immunfluorescence study of LH-RH producing cells in the human fetal hypothalamus. Cell Tissue Res 182:341–345

    PubMed  CAS  Google Scholar 

  • Pearse AGE (1953) Cytological and cytochemical investigations on the foetal and adult hypophysis in various physiological and pathological states. J Pathol Bact 65:355–370

    CAS  Google Scholar 

  • Pearse AGE (1968) Common cytochemical and ultrastructural characteristics of cells producing polypeptide hormones (the APUD-series) and their relevance to thyroid ultimobranchial C cells and calcitonin. Proc R Soc B 170:71–80

    CAS  Google Scholar 

  • Pearse AGE (1969) The cytochemistry and ultrastructure of polypeptide hormone-producing cells of the APUD series and the embryology, physiology and pathologic implications of the concept. J Histochem Cytochem 17:303–313

    PubMed  CAS  Google Scholar 

  • Pearse AGE (1970) The characteristics of the C cells and their significance in relation to those of other endocrine polypeptide cells and to the synthesis, storage and secretion of calcitonin. In: Calcitonin 1969. Proceedings of the Second International Symposion. Heinemann Medical Books, London, pp 125–140

    Google Scholar 

  • Pearse AGE (1977) The diffuse neuroendocrine system and the APUD concept: related „endocrine“ peptides in brain, intestine, pituitary, placenta and anuran cutaneous glands. Med Biol 55:115–125

    PubMed  CAS  Google Scholar 

  • Pearse AGE (1986) The diffuse neuroendocrine system: peptides, amines, placodes and the APUD theory. Prog Brain Res 68:25–31

    PubMed  CAS  Google Scholar 

  • Pearse AGE, Takor Takor T (1979) Embryology of the diffuse neuroendocrine system and its relationship to the common peptides. Fed Proc 38:2288–2294

    PubMed  CAS  Google Scholar 

  • Perks AM, Vizsoyli E (1973) Studies of the neurohypophysis in fetal mammals. In: Comline RS, Cross KW, Dawes GS, Nathanielsz PW (eds) Foetal and neonatal physiology. University Press, Cambridge, pp 430–438

    Google Scholar 

  • Pictet RL, Rall LB, Phelps P, Rutter WJ (1976) The neural crest and the origin of the insulin-producing and other gastrointestinal hormone-producing cells. Science 191:191–192

    PubMed  CAS  Google Scholar 

  • Politzer G (1936) Zur Frage des Schicksals des telobranchialen Körpers beim Menschen. Anat Anz 105:429–432

    Google Scholar 

  • Politzer G (1955) Zur Frühentwicklung der Schilddrüse beim Menschen. Anat Anz 102:29–32

    PubMed  CAS  Google Scholar 

  • Politzer G, Hann F (1935) Über die Entwicklung der branchiogenen Organe beim Menschen. Z Anat Entw Gesch 104:670–708

    Google Scholar 

  • Politzer G, Stockinger L (1954) Die Frühentwicklung der Area mesobranchialis beim Menschen. Acta Anat 20:214–233

    PubMed  CAS  Google Scholar 

  • Räihä N, Hjelt L (1957) The correlation between the development of the hypophyseal portal system and onset of neurosecretory activity in the human fetus and infant. Acta Paediatr Scand 72:610–616

    Google Scholar 

  • Reiher H, Fuhrmann K, Noack S, Woltanski K-P, Jutzi E, Hahn von Dorsche H, Hahn H-J (1983) Age-dependent insulin secretion of the endocrine pancreas in vitro from fetuses of diabetic and nondiabetic patients. Diabetes Care 6:446–451

    PubMed  CAS  Google Scholar 

  • Rinne UK (1963) Neurosecretory material passing into the hypophyseal portal system in the human infundibulum, and its fetal development. Acta Neuroveg 25:310–324

    CAS  Google Scholar 

  • Rinne UK, Kivalo E, Talanti S (1962) Maturation of human hypothalamic neurosecretion. Biol Neonate 4:351–364

    CAS  Google Scholar 

  • Robb P (1961) The development of the islets of Langerhans in the human foetuses. Q J Exp Physiol Cogn Med Sci 46:335–343

    PubMed  CAS  Google Scholar 

  • Rohr H, Krässig B (1968) Elektronenmikroskopische Untersuchungen über den Sekretionsmodus des Parathormons. Z Zellforsch 85:271–290

    PubMed  CAS  Google Scholar 

  • Romeis B (1940) Innersekretorische Drüsen. II: Hypophyse. In: von Möllendorff W (Hrsg) Handbuch der mikroskopischen Anatomie des Menschen, Bd 6/3. Springer, Berlin, S 1–625

    Google Scholar 

  • Ross AJ, Cooper A, Maurice FA, Bishop HC (1986) Primary hyperparathyroidism in infancy. J Pediatr Surg 21:493–499

    PubMed  Google Scholar 

  • Russell KP, Rose H, Starr P (1957) The effects of radioactive jodine on maternal and fetal thyroid function during pregnancy. Surg Gynecol Obstet 104:560–564

    PubMed  CAS  Google Scholar 

  • Saffran M, Schally AV (1955) Release of corticotrophin by anterior pituitary tissue in vitro. Can J Biochem Physiol 33:408–415

    PubMed  CAS  Google Scholar 

  • Scharrer B, Scharrer E (1954) Neurosekretion. In: Bargmann W (Hrsg) Handbuch der mikroskopischen Anatomie des Menschen, Bd VI/5. Springer, Berlin Göttingen Heidelberg, S 963–1066

    Google Scholar 

  • Shanklin WM (1939/1940) Differentiation of pituicytes in the human foetus. J Anat (London) 74:459–463

    Google Scholar 

  • Shepard TH (1967) Onset of function in the human fetal thyroid: Biochemical and radioautographic studies from organ culture. J Clin Endocrinol Metab 27:945–958

    PubMed  CAS  Google Scholar 

  • Shepard TH (1968) Development of the human fetal thyroid. Gen Comp Endocrinol 10:174–181

    PubMed  CAS  Google Scholar 

  • Shepard TH, Andersen HJ, Andersen H (1964a) The human fetal thyroid. I: Its weight in relation to body weight, crown-rump length, foot length and estimated gestation age. Anat Rec 148:123–128

    PubMed  CAS  Google Scholar 

  • Shepard TH, Andersen H, Andersen HJ (1964b) Histochemical studies of the human fetal thyroid during the first half of fetal life. Anat Rec 149:363–380

    PubMed  CAS  Google Scholar 

  • Skowsky WR, Fisher DA (1973) Immunreactive arginine vasopressin (AVP) and arginine vasotocin (AVT) in fetal pituitary of man and sheep. J Clin Invest 52:77–78

    Google Scholar 

  • Sucheston ME, Cannon MS (1968) Development of the zonular patterns in the human adrenal gland. J Morphol 126:477–492

    PubMed  CAS  Google Scholar 

  • Sugiyama S (1971) The embryology of the human thyroid gland including ultimobranchial body and others related. Erg Anat Entw Gesch 44:1–111

    Google Scholar 

  • Thomas E (1911) Über die Nebenniere des Kindes und ihre Veränderungen bei Infektionskrankheiten. Beitr Pathol Anat 50:283–316

    Google Scholar 

  • Titlbach M, Velicky J, Lhotova H (1987) Prenatal development of the cat thyroid: immunohistochemical demonstration of calcitonin in the „C“ cells. Anat Embryol 177:51–54

    PubMed  CAS  Google Scholar 

  • Trojanowski JQ, Gordon D, Obrocka M, Lee VMY (1984) The developmental expression of neurofilament and glial filament protein in the human pituitary gland: An immunhistochemical study with monoclonal antibodies. Dev Brain Res 13:229–239

    Google Scholar 

  • Watzka M (1933) Vergleichende Untersuchungen über den ultimobranchialen Körper. Z Mikrosk Anat Forsch 34:485–533

    Google Scholar 

  • Weller GL (1933) Development of the thyroid, parathyroid and thymus glands in man. Contrib Embryol Carnegie Inst Wash 24:93–139

    Google Scholar 

  • Zuckerkandl E (1911) Die Entwicklung der chromaffinen Organe und der Nebenniere. In: Keibel F, Mall FP (Hrsg) Handbuch der Entwicklungsgeschichte des Menschen, Bd 2. Hirzel, Leipzig, S 157–178

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hinrichsen, K.V., von Dorsche, H.H. (1990). Endokrine Organe. In: Hinrichsen, K.V., et al. Humanembryologie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-07815-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-07815-0_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-07816-7

  • Online ISBN: 978-3-662-07815-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics