Skip to main content

Zentralnervensystem

  • Chapter
Humanembryologie

Zusammenfassung

Das Zentralnervensystem ist das komplizierteste und am stärksten spezifisch ausgeprägte Organsystem im menschlichen Organismus. Es entwickelt sich aus den morphologisch relativ einfach geformten Organanlagen des Gehirns und des Rückenmarks. Während die Entwicklung der äußeren Form relativ leicht systematisch verfolgt werden kann, wie dies besonders die klassischen Arbeiten von His [1904] und Hochstetter [1919] gezeigt haben, ist jedoch die Histogenese des Zentralnervensystems außerordentlich kompliziert und der am längsten andauernde Vorgang in der Ontogenese des Menschen [siehe u.a. Jacobsen 1978, Lemire et al. 1975, Lund 1978, Purves und Lichtmann 1985].

Aus dem englischen Originaltext ins Deutsche übertragen vom Herausgeber.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literaturverzeichnis

  • Bartelemez GW, Dekaban AS (1962) The early development of the human brain. Contrib Embryol Carnegie Inst Wash 37:13–32

    Google Scholar 

  • Birnholz JC (1981) The development of human fetal eye movement patterns. Science 213:679–680

    Article  PubMed  CAS  Google Scholar 

  • Blechschmidt E (1961) Die vorgeburtlichen Entwicklungsstadien des Menschen/The stages of human development before birth. Karger, Basel

    Google Scholar 

  • Blechschmidt E (1963) Der menschliche Embryo. Schattauer, Stuttgart

    Google Scholar 

  • Blechschmidt E (1973) Die pränatalen Organsysteme des Menschen. Hippokrates, Stuttgart

    Google Scholar 

  • Boulder Committee Report (1970) Embryonic vertebrate central nervous system: Revised terminology. Anat Rec 166:257–262

    Article  Google Scholar 

  • Brand S, Rakić P (1979) Genesis fo the primate neostriatum : (3H)-thymidine autoradiographic analysis of the time of neuron origin in the rhesus monkey. Neuroscience 4:767–778

    Article  PubMed  CAS  Google Scholar 

  • Bugnon C, Black B, Fellmann D (1977) Etude immuno-cytologique des neurones hypothalamiques à LH-RH chez le foetus humain. Brain Res 128:249–262

    Article  PubMed  CAS  Google Scholar 

  • Choi BH, Lapham LW (1978) Radial glia in the human fetal cerebrum: a combined Golgi, immunofluorescent and electron microscopic study. Brain Res 148:295–311

    Article  PubMed  CAS  Google Scholar 

  • Cooper ERA (1946) Development of the substantia nigra. Brain 69:22–23

    Article  Google Scholar 

  • de Courten C, Leuba G, Huttenlocher PR, Garey LJ, Van der Loos H (1982) Volumetric, neuronal, and synaptic development of human primary visual cortex. Neurosci Lett (Suppl 10):135

    Google Scholar 

  • Dobbing J, Sands J (1973) Quantitative growth and development of human brain. Arch Dis Child 48:757–767

    Article  PubMed  CAS  Google Scholar 

  • Dreyfus-Brisac C (1979) Ontogenesis of brain bioelectrical activity and sleep organization in neonates and infants. In: Falkner F, Tanner JM (eds) Human growth, vol 3: Neurobiology and nutrition. Bailiere Tindall, London, pp 157–182

    Google Scholar 

  • Falin LI (1961) The development of human hypophysis and differentiation of cells of its anterior lobe during embryonic life. Acta Anat 44:188–205

    Article  PubMed  CAS  Google Scholar 

  • Hines M (1922) Studies in the growth and differentiation of the telencephalon in man. The fissura hippocampi. J Comp Neurol 34:73–171

    Article  Google Scholar 

  • His W (1904) Die Entwicklung des menschlichen Gehirns während der ersten Monate. Hirzel, Leipzig, 176 S

    Google Scholar 

  • Hochstetter F (1919) Beiträge zur Entwicklungsgeschichte des menschlichen Gehirns. I. Deuticke, Wien, 170 S

    Google Scholar 

  • Humphrey T (1968) The development of the human amygdala during early embryonic life. J Comp Neurol 132:135–165

    Article  PubMed  CAS  Google Scholar 

  • Jacobson M (ed) (1978) Developmental neurobiology, 2nd edn. Plenum Press, New York

    Google Scholar 

  • Kahle W (1969) Die Entwicklung der menschlichen Großhirnhemisphäre. Neurology Series, vol 1. Springer, Berlin, Heidelberg, New York, pp 1–116

    Google Scholar 

  • Kalil K (1984) Development and regrowth of the rodent pyramidal tract. Trends Neurosci 7:394–398

    Article  Google Scholar 

  • Knyihar E, Csillik B, Rakić P (1978) Transient synapses in the embryonic primate spinal cord. Science 202:1206–1209

    Article  PubMed  CAS  Google Scholar 

  • Kostović I (1979) The development and structure of the human cerebral cortex (in Croatian). JUMENA, Zagreb

    Google Scholar 

  • Kostović I (1986) Prenatal development of nucleus basalis complex and related fibre systems in man: A histochemical study. Neuroscience 17:1047–1077

    Article  PubMed  Google Scholar 

  • Kostović I, Krmpotić-Nemanić J, Kelović Z (1975) The early development of glia in human neocortex. RAD JAZU 371(17):155–159

    Google Scholar 

  • Kostović I, Goldman-Rakić PS (1983) Transient Cholinesterase staining in the mediodorsal nucleus of the thalamus and its connections in the developing human and monkey brain. J Comp Neurol 219:431–447

    Article  PubMed  Google Scholar 

  • Kostović I, Rakić P (1980) Cytology and time of origin of interstitial neurons in the white matter in infant and adult human and monkey telencephalon. J Neurocytol 9:219–242

    Article  PubMed  Google Scholar 

  • Kostović I, Rakić P (1984) Development of prestriate visual projections in the monkey and human fetal cerebrum revealed by transient Cholinesterase staining. J Neurosci 4:25–42

    PubMed  Google Scholar 

  • Kostović-Knežević LJ (1984) Sporadic cell death in the developing cortex of the human fetal brain. Verh Anat Ges 78:303–304

    Google Scholar 

  • Lemire RJ, Loeser JD, Leech RW, Alvord EC (1975) Normal and abnormal development of the human nervous system. Harper & Row, Hagerstown, Maryland

    Google Scholar 

  • Lenn NJ, Halfon N, Rakić P (1978) Development of the interpeduncular nucleus in the midbrain of rhesus monkey and human. Anat Embryol 152:273–289

    Article  PubMed  CAS  Google Scholar 

  • Levitt P, Rakić P (1980) Immunoperoxidase localization of glial fibrillary acidic protein in radial glial cells and astrocytes of the developing rhesus monkey brain. J Comp Neurol 193:815–840

    Article  PubMed  CAS  Google Scholar 

  • Lund RD (1978) Development and plasticity of the brain: an introduction. Oxford University Press, Oxford

    Google Scholar 

  • Marin-Padilla M (1970) Prenatal and early postnatal ontogenesis of the human motor cortex: A Golgi study. I: The sequential development of the cortical layers. Brain Res 23:167–183

    Article  PubMed  CAS  Google Scholar 

  • Marin-Padilla M (1983) Structural organization of the human cerebral cortex prior to the appearance of the cortical plate. Anat Embryol 168:21–40

    Article  PubMed  CAS  Google Scholar 

  • Mattanza GG (1973) Zur Bedeutung des embryonalen Zelluntergangs im Vorderhirn. I: Untersuchungen am Menschen und bei der Maus. Acta Anat 85:96–107

    Article  PubMed  CAS  Google Scholar 

  • Merk L (1886) Über die Anordnung der Kernteilungsfiguren im Zentralnervensystem und der Retina bei Natternembryonen. Sitzgsber Akad Wiss Wien Math Naturwiss Kl 992:3

    Google Scholar 

  • Merk L (1887) Die Mitosen im Zentralnervensysteme. Denkschr Kais Acad Wiss Wien 53:79–118

    Google Scholar 

  • Mollgard K, Jacobsen M (1984) Immunohistochemical identification of some plasma proteins in human embryonic and fetal forebrain with particular reference to the development of the neocortex. Dev Brain Res 13:49–63

    Article  Google Scholar 

  • Molliver ME, Kostović I, Van der Loos H (1973) The development of synapses in cerebral cortex of the human fetus. Brain Res 50:403–407

    Article  PubMed  CAS  Google Scholar 

  • Müller F, O’Rahilly R (1983) The first appearance of the major divisions of the human brain at Stage 9. Anat Embryol 168:419–432

    Article  PubMed  Google Scholar 

  • Nobin A, Björklund A (1973) Topography of the monoamine neuron systems in the human brain as revealed in fetuses. Acta Physiol Scand Suppl 388:1–30

    PubMed  CAS  Google Scholar 

  • Nowakowski RS, Rakić P (1981) The site of origin and route and rate of migration of neurons to the hippocampal region of the rhesus monkey. J Comp Neurol 196:129–154

    Article  PubMed  CAS  Google Scholar 

  • Okado N (1980) Development of the human cervical spinal cord with reference to synapse formation in the motor nucleus. J Comp Neurol 191:495–513

    Article  PubMed  CAS  Google Scholar 

  • Okado N (1981) Onset of synapse formation in the human spinal cord. J Comp Neurol 201:211–219

    Article  PubMed  CAS  Google Scholar 

  • Okado N, Kakimi S, Kojima T (1979) Synaptogenesis in the cervical cord of the human embryo: Sequence of synapse formation in a spinal reflex pathway. J Comp Neurol 184:491–518

    Article  PubMed  CAS  Google Scholar 

  • Olivier G, Pineau H (1961) Horizons de Streeter et age embryonnaire. Bull Assoc Anat (Nancy) 47e:573–576

    Google Scholar 

  • Olson L, Boreus LO, Seiger A (1973) Histochemical demonstration and mapping of 5-hydroxytryptamine- and cate-cholamine-containing neuron systems in the human fetal brain. Z Anat Entw Gesch 139:259–282

    Article  CAS  Google Scholar 

  • O’Rahilly R, Gardner E (1971) The timing and sequence of events in the development of the human nervous system during the embryonic period proper. Z Anat Entw Gesch 134:1–12

    Article  Google Scholar 

  • Prechtl HFR (1974) The behavioural states of the newborn infant (A review). Brain Res 76:185–212

    Article  PubMed  CAS  Google Scholar 

  • Purves D, Lichtmann JW (1985) Principles of neural development. Sinauer, Sunderland

    Google Scholar 

  • Rakić P (1982) Early developmental events: cell lineages, acquisition of neuronal positions, and areal and laminar development. Neurosci Res Program Bull 20:439–451

    PubMed  Google Scholar 

  • Rakić P, Sidman RL (1969) Telencephalic origin of pulvinar neurons in the fetal human brain. Z Anat Entw Gesch 129:53–82

    Article  Google Scholar 

  • Rakić P, Sidman RL (1970) Histogenesis of cortical layers in human cerebellum, particularly the lamina dissecans. J Comp Neurol 139:473–500

    Article  PubMed  Google Scholar 

  • Rakić P, Yakovlev PI (1968) Development of the corpus callosum and cavum septi in man. J Comp Neurol 132:45–72

    Article  PubMed  Google Scholar 

  • Richter E von (1967) Über die Entwicklung des Globus Pallidus und des Corpus subthalamicum beim Menschen. In: Hassler R, Stephan H (eds) Evolution of the forebrain. Plenum Press, New York, pp 285–295

    Google Scholar 

  • Sauer FC (1935a) Mitosis in the neural tube. J Comp Neurol 62:377–405

    Article  Google Scholar 

  • Sauer FC (1935b) The cellular structure of the neural tube. J Comp Neurol 63:13–23

    Article  Google Scholar 

  • Schmechel DE, Rakić P (1979) A Golgi study of radial glial cells in developing monkey telencephalon: Morphogenesis and transformation into astrocytes. Anat Embryol 156:115–152

    Article  PubMed  CAS  Google Scholar 

  • Sensenig EC (1951) The early development of the meninges of the spinal cord in human embryos. Contrib Embryol Carnegie Inst Wash 34:145–157

    Google Scholar 

  • Sidman RL, Rakić P (1973) Neuronal migration, with special reference to developing humain brain: A review. Brain Res 62:1–35

    Article  PubMed  CAS  Google Scholar 

  • Sidman RL, Rakić P (1982) Development of the human central nervous system. In: Haymaker W, Adams RD (eds) Histology and histopathology of the nervous system. Thomas, Springfield, Ill., pp 3–138

    Google Scholar 

  • Siwe SA (1927) Das Nervensystem. Die mikroskopische Entwicklung des Großhirns nach der Geburt. In: Peter K, Wetzel G, Heiderich F (Hrsg) Handbuch der Anatomie des Kindes, Bd 2. Bergmann, München, S 609–632

    Google Scholar 

  • Štampalija A, Kostović I (1981) The laminar organization of the superior colliculus (SC) in the human fetus. In: Huber A, Klein D (eds) Neurogenetics and neuro-ophthalmology. Elsevier/North Holland Biomedical Press, New York, pp 107–110

    Google Scholar 

  • Streeter GL (1921) Weight, sitting height, head size, foot length, and menstrual age of the human embryo. Contrib Embryol Carnegie Inst Wash 11:143–170

    Google Scholar 

  • Streeter GL (1942) Developmental horizons in human embryos. Description of age group XI, 13 to 20 somites, and age group XII, 21 to 29 somites. Contrib Embryol Carnegie Inst Wash 30:211–245

    Google Scholar 

  • Streeter GL (1945) Developmental horizons in human embryos: Description of age groups XIII embryos about 4 or 5 millimeters long, and age group XIV, period of indentation of the lens vesicle. Contrib Embryol Carnegie Inst Wash 31:27–63

    Google Scholar 

  • Streeter GL (1948) Developmental horizons in human embryos: Description of age groups XV, XVI, XVII and XVIII. Contrib Embryol Carnegie Inst Wash (Publ 211) 32:133–203

    Google Scholar 

  • Streeter GL (1951) Developmental horizons in human embryos: Description of age groups XIX, XX, XXI, XXII and XXIII, being the fifth issue of a survey of the Carnegie Collection. Contrib Embryol Carnegie Inst Wash 34:165–197

    Google Scholar 

  • Vaughan HG Jr (1975) Electrophysiologic analysis of regional cortical maturation. Biol Psychiatry 10:513–526

    PubMed  Google Scholar 

  • Zamorano L, Chuaqui B (1979) Teratogenetic periods for the principal malformations of the central nervous system. Virchows Arch [Pathol Anat] 384:1–18

    CAS  Google Scholar 

  • Zečević N, Rakić P (1976) Differentiation of Purkinje cells and their relationship to other components of developing cerebellar cortex in man. J Comp Neurol 167:27–48

    Article  PubMed  Google Scholar 

Weiterführende Literatur

  • Black IB (ed) (1984) Cellular and molecular biology of neuronal development. Plenum Press, New York, pp 29–50

    Book  Google Scholar 

  • Brodmann K (1909) Vergleichende Lokalisationslehre der Großhirnrinde in ihren Prinzipen dargestellt auf Grund des Zellenbaues. Barth, Leipzig

    Google Scholar 

  • Cooper ERA (1946) Development of the human red nucleus and corpus striatum. Brain 69:34–45

    Article  Google Scholar 

  • Flechsig P (1920) Anatomie des menschlichen Gehirns und Rückenmarks (auf myelogenetischer Grundlage). Thieme, Leipzig

    Google Scholar 

  • Hassler R, Stephan H (1967) Evolution of the forebrain. Phylogenesis and ontogenesis of the forebrain. Plenum Press, New York

    Google Scholar 

  • Minkowski A (ed) (1967) Regional development of the brain in early life. Blackwell, Oxford, pp 3–70

    Google Scholar 

  • Rakić P, Nowakowski RS (1981) The time of origin of neurons in the hippocampal region of the rhesus monkey. J Comp Neurol 196:99–128

    Article  PubMed  Google Scholar 

  • Spatz H (1924) Zur Ontogenese des Striatum und des Pallidum. Dtsch Z Nervenheilk 81:185–190

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kostović, I. (1990). Zentralnervensystem. In: Hinrichsen, K.V., et al. Humanembryologie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-07815-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-07815-0_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-07816-7

  • Online ISBN: 978-3-662-07815-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics