Skip to main content

Cardio-vaskuläres System

  • Chapter

Zusammenfassung

Die Bildung der intraembryonalen Blutgefäße beginnt bei menschlichen Embryonen zu Beginn der 3. Woche (Stadium 8) [O’Rahilly und Müller 1987]. Zunächst werden im ventralen Umfang des Dottersackes lokal abgegrenzte, mesodermale Zellhaufen sichtbar, die das Endoderm vorbuckeln [Evans 1911]. Die Zellen dieser extraembryonal gelegenen meso-dermalen Kondensationen werden als „Hämangio-blasten” bezeichnet, da aus ihnen sowohl die primitiven Blutzellen (Hämocytoblasten) wie die endothel-bildenden Zellen (Angioblasten) hervorgehen. Aus den knotenförmigen Zellansammlungen, die durch eine enge Lagebeziehung zum Endoderm gekennzeichnet sind, entwickeln sich die sogenannten Blutinseln [Evans 1911, Sabin 1917]. Dabei runden sich die zentral gelegenen Zellen ab und differenzieren sich zu Vorläufern von Blutzellen, während sich die peripheren Zellen zu abgrenzenden Endothelien zusammenlagern (Abb. 10–1).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literaturverzeichnis

  • Abbott ME (1927) Transposition or reversed torsion of the arterial trunks. In: Osier W, McCrae T (eds) Modern Medicine, 3rd edn, Vol 4. Lea und Febiger, Philadelphia

    Google Scholar 

  • Abel W (1913) Further observations on the development of the sympathetic nervous system in the chick. J Anat Physiol 47:35–72

    Google Scholar 

  • Allen FD(1962/63) Establishment of the cardiac primor-dium in human embryos at presomite stages. Annu Rep Director Dept Embryol Carnegie Inst, Washington, pp 465–466

    Google Scholar 

  • Anderson RH, Becker AE (1982) Anatomie des Herzens. Ein Färbatlas. Thieme, Stuttgart

    Google Scholar 

  • Anderson RH, Becker AE, Wenink ACG, Janse MJ (1976) The development of the cardiac specialized tissue. In: Wellens HJJ, Lie KI, Janse MJ (eds) The conduction system of the heart. Stenfer und Kroese, Leiden, pp 3–28

    Google Scholar 

  • Anderson RH, Taylor IM (1972) Development of atrioventricular specialized tissue in the human heart. Br Heart J 34:1205–1214

    PubMed  CAS  Google Scholar 

  • Anderson RH, Yen HS, Becker AE, Gosling JA (1978) The development of the sinoatrial node. In: Bonke FIM (ed) The sinus node. Structure, function and clinical relevance. Nijhoff, The Hague, pp 116–182

    Google Scholar 

  • Antoni H (1983) Funktion des Herzens. In: Schmidt RF, Thews G (Hrsg) Physiologie des Menschen, 21. Aufl. Springer, B erlin Heidelberg New York Tokyo, S 391– 433

    Google Scholar 

  • Argüello G, De la Cruz MV, Sanchez C (1978) Ultrastructural and experimental evidence of myocardial cell differentiation into connective tissue cells in embryonic chick heart. J Mol Cell Cardiol 10:307–315

    PubMed  Google Scholar 

  • Asami I (1969) Beitrag zur Entwicklung des Kammersep-tums im menschlichen Herzen mit besonderer Berücksichtigung der sogenannten Bulbusdrehung. Z Anat Entw Gesch 128:1–17

    CAS  Google Scholar 

  • Bankl H (1977) Congenital malformations of the heart and great vessels. Urban und Schwarzenberg, Baltimore München

    Google Scholar 

  • Barry A (1942) The intrinsic pulsation rates of fragments of embryonic chick heart. J Exp Zool 91:119–130

    Google Scholar 

  • Barry A (1948) The functional significance of the cardiac jelly in the tubular heart of the chick embryo. Anat Rec 102:289–298

    PubMed  CAS  Google Scholar 

  • Barry A (1951) The aortic arch derivatives in the human adult. Anat Rec 111:221–238

    PubMed  CAS  Google Scholar 

  • Beneke R (1920) Über Herzbildung und Herzmißbildung als Funktionen primärer Blutstromformen. Ein Beitrag zur Entwicklungsmechanik. Beitr Pathol Anat 67:1–27

    Google Scholar 

  • Bennett HS (1936) The development of blood supply to the heart in the embryo pig. Am J Anat 60:27–53

    Google Scholar 

  • Benninghoff A (1923) Über die Beziehung des Reizleitungssystems und der Papillarmuskeln zu den Konturfasern des Herzschlauches. Anat Anz Erg H 57:185–208

    Google Scholar 

  • Benninghoff A (1930) Blutgefäße und Herz. I: Die erste Entstehung der Gefäße und des Herzens. In: von Möllen-dorff W (Hrsg) Handbuch der mikroskopischen Anatomie des Menschen, Bd VI/I. Springer, Berlin

    Google Scholar 

  • Bernard C (1975) Establishment of ionic permeabilities of the myocardial membrane during embryonic development of the rat. In: Lieberman M, Sano T (eds) Developmental and physiological correlates of cardiac muscle. Perspectives in cardiovascular research, vol 1. Raven Press, New York, pp 169–184

    Google Scholar 

  • Bernays AC (1876) Entwicklungsgeschichte der Atrioventrikularklappen. Morphol Jb 2:478–518

    Google Scholar 

  • Bersch W, Doerr W(1976) Reitende Gefäße des Herzens. Homologiebegriff und Reihenbildung, 1. Abh. S-B Heidelberger Akad Wiss Math Nat Kl

    Google Scholar 

  • Blechschmidt E (1961) Die vorgeburtlichen Entwicklungsstadien des Menschen. Karger, Basel

    Google Scholar 

  • Bogusch G (1979) Electron microscopic investigations on the differentiation of purkinje cells in the ontogenetic development of the chicken heart. Anat Embryol 155:259–271

    PubMed  CAS  Google Scholar 

  • Born G (1889) Beiträge zur Entwicklungsgeschichte des Säugetierherzens. Arch Mikr Anat 33:284–378

    Google Scholar 

  • Boucek RJ, Murphy WP, Paff GH (1959) Electrical and mechanical properties of chick embryo heart chambers. Circ Res 7:787–793

    PubMed  CAS  Google Scholar 

  • Breitenstein TH(1981) Über die Temperaturabhängigkeit des embryonalen Elektrokardiogramm. Med. Dissertation, Göttingen

    Google Scholar 

  • Bremer JL (1929) The influence of the bloodstream on the development of the heart. Anat Rec 42:6

    Google Scholar 

  • Bremer JL (1932) The presence and influence of two spiral streams in the heart of the chick embryo. Am J Anat 49:409–440

    Google Scholar 

  • Bremer JL (1948) Coarctation of the aorta and the aortic isthmuses. Arch Pathol 45:425–434

    CAS  Google Scholar 

  • Broman I (1906) Über die Entwicklung, Wanderung und Variation der Bauchaortenzweige bei den Wirbeltieren. Ergeb Anat Entw Gesch 16:639–745

    Google Scholar 

  • Broman I (1908) Über die Entwickung und „Wanderung” der Zweige der Aorta abdominalis beim Menschen nebst Bemerkungen über Gefäßwurzelwanderungen im allgemeinen. Anat H 36:405–549

    Google Scholar 

  • Butler E (1935) The developmental capacity of regions of the unincubated chick blastoderm as tested in chorioallantoic grafts. J Exp Zool 70:357–389

    Google Scholar 

  • Butler JK (1952) An experimental analysis of cardiac loop formation in the chick. Med Thesis, Texas

    Google Scholar 

  • Canale CD, Campbell GR, Smolich JJ, Campbell JH (1986) Cardiac muscle. In: Oksche A, Vollrath L (eds) Handbook of Microscopic Anatomy, vol II/7. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  • Chacko K (1972) Ultrastructural observations on mitosis in myocardial cells of the rat embryo. Am J Anat 135:305–310

    PubMed  CAS  Google Scholar 

  • Challice CE, Viragh S (1973) The architectural development of the early mammalian heart. Tissue Cell 6:447–462

    Google Scholar 

  • Cheresh DA (1987) Human endothelial cells synthesize and express an Arg-Gly-Asp directed adhesion receptor involved in attachment to fibrinogen and von Willebrand factor. Proc Natl Acad Sci USA 84:6471–6475

    PubMed  CAS  Google Scholar 

  • Chiari H (1897) Über Netzbildungen im rechten Vorhof des Herzens. Beitr Pathol Anat Allg Pathol 22:1–10

    Google Scholar 

  • Christ B, Wachtier F (1988) Chimären in der entwicklungsbiologischen Forschung. Naturwissenschaften 75: 183–190

    PubMed  CAS  Google Scholar 

  • Christ B, Jacob HJ, Jacob M (1979) Über Gestaltungsfunktionen der Somiten bei der Entwicklung der Körperwand von Hühhnerembryonen. Verh Anat Ges 73:509–518

    Google Scholar 

  • Christ B, Poelmann RE, Jacob HJ, Flamme I, Krenn V, Git-tenberger-de Groot AC, Peault B, Geiger R (1988) Im-munhistochemische Untersuchungen zur Angiogenese in frühen Vogelembryonen. Verh Anat Ges 83

    Google Scholar 

  • Clark EB(1985) Ventricular function and cardiac growth in the chick embryo. In: Ferrans VJ, Rosenquist G, Weinstein C(eds) Cardiac Morphogenesis. Elsevier, New York Amsterdam Oxford, pp 238–244

    Google Scholar 

  • Coffin JD, Poole TJ (1988) Embryonic vascular development: immunhistochemical identification of the origin and subsequent morphogenesis of the major vessel primordia in quail embryos. Development 102:735–748

    PubMed  CAS  Google Scholar 

  • Colvee E, Hurle JM(1981) Maturation of the extracellular material of the semilunar heart valves in the mouse. A hi-stochemical analysis of collagen and mucopolysaccharides. Anat Embryol 162:343–352

    PubMed  CAS  Google Scholar 

  • Congdon ED (1922) Transformation of the aortic — arch system during the development of the human embryo. Con-trib Embryol Carnegie Inst Wash 14:47–110

    Google Scholar 

  • Conte G, Grieco M (1980) Sulla Distribuzione della gelan-tina cardiaca in un embrione umano di 3 mm. Quad Anat Prat 36:77–83

    Google Scholar 

  • Conte G, Pellegrini A (1984) On the development of the coronary arteries in human embryos stages 14–19. Anat Embryol 169:209–218

    PubMed  CAS  Google Scholar 

  • Cormier F, Dieterlen-Lièvre F(1988) The wall of the chick embryo aorta harbours M-CFC, G-CFC, GM-CFC and BFM-E. Development 102:279–285

    PubMed  CAS  Google Scholar 

  • Cormier F, De Paz P, Dieterlen-Lièvre F (1986) In vitro detection of cells with monocytic potentiality in the wall of the chick embryo aorta. Dev Biol 118:167–175

    PubMed  CAS  Google Scholar 

  • Crum R, Szabo S, Folkman J (1985) A new class of steroids inhibits angiogenesis in the presence of heparin or a heparin fragment. Science 230:1375–1378

    PubMed  CAS  Google Scholar 

  • Davis CL (1924) The cardiac jelly of the chick embryo. Anat Rec 27:201–202

    Google Scholar 

  • Davis CL (1927) Development of the human heart from its first appearance to the stage found in embryos of twenty paired somites. Contrib Embryol Carnegie Inst Wash 19:245–284

    Google Scholar 

  • De Haan RL (1961) Differentiation of the atrioventricular conduction system of the heart. Circulation 24:458–470

    Google Scholar 

  • De Haan RL (1963a) Migration patterns of the precardiac mesoderm in the early chick embryo. Exp Cell Res 29:544–560

    Google Scholar 

  • De Haan RL (1963b) Regional organization of pre-pacema-ker cells in the cardiac primordia of the early chick embryo. J Embryol Exp Morphol 11:65–76

    Google Scholar 

  • De Haan RL (1965) Development of pacemaker tissue in the embryonic heart. Ann NY Acad Sci 127:7–18

    Google Scholar 

  • De Haan RL, Mc Donald TF, Sachs HG (1975) Development of tetrodotoxin sensitivity of embryonic chick heart cells in vitro. In: Lieberman M, Sano T (eds) Developmental and physiological correlates of cardiac muscle. Perspectives in cardiovascular research, vol 1. Raven Press, New York, pp 155–168

    Google Scholar 

  • De la Cruz MV, Gimenez Ribotta M, Saravalli O, Cayre R (1983) The contribution of the inferior endocardial cushion of the atrioventricular canal to cardiac septation and the the development of the atrioventricular valves: study in the chick embryo. Am J Anat 166:63–72

    PubMed  Google Scholar 

  • De la Cruz MV, Gomez CS, Arteaga MM, Argüello G (1977) Experimental study of the development of the trun-cus and the conus in the chick embryo. J Anat 123:661–686

    PubMed  Google Scholar 

  • Domenech Mateu JM, Reig Vilallonga J(1980) Defectos de tabicacion interventricular y doble salida de ventriculo de-recho producidos experimentalmente en embrion de polio. Analisis causal. Rev Esp Cardiol 33:147–156

    Google Scholar 

  • Edwards JE (1953) Pathologic and developmental considerations in anomalous pulmonary venous connection. Proc Staff Meet Mayo Clin 28:441–452

    PubMed  CAS  Google Scholar 

  • Edwards JE (1968) Congenital malformations of the heart and great vessels. H. Malformations of the thoracic aorta. In: Gould SE (ed) Pathology of the Heart. Thomas, Springfield, I11., pp 391–454

    Google Scholar 

  • Eisenstein R, Sorgente N, Soble LW, Miller A, Knettner KE (1973) The resistance of certain tissues to invasion penetrability of explanted tissues by vascularized mesenchy-mic. Am J Pathol 73:765–774

    PubMed  CAS  Google Scholar 

  • Evans HM (1911) Die Entwicklung des Blutgefäßsystems. In: Keibel F, Mall FP (Hrsg) Handbuch der Entwickungs-geschichte des Menschen, Bd. 2. Hirzel, Leipzig, S 551–688

    Google Scholar 

  • Faber JJ (1968) Mechanical function of the septating embryonic heart. Am J Physiol 214:475–481

    PubMed  CAS  Google Scholar 

  • Faber JJ, Green TG, Thornburg KL (1974) Embryonic stroke volume and cardiac output in the chick. Dev Biol 41:14–21

    PubMed  CAS  Google Scholar 

  • Fano G, Badano F (1890) Etude physiologique des premiers stades de developpement du coeur embryonnaire du poulet. Arch Ital Biol 13:387–422

    Google Scholar 

  • Field EJ (1951) The development of the conducting system in the heart of sheep. Br Heart J 13:129–147

    PubMed  CAS  Google Scholar 

  • Fingl E, Woodburry LA, Hecht HH (1952) Effects of innervation and drugs upon direct membrane potentials of embryonic chick myocardium. J Pharmacol Exp Ther 104:103–114

    PubMed  CAS  Google Scholar 

  • Folkman J (1985) Tumor angiogenesis. Adv Cancer Res 43:175–203

    PubMed  CAS  Google Scholar 

  • Folkman J (1986) Growth control in capillary endothelium. In: Steinberg MS (ed) The cell surface in development and cancer. Dev Biol 3:101–110

    Google Scholar 

  • Folkman J, Haudenschild C (1980) Angiogenesis in vitro. Nature 288:551–556

    PubMed  CAS  Google Scholar 

  • Frazer JE (1916) The formation of the pars membranacea septi. J Anat Physiol 51:19–29

    CAS  Google Scholar 

  • Fukutake K (1925) Beiträge zur Histologie und Entwicklungsgeschichte des Herznervensystems. Z Anat Entw Gesch 76:592–639

    Google Scholar 

  • Gardner E, O’Rahilly R (1976) The nerve supply and conducting system of the human heart at the end of the embryonic period proper. J Anat 121:571–587

    PubMed  CAS  Google Scholar 

  • Gargouil YM, Bernard CL(1971) Ontogeny of the myocardial membrane permeabilities. Int Congr Physiol 25:196

    Google Scholar 

  • Gauer OH (1960) Kreislauf des Blutes. In: Rosemann HU (Hrsg) Landois-Rosemann: Lehrbuch der Physiologie des Menschen. 1. Bd, 28. Aufl. Urban und Schwarzenberg, München Berlin, S 65–186

    Google Scholar 

  • Gessner IH, Lorincz AE, Bostroem H (1965) Acid mucopolysaccharide content of the cardiac jelly of the chick embryo. J Exp Zool 160:291–298

    PubMed  CAS  Google Scholar 

  • Gessner IH, Van Mierop LHS (1970) Experimental production of cardiac defects: the spectrum of dextroposition of the aorta. Am J Cardiol 25:272–278

    Google Scholar 

  • Goerttler K (1955) Durchströmungsversuche an Glasmodel-len embryonaler Herzanlagen. Verh Dtsch Ges Pathol 38:220–223

    Google Scholar 

  • Goerttler K (1963) Entwicklungsgeschichte des Herzens. In: Bargmann W, Doerr W (Hrsg) Das Herz des Menschen, vol 1. Thieme, Stuttgart, S 21–87

    Google Scholar 

  • Golub DM (1929) Über den fünften Aortenbogen beim Menschen. Z Anat Entw Gesch 90:690–693

    Google Scholar 

  • Goor DA, Dische R, Lillehei CW (1972) The conotruncus. I: Its normal inversion and conus absorption. Circulation 46:375–384

    PubMed  CAS  Google Scholar 

  • Goor DA, Edwards JE, Lillehei CW(1970) The development of the interventricular septum of the human heart: Correlative morphogenetic study. Chest 58:453–467

    PubMed  CAS  Google Scholar 

  • Grant RP (1962) The embryology of ventricular flow pathways in man. Circulation 25:756–779

    PubMed  CAS  Google Scholar 

  • Grant RT (1926) Development of the cardiac coronary vessels in the rabbit. Heart 13:261–271

    Google Scholar 

  • Gross WO (1980) Organisation durch Herzfibroblasten in der Kultur. Anat Anz Erg H 150:583

    Google Scholar 

  • Grzybiak M, Szostakiewicz-Sawicka H (1981) Über die Verbindung der Papillarmuskeln mit der Mitralklappe in der Ontogenese des Menschen und Phylogenese der Primaten. Acta Anat 111:52

    Google Scholar 

  • Guntheroth WG, Kawabori I (1977) Tetrad of Fallot. In: Moss AJ, Adams FH, Emmanouilides GC (eds) Heart disease in children and adolescents, 2nd edn. Williams und Wilkins, Baltimore, pp 176–289

    Google Scholar 

  • Hahn H (1908) Experimentelle Studien über die Entstehung des Blutes und der ersten Gefäße beim Hühnchen. Anat Anz 33:153–167

    Google Scholar 

  • Harh JY, Paul MH(1975) Experimental cardiac morphogenesis. I: Development of the ventricular septum in the chick. J Embryol Exp Morphol 33:13–28

    PubMed  CAS  Google Scholar 

  • Hendrix MJC, Morse DE(1977) Atrial septation. I: Scanning electron microscopy in the chick. Dev Biol 57:345–363

    PubMed  CAS  Google Scholar 

  • Hensen V(1876) Beobachtungen über die Befruchtung und Entwicklung des Kaninchens und Meerschweinchens. Z Anat Entw Gesch 1:213–273, 352–432

    Google Scholar 

  • Heuser CA (1930) A human embryo with 14 pairs of somites. Contrib Embryol Carnegie Inst Wash 22:135–153

    Google Scholar 

  • Hinrichsen K (1972) Embryologische Aspekte eines Schwangerschaftsabbruchs. Theol-Prakt Quart Schr 120:224–230

    Google Scholar 

  • Hirakow R (1983) Development of the cardiac blood vessels in staged human embryos. Acta Anat 115:220–230

    PubMed  CAS  Google Scholar 

  • Hirakow R, Hiruma T (1981) Scanning electron microscopic study on the development of primitive blood vessels in chick embryos at the early somite stage. Anat Embryol 163:299–306

    PubMed  CAS  Google Scholar 

  • Hirakow R, Hiruma T (1983) TEM-studies in development and canalization of the dorsal aorta in the chick embryo. Anat Embryol 166:307–315

    PubMed  CAS  Google Scholar 

  • His W(1885) Anatomie menschlicher Embryonen. III: Zur Geschichte der Organe des Herzens. Vogel, Leipzig

    Google Scholar 

  • His W (1891) Die Entwicklung des Herznervensystems bei Wirbeltieren. Abh Kgl Sächs Ges Wiss Math Phys Kl 18:1–64

    Google Scholar 

  • His W (1900) Lecithoblast and Angioblast der Wirbeltiere. Abh Kgl Sächs Ges Wiss Math Nat Kl 22

    Google Scholar 

  • Ho E, Shimada Y (1978) Formation of the epicardium studied with the scanning electron microscope. Dev Biol 66:579–585

    PubMed  CAS  Google Scholar 

  • Hochstetter F (1906) Die Entwicklung des Blutgefäßsystems (des Herzens nebst Herzbeutel und Zwerchfell, der Blut-und Lymphgefäße, der Lymphdrüsen und der Milz in der Reihe der Wirbeltiere). In: Hertwig O(Hrsg) Handbuch der vergleichenden und experimentellen Entwicklungslehre der Wirbeltiere, Bd 3, 2. Teil. Fischer, Jena, S 21–166

    Google Scholar 

  • Hoff EC, Kramer TC, Patten BM (1939) The development of the electrocardiogram of the embryonic heart. Am Heart J 17:470–488

    Google Scholar 

  • Huggel H (1959) Experimentelle Untersuchungen über die Automatic, Temperaturabhängigkeit und Arbeit des embryonalen Fischherzens, unter besonderer Berücksichtigung der Salmoniden und Scylliorhiniden. Z Vergl Physiol 42:63–102

    Google Scholar 

  • Hutchins GM (1971) Coarctation of the aorta explained as a branch-point of the ductus arteriosus. Am J Pathol 63: 203–210

    PubMed  CAS  Google Scholar 

  • Hutchins GM (1972) Two Secondary Lesions: Coarctation of the aorta and idiopathic endocardial fibroelastosis. Birth Defects 8:24–26

    Google Scholar 

  • Hyams VJ, Manion WC (1968) Incomplete differentiation of the cardiac valves. A report of 197 cases. Am Heart J 76:173–182

    PubMed  CAS  Google Scholar 

  • Ingalls NW (1920) A human embryo at the beginning of segmentation, with special reference to the vascular system. Contrib Embryol Carnegie Inst Wash 11:61–90

    Google Scholar 

  • Ishima Y (1968) The effect of tetrodotoxin and sodium substitution on the action potential in the course of development of the embryonic chicken heart. Proc Jpn Acad 44:170–175

    CAS  Google Scholar 

  • Jaffee OC (1965) Hemodynamic factors in the development of the chick embryo heart. Anat Rec 151:69–76

    PubMed  CAS  Google Scholar 

  • James T (1970) Cardiac conduction system: Fetal and postnatal development. Am J Cardiol 25:213–226

    PubMed  CAS  Google Scholar 

  • Jefferson K, Rees S, Somerville J (1972) Systemic arterial supply to the lungs in pulmonary atresia and its relation to pulmonary artery development. Br Heart J 34:418–427

    PubMed  CAS  Google Scholar 

  • Johnson RC, Manasek FJ, Vinson WC, Seyer JM (1974) The biochemical and ultrastructural demonstration of collagen during early heart development. Dev Biol 36:252–271

    PubMed  CAS  Google Scholar 

  • Kallenbach P(1987) Über die embryonale Herzaktion. Zusammenhänge zwischen EKG und Kontraktion. Med. Dissertation, Göttingen

    Google Scholar 

  • Kaminski M, Kaminska G, Majewski S (1978) Inhibition of new blood vessel formation in mice by systemic administration of human rib cartilage extract. Experientia 34:490–491

    PubMed  CAS  Google Scholar 

  • Kaufman MH, Navaratnam V (1981) Early differentiation of the heart in mouse embryos. J Anat 133:235–246

    PubMed  CAS  Google Scholar 

  • Kinsella MG, Fitzharris TP(1980) Origin of cushion tissue in the developing chick heart: Cinematographic recordings of in situ formation. Science 207:1359–1360

    PubMed  CAS  Google Scholar 

  • Kirby ML, Gale TF, Stewart DE (1983) Neural crest cells contribute to normal aorticopulmonary septation. Science 220:1059–1061

    PubMed  CAS  Google Scholar 

  • Kramer TC(1942) The partitioning of the truncus und conus and the formation of the membranous portion of the interventricular septum in the human heart. Am J Anat 71:343–370

    Google Scholar 

  • Krediet P(1965) An hypothesis of the development of coarctation in man. Acta Morphol Need Scand 6:207–212

    CAS  Google Scholar 

  • Kuhn HJ, Liebherr G (1987) The early development of the heart of tupaia belangeri, with reference to other mammals. Anat Embryol 176:53–63

    PubMed  CAS  Google Scholar 

  • Kuhn HJ, Liebherr G (1988) The early development of the epicardium in tupaia belangeri. Anat Embryol 177:225–234

    PubMed  CAS  Google Scholar 

  • Kurkiewicz T (1909) O histgenezie miešnia sercowego zwier-zat kregowych. Zur Kenntnis der Histogenese des Herzmuskels der Wirbeltiere. Bull Acad Sci Cracovie 6:148–191

    Google Scholar 

  • Le Douarin G, Obrecht G, Coraboeuf E (1964) Activité electrique transmembranaire du coeur embryonnaire de poulet explante en culture organotypic. C R Acad Sci 258:3911

    Google Scholar 

  • Leak LV, Burke JF (1964) The ultrastructure of human embryonic myocardium. Anat Rec 149:623–649

    PubMed  CAS  Google Scholar 

  • Lepori NG (1967) Research on heart development in chick embryo under normal and experimental conditions. Mo-nit Zool Ital 1:159–183

    Google Scholar 

  • Licata RH (1954) The human embryonic heart in the ninth week. Am J Anat 94:73–125

    PubMed  CAS  Google Scholar 

  • Licata RH (1956) A continuation study of the development of the blood supply of the human heart. II: The deep or intramural circulation. Anat Rec 124:326

    Google Scholar 

  • Lieberman M (1970) Physiologic development of impulse conduction in embryonic cardiac tissue. Am J Cardiol 25:279–284

    PubMed  CAS  Google Scholar 

  • Lieberman M, Paes de Carvalho A (1965a) The electrophysiological organization of the embryonic chick heart. J Gen Physiol 49:351–363

    PubMed  CAS  Google Scholar 

  • Lieberman M, Paes de Carvalho A (1965b) The spread of excitation in the embryonic chick heart. J Gen Physiol 49:365–379

    PubMed  CAS  Google Scholar 

  • Lippert H (1982) Lehrbuch der Anatomie nach dem Gegenstandskatalog. Urban und Schwarzenberg, München

    Google Scholar 

  • Locy WA (1907) The Fifth and Sixth aortic arches in birds and mammals. Proc 7th Int Zool Congr Cambridge 7:242–249

    Google Scholar 

  • Los JA (1958) De embryonale ontwikkeling van de venae pulmonales en de sinus coronarius bij de mens (The development of the pulmonary veins and the coronary sinus in the human embryo). Doctoral Thesis, Leiden

    Google Scholar 

  • Los JA (1960) Die Entwicklung des septum sinus venosi cordis. Die Herzentwickung des Menschen von einer vergessenen Struktur aus untersucht. Z Anat Entw Gesch 122:173–196

    CAS  Google Scholar 

  • Los JA(1969) Embryology. In: Watson H(ed) Paediatric Cardiology. Lloyd Luc, London

    Google Scholar 

  • Los JA, Van Eijndthoven E(1973) The fusion of the endocardial cushions in the heart of the chick embryo. A light-microscopical and electron-microscopical study. Z Anat Entw Gesch 141:55–75

    CAS  Google Scholar 

  • Lucas RV, Schmidt RE (1977) Anomalous venous connections, pulmonary and systemic. In: Moss AJ, Adams FH, Emmanouilides GC (eds) Heart disease in infants, children und adolescents, 2nd edn. Williams und Wilkins, Baltimore, pp 437–470

    Google Scholar 

  • Ludwig E (1928) Über einen operativ gewonnenen menschlichen Embryo mit einem Ursegment (Embryo DA-I). Morphol Jb 59:41–104

    Google Scholar 

  • Mall FP (1912) On the development of the human heart. Am J Anat 13:249–298

    Google Scholar 

  • Manasek FJ (1968) Embryonic development of the heart. I: A light and electron microscopic study of myocardial development in the early chick embryo. J Morphol 125:329–365

    PubMed  CAS  Google Scholar 

  • Manasek FJ (1970) Histogenesis of the embryonic myocardium. Am J Cardiol 25:149–168

    PubMed  CAS  Google Scholar 

  • Manasek FJ(1975) The extracellular matrix of the early embryonic heart. In: Lieberman M, Sano T(eds) Developmental and physiological correlates of cardiac muscle. Perspectives in cardiovascular research, vol 1. Raven Press, New York, pp 1 – 18

    Google Scholar 

  • Manasek FJ (1976) Glycoprotein synthesis and tissue interaction during establishment of the functional embryonic chick heart. J Mol Cell Cardiol 8:389–402

    PubMed  CAS  Google Scholar 

  • Manasek FJ (1981) Determinants of heart shape in early embryos. Fed Proc 40:2011–2016

    PubMed  CAS  Google Scholar 

  • Manasek FJ, Monroe RG (1972) Early cardiac morphogenesis is independent of function. Dev Biol 27:584–588

    PubMed  CAS  Google Scholar 

  • Markwald RR (1973) Distribution and relationship of precursor z-material to organizing myofibrillar bundles in embryonic rat and hamster ventricular myocytes. J Mol Cell Cardiol 5:341–350

    PubMed  CAS  Google Scholar 

  • Markwald RR, Adams-Smith WN (1972) Distributions of mucosubstances in the developing rat heart. J Histochem Cytochem 29:896–907

    Google Scholar 

  • Markwald RR, Fitzharris TP, Adams-Smith WN (1975) Structural analysis of endocardial cytodifferentiation. Dev Biol 42:160–180

    PubMed  CAS  Google Scholar 

  • Maron BJ, Hutchins GM (1974) The development of the semilunar valves in the human heart. Am J Pathol 74:331–344

    PubMed  CAS  Google Scholar 

  • Mc Bride RE, Moore GW, Hutchins GM (1981) Development of the outflow tract and closure of the interventricular septum in the normal human heart. Am J Anat 160:309–331

    Google Scholar 

  • Mc Donald JJ, Anson BJ (1940) Variations in the origin of arteries derived from the aortic arch, in american whites and negroes. Am J Phys Antrophol 27:91–103

    Google Scholar 

  • Mc Donald TF, Sachs HG, De Haan RL (1972) Development of sensitivity to tetrodotoxin in beating chick embryo heart, single cells and aggregates. Science 176:1248–1250

    Google Scholar 

  • Meda E, Ferroni A (1959) Early functional differentiation of heart muscle cells. Experientia 15:427–428

    Google Scholar 

  • Meier GEA (1987) Viscous flow in the embryonic heart geometry. Embryol H 1:1–19

    Google Scholar 

  • Miura Y, Wilt FH (1969) Tissue interaction and the formation of the first erythroblasts of the chick embryo. Dev Biol 19:201–211

    PubMed  CAS  Google Scholar 

  • Moffat DB (1957) A study of the blood flow through the aortic arches in rat embryos, with particular reference to the ductus caroticus. Anat Anz Erg H 104:361–366

    Google Scholar 

  • Moore GW, Hutchins GM (1978) Association of interrupted aortic arch with malformations producing reduced blood flow to the fourth aortic arches. Am J Cardiol 42:467–472

    PubMed  CAS  Google Scholar 

  • Morris EWT (1976) Observations on the source of embryonic myocardioblasts. J Anat 121:47–64

    PubMed  CAS  Google Scholar 

  • Morse DE (1981) Formation of foramina secunda in the chick. In: Pexieder T (ed) Mechanisms of cardiac morphogenesis and teratogenesis, vol 5. Raven Press, New York, pp 139–149

    Google Scholar 

  • Morse DE, Hendrix MJC(1980) Atrialseptation. II: Formation of the foramina secunda in the chick. Dev Biol 78:25–35

    PubMed  CAS  Google Scholar 

  • Muir AR (1954) The development of the ventricular part of the conducting tissue in the heart of the sheep. J Anat 88:381–391

    PubMed  CAS  Google Scholar 

  • Myklebust R, Saetersdal TS, Engedal H, Ulstein M, Odegarden S (1978) Ultrastructural studies on the formation of myofilaments and myofibrils in the human embryonic and adult hypertrophied heart. Anat Embryol 152:127–141

    PubMed  CAS  Google Scholar 

  • Nakamura A, Manasek FJ (1978a) Experimental study of the shape and structure of isolated cardiac jelly. J Embryol Exp Morphol 43:167–183

    PubMed  CAS  Google Scholar 

  • Nakamura A, Manasek FJ (1978b) Cardiac jelly fibrils: Their distribution and organization. Birth Defects 14:229–250

    PubMed  CAS  Google Scholar 

  • Nakamura A, Manasek FJ (1981) An experimental study of the relation of cardiac jelly to the shape of the early chick embryonic heart. J Embryol Exp Morphol 65:235–256

    PubMed  CAS  Google Scholar 

  • Neill CA (1956) Development of the pulmonary veins. With reference to the embryology of anomalies of pulmonary venous return. Pediatrics 18:880–887

    PubMed  CAS  Google Scholar 

  • Nitzschke B (1939) Beziehungen zwischen Gestalt und Funktion des Hühnchenherzens. Anat Anz Erg H 87:112–123

    Google Scholar 

  • Nizankowski C, Rajchek Z, Ziolkowski M (1975) Abnormal origin of arteries from the aortic arch in man. Folia Morphol (Warsz) 34:109–116

    CAS  Google Scholar 

  • Noble CW, Hamlett WC, McCann P, Morse DE (1983) Morphogenesis of chordae tendineae in the avain embryo. Micron 14:97–98

    Google Scholar 

  • O’Rahilly R (1971) The timing and sequence of events in human cardiogenesis. Acta Anat 79:70–75

    PubMed  Google Scholar 

  • O’Rahilly R, Müller F (1987) Developmental stages in human embryos. Carnegie Inst Wash Publ 637

    Google Scholar 

  • Odgers PNB (1935) The formation of the venous valves, the foramen secundum and the septum secundum in the human heart. J Anat 69:412–425

    PubMed  CAS  Google Scholar 

  • Ojeda JL, Hurle JM (1975) Cell death during the formation of tubular heart of the chick embryo. J Embryol Exp Morphol 33:523–534

    PubMed  CAS  Google Scholar 

  • Ortiz EC (1958) Estudio histoquimico de la jelatina cardiaca en el embrion de polio. Arch Inst Cardiol Mex 28:244–262

    Google Scholar 

  • Orts Llorca F (1934) Beschreibung eines menschlichen Embryo mit 4 Urwirbelpaaren. Z Anat Entw Gesch 103:765–792

    Google Scholar 

  • Orts Llorca F (1970) Curvature of the heart: Its first appearance and determination. Acta Anat 77:454–468

    PubMed  CAS  Google Scholar 

  • Orts Llorca F, Jimenez Collado J (1968) A radioautographic analysis of the prospective cardiac area in the chick blastoderm by means of labeled grafts. Roux Arch Entw Mech Org 160:298–312

    Google Scholar 

  • Orts Llorca F, Jimenez Collado J (1969) The development of heterologous grafts, labeled with thymidine-H3 in the cardiac area of the chick blastoderm. Dev Biol 19:213–227

    PubMed  CAS  Google Scholar 

  • Orts Llorca F, Puerta Fonolla J, Sobrado J (1982) The formation, septation and fate of the truncus arteriosus in man. J Anat 134:41–56

    PubMed  CAS  Google Scholar 

  • Oštádal B, Schiebler TH (1971) Die Capillarentwicklung im Rattenherzen. Elektronenmikroskopische Untersuchungen. Z Anat Entw Gesch 133:288–304

    Google Scholar 

  • Overman DO, Beaudoin AR (1971) Early biochemical changes in the embryonic rat heart after teratogen treatment. Teratology 4:183–190

    CAS  Google Scholar 

  • Padget DH (1948) The development of the cranial arteries in the human embryo. Contrib Embryol Carnegie Inst Wash 32:205–261

    Google Scholar 

  • Paff GH (1935) Conclusive evidence for sino-atrial dominance in isolated 48 hour embryonic chick hearts cultivated in vitro. Anat Rec 63:203–210

    Google Scholar 

  • Pantke G (1981) Die Entstehung des Herzlumens. Med Dissertation, Göttingen

    Google Scholar 

  • Pappano AJ (1975) Development of autonomic neuroeffec-tor transmission in the chick embryo heart. In: Lieberman M, Sano T (eds) Developmental and physiological correlates of cardiac muscle. Perspectives in cardiovascular research, vol 1. Raven Press, New York, pp 235–248

    Google Scholar 

  • Pardanaud L, Altman C, Kitos P, Dieterlen-Lièvre F, Buck CA (1987) Vasculogenesis in the early quail blastodisc as studied with a monoclonal antibody recognizing endothelial cells. Development 100:339–349

    PubMed  CAS  Google Scholar 

  • Patten BM (1922) The formation of the cardiac loop in the chick. Am J Anat 30:373–397

    Google Scholar 

  • Patten BM (1956) The development of the sino-ventricular conduction system. Univ Michigan Med Bull J 22:1–21

    CAS  Google Scholar 

  • Patten BM (1958) Foundations of Embryology. McGraw-Hill, New York London Toronto

    Google Scholar 

  • Patten BM (1968) The development of the heart. In: Gould SE (ed) Pathology of the heart and blood vessels. Thomas, Springfield, 111, pp 20–90

    Google Scholar 

  • Patten BM, Kramer TC (1933) The initiation of contraction in the embryonic chick heart. Am J Anat 53:349–375

    Google Scholar 

  • Patten BM, Kramer TC, Barry A (1948) Valvular action in the embryonic chick heart by localized apposition of endocardial masses. Anat Rec 102:299–311

    PubMed  CAS  Google Scholar 

  • Paul MH, Muster A, Sinha S, Cole R, Van Praagh R (1970) Double outlet left ventricle with an intact ventricular septum. Clinical and autopsy diagnosis and developmental implications. Circulation 41:129–139

    PubMed  CAS  Google Scholar 

  • Payne F (1925) General description of a 7 somite embryo. Contrib Embryol Carnegie Inst Wash 16:115–124

    Google Scholar 

  • Pellegrini N, Fani C (1963) Valutazione etiopatogenetica delia coarctatione aortico su basi istomorfologiche. Arch Chir Torace 17:177–208

    Google Scholar 

  • Perman E (1924) Anatomische Untersuchungen über die Herznerven bei den höheren Säugetieren und beim Menschen. Z Anat Entw Gesch 71:382–457

    Google Scholar 

  • Pernkopf E, Wirtinger W (1933) Die Transposition der Herzostien — Ein Versuch der Erklärung dieser Erscheinung. Die Phoronomie der Herzentwicklung als morpho-genetische Grundlage der Erklärung. I: Die Phoronomie der Herzentwicklung. Z Anat Entw Gesch 100:563–711

    Google Scholar 

  • Pexieder T (1975) Cell death in the morphogenesis and teratogenesis of the heart. Ergeb Anat Entw Gesch 51 3:1–100

    Google Scholar 

  • Pexieder T (1976a) Rasterelektronenmikroskopische Beobachtungen der Oberfläche der Herzbulbuswülste der Hühnerembryonen. Anat Anz Erg H 140:747–754

    Google Scholar 

  • Pexieder T (1976b) Effets de l’hémodynamique sur la morphologie de l’endocarde embryonnaire. Bull Assoc Anat 60:399–406

    CAS  Google Scholar 

  • Pexieder T (1977) SEM observations of the embryonic endocardium under normal and experimental hemodynamic conditions. Bibl Anat 15:531–534

    PubMed  Google Scholar 

  • Pexieder T (1978) Development of the outflow tract of the embryonic heart. Birth Defects 14:29–68

    PubMed  CAS  Google Scholar 

  • Pexieder T (1979) Changing scene in cardiac embryology. Herz 4:73–77

    PubMed  CAS  Google Scholar 

  • Pexieder T (1980) Cellular mechanisms underlying the normal and abnormal development of the heart. In: Van Praagh R, Takao A (eds) Etiology and morphogenesis of congenital heart disease. Futura, New York, pp 127–153

    Google Scholar 

  • Pexieder T (1981) Prenatal development of the endocardium. A review. Scanning Elec Micr 11:223–253

    Google Scholar 

  • Pexieder T (1982) La solution de deux énigmes de l’organo-génèse du coeur. Bull Fond Suisse Cardiol 13:3–14

    Google Scholar 

  • Pickering JW (1893) Observations of the physiology of the embryonic heart. J Physiol 14:383–466

    Google Scholar 

  • Quiring DP (1933) The development of the sino-atrial region of the chick heart. J Morphol 55:81–118

    Google Scholar 

  • Rammos S, Gittenberger-de Groot AC, Bartelings MM, de Ruiter MC, Bourgois M (1987) Developmental aspects of the aortic arch system. Embryol H 1:31

    Google Scholar 

  • Rawles ME (1935) A study in the localization of organ forming areas in the chick blastoderm of the head-process stage. J Exp Zool 72:271–315

    Google Scholar 

  • Reagan FP (1917) Experimental studies on the origin of vascular endothelium and of erythrocytes. Am J Anat 21:39–98

    Google Scholar 

  • Renaud D, Le Douarin G (1972) Mise en évidence, par l’emploi d’inhibiteurs, d’une évolution des perméabilités membranaires cardiaque aux jeune stades du developpement chez l’embryon de poulet. C R Hebd Scéances Acad Sci Ser D Nat (Paris) 274:418–421

    CAS  Google Scholar 

  • Retzer R (1908) Some results of recent investigations of the mammalian heart. Anat Rec 2:149–155

    Google Scholar 

  • Risau W (1986) Developing brain produces an angiogenic factor. Proc Natl Acad Sci USA 83:3855–3859

    PubMed  CAS  Google Scholar 

  • Risau W, Ekblom P (1986) Production of a heparin-binding angiogenesis factor by the embryonic kidney. J Cell Biol 103:1101–1107

    PubMed  CAS  Google Scholar 

  • Risau W, Lemmon V (1988) Changes in the vascular extracellular matrix during embryonic vasculogenesis and angiogenesis. Dev Biol 125:441–450

    PubMed  CAS  Google Scholar 

  • Robb JS (1965) Comparative basic cardiology. In: Robb JS (ed) Comparative Basis Cardiology. Grune and Stratton, New York London

    Google Scholar 

  • Robertson J (1914) The comparative anatomy of the bulbus cordis with special reference to abnormal positions of the great vessels in the human heart. J Path Bact 18:192–217

    Google Scholar 

  • Romanoff AL (1960) The avian embryo. Structural and functional development. Macmillan, New York

    Google Scholar 

  • Romhanyi I (1952) Über die Rolle haemodynamischer Faktoren im normalen und pathologischen Entwicklungsvorgang des Herzens. Acta Morphol Hung 2:297–312

    Google Scholar 

  • Rosenquist G (1970) Location and movements of cardiogenic cells in the chick embryo : The heart-forming portion of the primitive streak. Dev Biol 22:461–475

    PubMed  CAS  Google Scholar 

  • Rothschuh KE (1960) Erregungsphysiologie des Herzens. In: Rosemann HU (Hrsg) Landois-Rosemann: Lehrbuch der Physiologie des Menschen, 28. Aufl, vol 1. Urban und Schwarzenberg, München Berlin, S 22–64

    Google Scholar 

  • Rudolph AM, Heymann MA, Spitznas U (1972) Hemodynamic considerations in the development of narrowing of the aorta. Am J Cardiol 30:514–525

    PubMed  CAS  Google Scholar 

  • Rumyantsev PP (1977) Interrelations of the proliferation and differentiation processes during cardiac myogenesis and regeneration. Int Rev Cytol 51:187–273

    CAS  Google Scholar 

  • Rychter Z (1978) Analysis of relations between aortic arches and aortico-pulmonary septation. Birth Defects 14:443–448

    PubMed  CAS  Google Scholar 

  • Rychter Z, Lemež L (1959) Experimenteller Beitrag zur Entstehung der Transposition von Aorta in die rechte Herzkammer der Hühnerembryonen. Anat Anz Erg H 105:310–315

    Google Scholar 

  • Rychter Z, Lemež L (1961) The vascular system of the chick embryo. VIII: On the relation of the experimentally produced left arcus aortae to the right ventricle. Cesk Morphol 9:55–68

    Google Scholar 

  • Rychter Z, Lemež L (1965) Markierung morphogenetischer Bewegungen während der Truncusscheidewandbildung des Herzens beim Hühnerembryo. 8. Int Anat Kongr, Wiesbaden, S 104

    Google Scholar 

  • Rychter Z, Oštâdal B (1971) Mechanisms of the development of coronary arteries in chick embryo. Folia Morphol (Praha) 19:113–124

    CAS  Google Scholar 

  • Rychter Z, Rychterovâ V, Lemež L (1979) Formation of the heart loop and proliferation structure of its wall as a base for ventricular septation. Herz 4:86–90

    PubMed  CAS  Google Scholar 

  • Rychterovâ V (1977) Formation of the terminal vascular bed in the chick embryo heart. Folia Morphol (Praha) 25:7–14

    Google Scholar 

  • Sabin FR (1917) Origin and development of the primitive vessels of the chick and the pig. Contrib Embryol 6:61–124

    Google Scholar 

  • Sabin FR (1920) Studies on the origin of blood-vessels and of the red blood-corpuscles as seen in the living blastoderm of chicks during the second day in incubation. Contrib Embryol Carnegie Inst Wash 9:213–262

    Google Scholar 

  • Sako Y (1975) Ultrastructure of the cardiac muscle of early human embryo. Jpn Circ J 39:1123–1133

    PubMed  CAS  Google Scholar 

  • Sanabria T (1936) Recherches sur la differenciation du tissu nodal et connecteur du coeur des mammiferes. Arch Biol (Liège) 47:1–70

    Google Scholar 

  • Schenk SL (1867) Zur Physiologie des embryonalen Herzens. S-B Akad Wiss Wien Math Nat Kl 56:111–115

    Google Scholar 

  • Schiebler TH, Wolff HH (1966) Elektronenmikroskopische Untersuchungen am Herzmuskel der Ratte während der Entwicklung. Z Zellforsch 69:22–40

    PubMed  CAS  Google Scholar 

  • Schulze M (1981) Die Entstehung des gegliederten EKG. Experimentelle Untersuchungen an Hühnerembryonen. Med. Dissertation, Göttingen

    Google Scholar 

  • Schulze M, Seidl W, Steding G (1979) Zur Bedeutung des sulcus atrioventricularis für das AV-Intervall des EKG; experimentelle Untersuchungen an Hühnerembryonen. Verh Anat Ges 73:581–583

    Google Scholar 

  • Seidl W, Schulze M, Steding G, Kluth D (1981) A few remarks on the physiology of the chick embryo heart. Folia Morphol (Praha) 29:237–242

    CAS  Google Scholar 

  • Seidl W, Steding G (1978a) Topogenesis of the anterior intestinal port. Microkinematographic investigations on chick embryos. Z Anat Entw Gesch 155:37–45

    CAS  Google Scholar 

  • Seidl W, Steding G (1978b) Frühentwicklung der Herzanlage. Gallus domesticus — 1. und 2. Bebrütungstag. Film E2507, Encyclopaedia Cinematographica. Institut für den wissenschaftlichen Film, Göttingen

    Google Scholar 

  • Seidl W, Steding G (1981) Contribution to the development of the heart. III: The aortic arch complex. Normal development and morphogenesis of congenital malformation. Thorac Cardiovasc Surgeon 29:359–368

    CAS  Google Scholar 

  • Seidl W, Steding G (1987) Die Bedeutung der Herzwand für die Gestaltung des Blutstroms. Verh Anat Ges 81:47–49

    Google Scholar 

  • Shaner RF (1929) The development of the atrioventricular node, bundle of His, and sinu-atrial node in the calf; with a description of a third embryonic node like structure. Anat Rec 44:85–99

    Google Scholar 

  • Shaner RF (1954) Malformations of the truncus arteriosus in pig embryos. Anat Rec 118:539–560

    PubMed  CAS  Google Scholar 

  • Shaner RF (1962) Anomalies of the heart bulbus. J Pediatr 61:233–241

    PubMed  CAS  Google Scholar 

  • Shigenobu K, Sperelakis N (1971) Development of sensitivity to tetrodotoxin of chick embryonic hearts with age. J Mol Cell Cardiol 3:271–286

    PubMed  CAS  Google Scholar 

  • Shimada Y, Ho E (1980) Scanning electron microscopy of the embryonic chick heart: Formation of the epicardium and surface structure of the four heterotypic cells that constitute the embryonic heart. In: Van Praagh R, Takao A (eds) Etiology and morphogenesis of congenital heart disease. Futura, Mount Kisco, New York, pp 63–80

    Google Scholar 

  • Sissman NJ (1966) Cell multiplication rates during development of the primitive cardiac tube in the chick embryo. Nature 210:504–507

    PubMed  CAS  Google Scholar 

  • Sissman NJ (1970) On embryologic terminology and the truncus arteriosus. In: Jaffee OC (ed) Cardiac development with special reference to congenital heart disease. Dayton Press, Dayton, Ohio, pp 11–27

    Google Scholar 

  • Skoda J (1855) Obliteration der Aorta thoracica. Wochenbl Z K K Ges Ärzte Wien 1:710–725

    Google Scholar 

  • Smith RB (1970) The development of the intrinsic innervation of the human heart between 10 and 70 mm stages. J Anat 107:271–280

    PubMed  CAS  Google Scholar 

  • Smith RB (1971a) Intrinsic innervation of the human heart in foetuses between 70 and 420 mm crown-rump length. Acta Anat 78:200–209

    PubMed  CAS  Google Scholar 

  • Smith RB (1971b) The development of autonomic neurons in the human heart. Anat Anz 129:70–76

    PubMed  CAS  Google Scholar 

  • Speidel CC (1933) Studies of living nerves. II: Activities of amoeboid growth cones, streath cells and myelin segments, as revealed by prologned observations of individual nerve fibers in frog tadpoles. Am J Anat 52:1–79

    Google Scholar 

  • Sperelakis N (1972) (Na+, K+)-ATPase activity of embryonic chick heart and skeletal muscles as a function of age. Biochim Biophys Acta 266:230–237

    PubMed  CAS  Google Scholar 

  • Sperelakis N, Lehmkuhl D (1965) Insensitivity of cultured chick heart cells to autonomic agents and tetrodotoxin. Am J Physiol 209:693–698

    PubMed  CAS  Google Scholar 

  • Sperelakis N, Shigenobu K, McLean M (1975) Membrane cation channels — changes in developing hearts, in cell culture, and in organ culture. In: Lieberman M, Sano T (eds) Developmental and physiological correlates of cardiac muscle. Perspectives in cardiovascular research, vol 1. Raven Press, New York, pp 209–234

    Google Scholar 

  • Spitzer A (1923) Über den Bauplan des normalen und mißgebildeten Herzens. Versuch einer phylogenetischen Theorie. Virchows Arch [A] 243:81–272

    Google Scholar 

  • Stalsberg H (1970) Mechanism of dextral looping of the embryonic heart. Am J Cardiol 25:265–271

    PubMed  CAS  Google Scholar 

  • Starling EH (1920) Das Gesetz der Herzarbeit. In: Lipschütz A (Hrsg) Abhandlungen und Monographien aus dem Gebiet der Biologie und Medizin, 2. Heft. Bicher, Bern Leipzig, S 1–24

    Google Scholar 

  • Steding G, Seidl W (1980) Contribution to the development of the heart. I: Normal development. Thorac Cardiovasc Surgeon 28:386–409

    CAS  Google Scholar 

  • Steding G, Seidl W (1981) Contribution to the development of the heart. II: Morphogenesis of congenital heart disease. Thorac Cardiovasc Surgeon 29:1 – 16

    Google Scholar 

  • Steding G, Seidl W, Kluth D (1983) Die formale Genese der Aortenisthmusstenose. Verh Anat Ges 77:459–461

    Google Scholar 

  • Steding G, Seidl W, Kluth D, Schulze M (1980a) Die Bedeutung des Descensus der Darmpforte für die Entstehung des Herzens. Experimentelle Untersuchung an Hühnerembryonen. Verh Anat Ges 74:373–375

    Google Scholar 

  • Steding G, Seidl W, Kluth D, Schulze M (1980b) Die Entstehung des Endocard. Untersuchungen an Hühnerembryonen. Verh Anat Ges 74:365–367

    Google Scholar 

  • Steding G, Seidl W, Sydow H, Bahners W, Borowski D (1981) Experimental manipulation leading to cardiac malformation in chick embryo. In: Neubert D, Merker H-J (eds) Culture techniques. Applicability for studies on prenatal differentiation and toxicity, de Gruyter, Berlin New York, pp 539–551

    Google Scholar 

  • Sternberg H (1927) Beschreibung eines menschlichen Embryos mit vier Ursegmentpaaren, nebst Bemerkungen über die Anlage und früheste Entwicklung einiger Organe beim Menschen. Z Anat Entw Gesch 82:142–240

    Google Scholar 

  • Straus R, Walker RH, Cohen M (1961) Direct electroncar-diographic recording to a twenty-three millimeter human embryo. Am J Cardiol 8:443–447

    Google Scholar 

  • Tandler J (1903) Zur Entwicklungsgeschichte der menschlichen Darmarterien. Anat Anz Erg H 23:132–134

    Google Scholar 

  • Tandler J (1909) Über die Entwicklung des V. Aortenbogens und der V. Schiundtasche beim Menschen. Anat H 38:393–423

    Google Scholar 

  • Tandler J (1911) Die Entwicklungsgeschichte des Herzens. In : Keibel F, Mall FP (Hrsg) Handbuch der Entwicklungsgeschichte des Menschen, vol 2. Hirzel, Leipzig, S 517–551

    Google Scholar 

  • Tandler J (1913) Entwicklungsgeschichte des Herzens. In: Bardeleben K von (Hrsg) Handbuch der Anatomie des Menschen, vol 3. Fischer, Jena, S 9–44

    Google Scholar 

  • Taylor S, Folkman J (1982) Protamine is an inhibitor of angiogenesis. Nature 297:307–312

    PubMed  CAS  Google Scholar 

  • Thompson RP, Sumida H, Abercrombie V, Satow Y, Fitzharris R, Okamoto N (1985) Morphogenesis of human cardiac outflow. Anat Rec 213:578–586

    PubMed  CAS  Google Scholar 

  • Thompson RP, Wong YMM, Fitzharris T (1984) Patterns of tensile stress in the developing cardiac truncus. In: Nora JJ, Takao A (eds) Congenital heart disease causes and processes. Futura, Mount Kisco New York, pp 387–400

    Google Scholar 

  • Truex RC, Marino TA, Marino DR (1978) Observations on the development of the human atrioventricular node and bundle. Anat Rec 192:337–350

    PubMed  CAS  Google Scholar 

  • Van Mierop LHS (1967) Location of pacemaker in chick embryo heart at the time of initiation of heartbeat. Am J Physiol 212:407–415

    PubMed  Google Scholar 

  • Van Mierop LHS (1970) Blood pressure in chick embryos. In: Adams FH, Swan HJC, Hall VE (eds) Pathophysiology of congenital heart disease. University California Press, Berkeley, pp 27–36

    Google Scholar 

  • Van Mierop LHS, Alley RD, Kausel HW, Stranahan A (1963) Pathogenesis of transposition complexes. I: Embryology of the ventricles and great arteries. Am J Cardiol 12:216–225

    Google Scholar 

  • Van Mierop LHS, Wiglesworth FW (1963) Pathogenesis of transposition complexes. II. Anomalies due to faulty transfer of the posterior great artery. Am J Cardiol 12:226–232

    Google Scholar 

  • Van Praagh R, Corsini I (1969) Cor triatriatum: Pathologic anatomy and a consideration of morphogenesis based on 13 postmortem cases and a study of normal development of the pulmonary vein and atrial septum in 83 human embryos. Am Heart J 78:379–406

    PubMed  Google Scholar 

  • Van Praagh R, Van Praagh S (1966) Isolated ventricular inversion. A consideration of the morphogenesis definition and diagnosis of nontransposed and transposed great arteries. Am J Cardiol 17:395–406

    PubMed  Google Scholar 

  • Van Praagh R, Weinberg PM (1977) Double outlet left ventricle. In: Moss AJ, Adams FH, Emmanouilides GC (eds) Heart disease in infants, children and adolescents, 2nd edn. Williams und Wilkins, Baltimore, pp 367–380

    Google Scholar 

  • Viragh S, Challice CE (1977a) The development of the conduction system in the mouse embryo heart. II: Histogenesis of the atrioventricular node and bundle. Dev Biol 56:397–411

    PubMed  CAS  Google Scholar 

  • Viragh S, Challice CE (1977b) The development of the conduction system in the mouse embryo heart. I: The first embryonic A-V conduction pathway. Dev Biol 56:382–396

    PubMed  CAS  Google Scholar 

  • Viragh S, Challice CE (1981) The origin of the epicardium and the embryonic myocardial circulation in the mouse. Anat Rec 201:157–168

    PubMed  CAS  Google Scholar 

  • Vobofil Z, Schiebler T (1969) Über die Entstehung der Gefäßversorgung des Rattenherzens. Anat Anz Erg H 126:259–264

    Google Scholar 

  • Vobofil Z, Schiebler T (1970) Über die Entwicklung der Gefäßversorgung des Rattenherzens. Z Anat Entw Gesch 129:24–40

    Google Scholar 

  • Wagman AJ, Clark EB (1985) The Frank Starling relationship in the embryo. In: Ferrans VJ, Rosenquist G, Weinstein C (eds) Cardiac Morphogenesis. Elsevier, New York Amsterdam Oxford, pp 245–252

    Google Scholar 

  • Wainrach S, Sotelo JR (1961) Electron microscope study of the developing chick embryo heart. Z Zeliforsch 55:622–634

    CAS  Google Scholar 

  • Walls EW (1947) The development of the specialized conducting tissue of the human heart. J Anat 81:93–110

    Google Scholar 

  • Wenink ACG (1971) Some details on the final stages of heart septation in the human embryo. Proefschrift, Leiden

    Google Scholar 

  • Wenink ACG (1976) Development of the human cardiac conducting system. J Anat 121:617–631

    PubMed  CAS  Google Scholar 

  • Wenink ACG (1978) Embryology of the conducting system. In: Van Mierop LHS, Oppenheimer-Dekker A, Bruins CLC (eds) Embryology and teratology of the heart and the great arteries. University Press, Leiden, pp 3–14

    Google Scholar 

  • Wenink ACG, Gittenberger-de Groot AC (1985) The role of atrioventricular endocardial cushions in the septation of the heart. Int J Cardiol 8:25–44

    PubMed  CAS  Google Scholar 

  • Wertheim-Salomonson JKA (1913) Das Elektrokardiogramm von Hühnerembryonen. Pflügers Arch 153: 553–573

    Google Scholar 

  • Wielenga A, Dankmeijer J (1968) Coarctation of the aorta. J Pathol Bact 95:265–274

    CAS  Google Scholar 

  • Willemse JJ, Markus-Silvis L (1985) The shifting of the aortic origin of the brachial arteries in the metamorphosing eel anguilla anguilla (L.), with remarks on the shifting mechanisms in arterial junctions in general. Acta Anat 121:216–222

    PubMed  CAS  Google Scholar 

  • Wilth FH (1965) Erythropoesis in the chick embryo: the role of the endoderm. Science 147:1588–1590

    Google Scholar 

  • Wilting J (1988) Ultrastrukturelle und funktionelle Untersuchungen der Entwicklung des Plexus choroideus bei Vogelembryonen. Biol. Dissertation, Bochum

    Google Scholar 

  • Yamauchi A (1965) Electron microscopic observations on the development of S-A and A-V nodal tissues in the human embryo heart. Z Anat Entw Gesch 124:562–587

    CAS  Google Scholar 

  • Yoshida H, Manasek F, Arcilla RA (1983) Intracardiac flow patterns in early embryonic life. A reexamination. Circ Res 53:363–371

    PubMed  CAS  Google Scholar 

  • Zimmermann W (1889) Über einen zwischen Aorta und Pul-monalbogen gelegenen Kiemenarterienbogen beim Kaninchen. Anat Anz 4:139–142

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Steding, G., Seidl, W., Christ, B. (1990). Cardio-vaskuläres System. In: Hinrichsen, K.V., et al. Humanembryologie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-07815-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-07815-0_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-07816-7

  • Online ISBN: 978-3-662-07815-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics