Skip to main content

Micropropagation of Spinacia oleracea L. (Spinach)

  • Chapter
High-Tech and Micropropagation V

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 39))

Abstract

Spinach (Spinacia oleracea L.; Fig. 1) is a hardy cool-season annual crop classified as a potherb vegetable. It produces a rosette of fleshy edible leaves during the vegetative stage of its life cycle. The reproductive stage, triggered by long-day photoperiods, is marked by stem elongation and branching to form flower stalks. Spinach is mostly a dioecious plant but monoecious plants with varying proportions of male (staminate) and female (pistillate) flowers may also exist (Ryder 1979). Spinach is a diploid with chromosome number 2n = 2x = 12. Its sex determination is hypothesized to be controlled by a monogenic system in which a single gene with three alleles (Y, Xm, and X) appear to explain the existence of monoecious plants in this dioecious species (Janick and Stevenson 1954, 1955).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Al-Khayri JM (1991) In vitro regeneration, sex alteration, genetic transformation, and DNA isolation in spinach (Spinacia oleracea L.). PhD Dissertation, University of Arkansas, Fayetteville, pp 131–147

    Google Scholar 

  • Al-Khayri JM (1995) Genetic transformation in Spinacia oleracea L. (spinach). In: Bajaj YPS (cd) Biotechnology in agriculture and forestry, vol 34. Plant protoplasts and genetic engineering VI. Springer, Berlin Heidelberg New York pp 279–288

    Google Scholar 

  • Al-Khayri JM, Huang EH, Morelock TE (1989) Regeneration of spinach. In Vitro 25:26 Al-Khayri JM, Huang FH, Morelock TE (1990) Effect of agar, Gelrite, and IBA on rooting of in vitro spinach shoots. In Vitro 26: 67A

    Google Scholar 

  • Al-Khayri JM, Huang FH, Morelock TE (1991a) Regeneration of spinach (Spinacia oleracea L. cv. Fall Green) from leaf callus. HortScience 26: 913 914

    Google Scholar 

  • Al-Khayri JM, Huang F14, Morelock TE (1991b) Micropropagation of spinach. Arkansas Farm Res 40 (1): 7

    Google Scholar 

  • Al-Khayri JM, Huang FH, Morelock TE, Busharar TA (1991e) Spinach sex modification and seed production in vitro. Arkansas Farm Res 40 (6): 3–4

    Google Scholar 

  • Al-Khayri JM, Huang EH, Morelock TE, Busharar TA, Gbur EE (199ld) Genotype-dependent response of spinach cultivars to in vitro callus induction and plant regeneration. Plant Sei 78: 121–127

    Google Scholar 

  • Al-Khayri JM, Huang FH, Morelock TE, Busharar TA, Lane FE (1991e) In vitro flowering in regenerated shoots of spinach (Spinacia oleracea L.). Hort Science 26: 1422

    Google Scholar 

  • Al-Khayri JM, Huang FH, Morelock TE, Busharar TA (1992a) In vitro seed production from sex- modified male spinach plants regenerated from callus cultures. Sci Hortic 52: 277 282

    Google Scholar 

  • Al-Khayri JM, Huang FH, Morelock TE, Busharar TA (1992b) Stimulation of shoot regeneration in spinach callus by gibberellic acid. HortScience 27: 1046

    CAS  Google Scholar 

  • Al-Khayri JM, Huang FH, Morelock TE, Busharar TA (1992e) Spinach tissue culture improved with coconut water. HortScience 27: 357–358

    Google Scholar 

  • Al-Khayri JM, Huang FH, Morelock TE, Busharar TA (1992d) In vitro plant regeneration of spinach (Spinacia oleracea L.) from mature seed-derived callus. In Vitro 28P: 64–66

    Google Scholar 

  • Al-Khayri JM, Huang FH, Morelock TE, Zhang HT (1992e) Transient gene expression in spinach callus transformed with Agrohacterium humc/aciens. HortScicnce 27: 621

    Google Scholar 

  • Al-Khayri JM, Huang FH, Morelock TE (1993a) Spinach regeneration from cell suspension culture. In Vitro 29A: 71

    Google Scholar 

  • Al-Khayri JM, Miles RW, Huang EH, Morelock TE, Stewart JMcD (1993b) Expression of the GUS gene in Agrobacterium tumcfaciens-transformed spinach plants. HortScience 28: 498

    Google Scholar 

  • Al-Khayri JM, Miles RW, Huang FH, Morelock TE, Stewart JMcD (1994) Leaf disk transformation and regeneration of transgenic spinach. Ark Farm Res 43: 10 11

    Google Scholar 

  • Asami S, Hara-Nishimura I, Nishimura M, Akazawa T (1985) Translocation of photosynthales into vacuoles in spinach leaf protoplasts. Plant Physiol 77: 963 968

    Google Scholar 

  • Asari J, Okuse 1 (1993) Studies on the callus formation and growth of young seedling explants in spinach (Spinacia oleracea L.). Bull Fac Agric Hirosaki Univ 56: 23–32

    CAS  Google Scholar 

  • Benbadis A, Davy-de-Virville J (1982) Effects of polyethylene glycol treatment used for protoplast fusion and organelle transplantation on the functional and structural integrity of mitochondria isolated from spinach leaves (Spinacia oleracea). Plant Sci Lett 26: 257 264

    Google Scholar 

  • Brown JA, Fry SC (1993) Novel O-D-gaIacturonoy1 esters in the pectic polysaccharides of suspension cultured plant cells. Plant Physiol 103: 993 999

    Google Scholar 

  • Chailakhyan MKh, Khrianin VN (1987a) Effect of growth regulators and role of roots in sex expression in spinach plants. Planta 142: 207–210

    Article  Google Scholar 

  • Chailakhyan MKh, Khrianin VN (1987h) Sexuality in plants and ils hormonal regulation. Thimann KV (cd), Loroch V (translator). Springer, Berlin Heidelberg New York, 159 pp

    Chapter  Google Scholar 

  • Correll JC, Morelock TE, Black MC, Koike ST, Brandenberger LP, Dainello F,I (1994) Economically important diseases of spinach. Plant Dis 78: 653–660

    Article  Google Scholar 

  • Culafié (1973) Induction of flowering of isolated Spinacia oleracea L. buds in sterile culture. Bull Inst Jard Bot Univ Beograd 8: 53 56

    Google Scholar 

  • Culafié L, Neskovié M (1980) Effect of growth substances on flowering and sex expression in isolated apical buds of Spinacia oleracea. Physiol Plant 48: 588–591

    Article  Google Scholar 

  • Culafié L, Grubisie D, Neskovié M (1982) Endogenous gibberellin-like substances and inhibitors in callus tissue of Spinacia oleracea L. Bull Inst Jard Bot Univ Beograd 15: 29–35

    Google Scholar 

  • Culafié L, Konjevié R, Neskovié M (1983) Flowering of in vitro grown spinach shoots in the presence of the herbicide Sandoz 9789. Biol Plant 25: 155–157

    Article  Google Scholar 

  • Dalton CC, Street HE (1976) The role of the gas phase in the greening and growth of illuminated cell suspension cultures of spinach (Spinacia oleracea L.). In Vitro 12: 485–494

    Google Scholar 

  • Dalton CC, Street HE (1977) The influence of applied carbohydrates on the growth and greening of cultured spinach (Spinacia oleracea L.). Plant Sci Lett 10: 157–164

    Article  CAS  Google Scholar 

  • Foyer CH (1990) The effect of sucrose and mannose on cytoplasmic protein phosphorylation, sucrose phosphate synthetase activity and photosynthesis in leaf protoplasts from spinach. Plant Physiol Biochem 28: 151–160

    CAS  Google Scholar 

  • Heimann K, Kreimer G, Melkonian M, Latzko E (1987) Light-induced Cat+ influx into spinach protoplasts. Naturforsch Sec C Biosci 42: 283–287

    CAS  Google Scholar 

  • Hodgson RAJ, Rose RJ (1984) Fusion of spinach mesophyll protoplasts with carrot root parenchyma protoplasts and the effect of spinach chloroplasts. J Plant Physiol 115: 69–78

    Article  PubMed  CAS  Google Scholar 

  • Janick J, Stevenson EC (1954) A genetic study of the heterogametic nature of the staminate plants in spinach (Spinacia oleracea L.). Proc Am Soc Hortic Sci 63: 444–446

    Google Scholar 

  • Janick J, Stevenson EC (1955) Genetics of the monoecious character in spinach. Genetics 40: 429437

    Google Scholar 

  • Komai F, Okuse I (1993) The varietal differences in the plantlet regeneration from root explants of young seedlings in spinach (Spinacia oleracea L.). J Jpn Soc Hortic Sci 62 (Suppl 2): 260–261

    Google Scholar 

  • Kondo K, Nadamitsu S, Tanaka R, Taniguchi K (1991) Micropropagation of Spinacia oleracea L. through culture of shoot primordia. Plant Tissue Cult Lett 8: 1–4

    Article  Google Scholar 

  • Mii M, Okuda K, Iizuka M (1987) Plant regeneration from hypocotyl segments of Spinacia oleracea. Jpn J Breed 37 (Suppl 2): 24–25

    Google Scholar 

  • Mii M, Nakano M, Okuda K, Iizuka M (1992) Shoot regeneration from spinach hypocotyl segments by short term treatment with 5,6-dichloro-indole-3-acetic acid. Plant Cell Rep 11: 5861

    Article  Google Scholar 

  • Molvig L, Rose RJ (1994) A regeneration protocol for Spinacia oleracea L. using gibberellic acid. Aust J Bot 42: 763–769

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15: 473–497

    Article  CAS  Google Scholar 

  • Nakagawa H, Tanaka H, Oba T, Ogwa N, Iizuka M (1985) Callus formation from protoplasts of cultured Spinacia oleracea cells. Plant Cell Rep 4: 148–150

    Article  Google Scholar 

  • Neskovié M, Culafié L (1988) Spinach (Spinacia oleracea L.). In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 6. Crops I1. Springer, Berlin Heidelberg New York, pp 370–385

    Google Scholar 

  • Neskovié M, Radojevié L (1973) The growth of and morphogenesis in tissue cultures of Spinacia oleracea L. Bull Inst Jard Bot Univ Belgrade 8: 35–37

    Google Scholar 

  • Neskovié M, Petrovié J, Radojevié L, Yujiéie R (1977) Stimulation of growth and nucleic acid biosynthesis at low concentration of abscisic acid in tissue culture of Spinacia oleracea. Physiol Plant 39: 148–154

    Article  Google Scholar 

  • Nishimura M, Akazawa T (1975) Photosynthetic activities of spinach leaf protoplasts. Plant Physiol 55: 712–716

    Article  PubMed  CAS  Google Scholar 

  • Nishimura M, Graham D, Akazawa T (1976) Isolation of intact chloroplasts and other cell organelles from spinach leaf protoplasts. Plant Physiol 58: 309–314

    Article  PubMed  CAS  Google Scholar 

  • Nishimura M, Douce R, Akazawa T (1985) A simple method for estimating intactness of spinach leaf protoplasts by glycolate oxidase assay. Plant Physiol 78: 343–346

    Article  PubMed  CAS  Google Scholar 

  • Nitsch JP (1969) Experimental androgenesis in Nicotiana. Phytomorophology 19: 389–404

    Google Scholar 

  • Ohlrogge JB, Kuhn DH, Stumpf PK (1979) Subcellular localization of acyl carrier protein in leaf protoplasts of Spinacia oleracea. Proc Natl Acad Sci USA 76: 1194–1198

    Article  PubMed  CAS  Google Scholar 

  • Okuse I (1994) Influence of the sexuality in flower stalk explants on the callus formation and growth in spinach (Spinacia oleracea L.). Bull Fac Agric Hirosaki 57: 55–62

    CAS  Google Scholar 

  • J.M. Al-Khayri: Micropropagation of Spinacia oleracea L. (Spinach) Rathnam CKM, Zilinskas BA (1977) Reversal of 3-(3,4-dichlorophenyl)-1, 1-dimethylurca inhibition of carbon dioxide fixation in spinach chloroplasts and protoplasts by dicarboxylic acids. Plant Physiol 60: 51 53

    Google Scholar 

  • Robinson SP, Walker DA (1979) Rapid separation of the chloroplast and cytoplasmic fractions from intact leaf protoplasts. Arch Biochem Biophys 196: 319 323

    Google Scholar 

  • Rose RJ (1980) Factors that influence the yield, stability in culture and cell wall regeneration of spinach mesophyll protoplasts. Aust J Plant Physiol 7: 713 725

    Google Scholar 

  • Ryder EJ (1979) Leafy salad vegetables. AVI Publishing Company, Westport, pp 195 227 Santakumari M, Berkowitz GA (1989) Protoplast volume: water potential relationship and bound water fraction in spinach leaves. Plant Physiol 91: 13 18

    Google Scholar 

  • Sasaki H (1989) Callus and organ formation tissue cultures of spinach (Spinacia oleracea L.). J Jpn Soc Hortic Sci 58: 149–153

    Article  Google Scholar 

  • Sasaki H, Nakai S, Kubouchi H (1986) Organ formation of spinach hypocotyl tissues cultured in vitro. J Hokkaido Univ Educ (II B) 37: 49–56

    Google Scholar 

  • Sasaki H, Saito Y, Yada H (1987) Adventitious bud formation of spinach hypocotyl tissue cultured in vitro. J Hokkaido Univ Educ (11 B) 38: 1 9

    Google Scholar 

  • Sasaki H, Ohta M, Ono M (1989) Effect of gibberellin concentration and cultivar on adventitious bud formation of spinach hypocotyl tissue cultured in vitro. J Hokkaido Univ Educ (II 13) 40: 73 80

    Google Scholar 

  • Sasaki H, Arato T, Takahashi K, Kobori T (1994) Regeneration of spinach plant from hypocotyl tissue cultured in vitro. J Hokkaido Univ Educ (II B) 45: 31 35

    Google Scholar 

  • Satoh S, Fujü T (1985) Presence of serine enzymes in endoplasmic reticulum of spinach callus. Plant Cell Physiol 26: 1037 1044

    Google Scholar 

  • Satoh T, Abe T, Sasahara T (1992) Plant regeneration from hypocotyl-derived calli of spinach (Spinacea oleracea L.) and anatomical characteristics of regenerating calli. Plant Tissue Cult Lett 9: 176–183

    Article  CAS  Google Scholar 

  • Sticher L, Pend C, Greppin H (1981) Calcium requirement for the secretion of peroxidases by plant cell suspensions. J Cell Sci 48: 345–353

    PubMed  CAS  Google Scholar 

  • Swiader JM, Ware GE, McCollum JP (1992) Producing vegetable crops. Interstate Publishers, Danville, pp 459–476

    Google Scholar 

  • Thompson AE (1955) Methods of producing first generation hybrid seeds in spinach. Mem Cornell Univ Agric Exp Stn 336: 1–48

    Google Scholar 

  • White PR (1943) A handbook of plant tissue culture. J Cattell, Lancaster, pp 39, 43, 433

    Google Scholar 

  • Wirtz W, Stitt M, Heldt HW (1980) Enzymic determination of metabolites in the subcellular compartments of spinach protoplasts. Plant Physiol 66: 187–193

    Article  PubMed  CAS  Google Scholar 

  • Xiao X-G, Branchard M (1993) Embryogenesis and plant regeneration of spinach (Spinacia (deracea L.) from hypocotyl segments. Plant Cell Rep 13: 69 71

    Google Scholar 

  • Zdravkovié-Korae S, Neskovie M (1993) Somatic embryogenesis in spinach (Spinacia oleracea L.). Arch Biol Sci Belgrade 45:57P 58 P

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Al-Khayri, J.M. (1997). Micropropagation of Spinacia oleracea L. (Spinach). In: Bajaj, Y.P.S. (eds) High-Tech and Micropropagation V. Biotechnology in Agriculture and Forestry, vol 39. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-07774-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-07774-0_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08269-6

  • Online ISBN: 978-3-662-07774-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics