Skip to main content

Multi-Method High-Resolution Surface Analysis with Slow Electrons

  • Chapter
High-Resolution Imaging and Spectrometry of Materials

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 50))

Abstract

Electron microscopy with fast electrons has reached a high state of sophistication allowing not only structural imaging with atomic resolution but also chemical analysis in the sub-nanometre range and magnetic imaging with Lorentz microscopy and holography below ten nonometres. These possibilities are due to the strong elastic forward scattering, to the signal accumulation along the path of the electron and to the small aberrations of the employed electron optical elements. In surface imaging, the signal must come from a small depth and fast electrons are useful in only a few imaging modes that emphasize the surface features. Examples are weak-beam imaging, secondary electron emission microscopy and reflection electron microscopy, the last being the most versatile.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bauer E. (1994) Surface electron microscopy: The first thirty years. Surf Sci 299 /300: 102–115

    Article  Google Scholar 

  2. Bauer E. (1998) LEEM basics. Surf Rev Lett 5: 1275–1286

    Article  CAS  Google Scholar 

  3. Bauer E. (1994) Low energy electron microscopy. Rep Prog Phys 57: 895–938

    Article  CAS  Google Scholar 

  4. Herlt H.-J. (1982) Elastische Rückstreuung sehr langsamer Elektronen an reinen and an gasbedeckten Wolfram-Einkristalloberflächen. Ph.D. Thesis, Technical University Clausthal, Clausthal, Germany

    Google Scholar 

  5. Feibelman P.J., Eastman D.E. (1974) Photoemission spectroscopy — correspondence between quantum theory and experimental phenomenology. Phys Rev B 10: 4932–4947

    Article  CAS  Google Scholar 

  6. Bauer E. (1969) Inelastic scattering of slow electrons in solids. Z Physik 224: 19–44

    Article  CAS  Google Scholar 

  7. Bauer E. (1970) Interaction of slow electrons with surfaces. J Vac Sci Technol 7: 3–12

    Article  CAS  Google Scholar 

  8. Tanuma S., Powell C.J., Penn D.R. (1990) Material dependence of electron inelastic mean free paths at low energies. J Vac Sci Technol A 8: 2213–2216; (1990) Electron inelastic mean free paths in solids at low energies, part I. J Electr Spectr Rel Phen 52:285–291; (1991) Part II. Surf Interface Anal 17:911–926; (1991) Part III. Surf Interface Anal 17:927–939; (1994) Part V. Surf Interface Anal 21: 165–176

    Google Scholar 

  9. Siegmann H.C. (1994) Surface and 2D magnetism with spin polarized cascade electrons. Surf Sci 307–309: 1076–1086

    Article  Google Scholar 

  10. Gröbli J.C., Oberli D., Meier F. (1995) Crucial tests of spin filtering. Phys Rev B 52: R13095 — R13097

    Article  Google Scholar 

  11. Passek F., Donath M., Ertl K. (1996) Spin-dependent electron attenuation lengths and influence on spectroscopic data. J Magn Magn Mater 159: 103–108

    Article  CAS  Google Scholar 

  12. Frank J. (1973) The envelope of electron microscopic transfer functions for partially coherent illumination. Optik 38: 519–536

    Google Scholar 

  13. Müller T. (1995) Bildentstehung im LEEM. M.S. Thesis, Technical University Clausthal, Clausthal, Germany

    Google Scholar 

  14. Veneklasen L.H. (1991) Design of a spectroscopic low energy electron microscope. Ultramicroscopy 36: 76–90

    Article  Google Scholar 

  15. Bauer E., Franz T., Koziol C., Lilienkamp G., Schmidt T. (1997) Recent Advances in LEEM/PEEM for structural and chemical Analysis. In: Rosei R. (Ed.) Chemical, Structural and Electronic Analysis of Heterogeneous Surfaces on Nanometer Scale. Kluwer, Dordrecht, 85–91

    Google Scholar 

  16. Chmelik J., Veneklasen L., Marx G. (1989) Comparing cathode lens configurations for low energy electron microscopy. Optik 83: 155–160

    Google Scholar 

  17. Mankos M., Kolarik V., Veneklasen L.H. (1990) Electron-optical properties of multiple magnetic prism systems. Nucl Instrum Meth Phys Res A 298: 189–198

    Article  Google Scholar 

  18. Kolarik V., Mankos M., Veneklasen L.H. (1991) Close-packed prism arrays for electron microscopy. Optik 87: 1–12

    Google Scholar 

  19. Telieps W., Bauer E. (1985) An analytical reflection and emission UHV surface electron microscope. Ultramicroscopy 17: 57–66

    Article  CAS  Google Scholar 

  20. Tromp R.M., Mankos M., Reuter M.C., Ellis A.W., Copel M. (1998) A new low energy electron microscope. Surf Rev Lett 5: 1189–1197

    Article  CAS  Google Scholar 

  21. Rose H., Preikszas D. (1992) Outline of a versatile corrected LEEM. Optik 92: 31–44

    Google Scholar 

  22. Müller H., Preikszas D., Rose H. (1999) A beam separator with small aberrations. J Electron Microscopy 48: 191–204

    Article  Google Scholar 

  23. Fink R., Weiß M.R., Umbach E., Preikszas D., Rose H., Spehr R., Hartel P., Engel W., Degenhardt R., Kuhlenbeck H., Wichtendahl R., Erlebach W., Ihmann K., Schlögl R., Freund H.-J., Bradshaw A.M., Lilienkamp G., Schmidt Th., Bauer E., Benner G. (1997) SMART — a planned ultrahigh-resolution spectro-microscope for BESSY II. J Electr Spectr Rel Phen 84: 231–250

    Article  CAS  Google Scholar 

  24. Rempfer G.F., Mauck M.S. (1992) Correction of chromatic aberration with an electron mirror. Optik 92: 3–8

    Google Scholar 

  25. Rose H., Preikszas D. (1995) Time dependent pertubation formalism for calculating the aberrations of systems with large ray gradients. Nucl Instrum Meth Phys Res A 363: 301–315

    Article  CAS  Google Scholar 

  26. Preikszas D., Rose H. (1997) Correction properties of electron mirrors. J Electron Microscopy 1: 1–9

    Article  Google Scholar 

  27. Rose H., Krahl D. (1995) Electron Optics in imaging Energy Filters. In: Reimer L. (Ed.) Energy-Filtering Transmission Electron Microscopy. Springer, Berlin Heidelberg, 43–149

    Google Scholar 

  28. Bauer E. (1991) The possibilities of analytical methods in photoemission and low energy electron microscopy. Ultramicroscopy 36: 52–62

    Article  CAS  Google Scholar 

  29. Duden T., Bauer E. (1998) Spin-polarized low energy electron microscopy of ferromagnetic layers. J Electron Microscopy 47:379–385; (1998) Spin-polarized low energy electron microscopy. Surf Rev Lett 5: 1213–1220

    CAS  Google Scholar 

  30. Bauer E., Duden T., Pinkvos H., Poppa H., Wurm K. (1996) LEEM studies of the microstructure and magnetic domain structure of ultrathin films. J Magn Magn Mater 156: 1–6

    Article  CAS  Google Scholar 

  31. Duden T., Bauer E. (1997) Magnetic domain structure and spin reorientation transition in the system Co/Au/Co. MRS Symp Proc 475: 283–288; (1999) Exchange coupling in Co/Cu/Co sandwiches studied by spin-polarized low energy electron microscopy. J Magn Magn Mater 191:301–312; (1999) Influence of Au and Cu overlayers on the magnetic structure of Co films on W(110). Phys Rev B 59:468–473; (1999) Biquadratic exchange in ferromagnetic/nonferromagnetic sandwiches: A spin-polarized low-energy electron microscopy study. Phys Rev B 59: 474–479

    Google Scholar 

  32. Bauer E. (1978) Augerelektronen-Spektroskopie and Mikroskopie. LeopoldinaSymp. “Physik and Chemie der Kristalloberfläche”, Halle, DDR, unpublished

    Google Scholar 

  33. Bauer E., Telieps W. (1988) Emission and Low Energy Electron Reflection Microscopy. In: Howie A., Valdre U. (Eds.) Surface and Interface Characterization by Electron Optical Methods. Plenum, New York, 195–233

    Chapter  Google Scholar 

  34. Stöhr J., Padmore H.A., Anders S., Stammler T., Scheinfein M.R. (1998) Principles of x-ray magnetic dichroism spectromicroscopy. Surf Rev Lett 5: 1297–1308

    Article  Google Scholar 

  35. Schmidt Th., Heun S., Slezak J., Diaz J., Prince K.C., Lilienkamp G., Bauer E. (1998) SPELEEM: combining LEEM and spectroscopic imaging. Surf Rev Lett 5: 1287–1296

    Article  CAS  Google Scholar 

  36. Schmidt Th., Bauer E. (2000) Interfactant mediated quasi-Frank-van der Merwe Growth of Pb on Si(111). Phys Rev B 62: 15815–15825

    Article  CAS  Google Scholar 

  37. Schmidt Th., Ressel B., Heun S., Prince K.C., Bauer E., to be published

    Google Scholar 

  38. Schmidt Th., Schaak A., Günther S., Ressel B., Bauer E., Imbihl R. (2000) In situ imaging of structural changes in a chemical wave with low energy electron microscopy: The system Rh(110)/NO + H2. Chem Rev Lett 318: 549–554

    CAS  Google Scholar 

  39. Meyer zu Heringdorf F.-J., Kähler D., Horn-von Hoegen M., Schmidt Th., Bauer E., Copel M., Minoda H. (1998) Giant faceting of vicinal Si(001) induced by Au adsorption. Surf Rev Lett 5: 1167–1178

    Google Scholar 

  40. Meyer zu Heringdorf F.-J., Schmidt Th., Heun S., Hild R., Zahl P., Ressel B., Bauer E., Horn-von Hoegen M., to be published

    Google Scholar 

  41. Schmidt Th., Ressel B., Heun S., Prince K.C., Bauer E., to be published

    Google Scholar 

  42. Heun S., Watanabe Y., Ressel B., Bottomley D., Schmidt Th., Prince K.C. (2001) Core level photoelectron spectroscopy from individual heteroepitaxial nanocrystals on GaAs(001). Phys Rev B in print

    Google Scholar 

  43. Heun S., Schmidt Th., Ressel B., Bauer E., Prince K.C. (1999) Nanospectroscopy at Elettra. Synchrotron Rad News 12: 25–29

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bauer, E., Schmidt, T. (2003). Multi-Method High-Resolution Surface Analysis with Slow Electrons. In: Ernst, F., Rühle, M. (eds) High-Resolution Imaging and Spectrometry of Materials. Springer Series in Materials Science, vol 50. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-07766-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-07766-5_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07525-4

  • Online ISBN: 978-3-662-07766-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics