Skip to main content

Advances in Electron Optics

  • Chapter

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 50))

Abstract

The elucidation of the atomic structure of solids is a major goal of high-resolution transmission electron microscopy. The attainable resolution of all imaging microscopes is determined by the wavelength of the radiation employed (e.g. light, sound, charged particles) and the defects of the image-forming lenses. The resolution of microscopes that do not use lenses, such as the scanning tunneling microscope or the atomic force microscope, is not limited by diffraction. Unfortunately, these microscopes can only image the surface of the sample whereas detailed information about the atomic bulk structure is necessary for elucidating the properties of real solid objects.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sakurai J.J. (1994) Modern Quantum Mechanics. Addison-Wesley, New York

    Google Scholar 

  2. Glaser W. (1952) Grundlagen der Elektronenoptik. Springer, Wien

    Google Scholar 

  3. Sommerfeld A. (1949) Vorlesungen über Theoretische Physik, Vol. IV, Optik Dietrich’sche Verlagsbuchhandlung, Wiesbaden

    Google Scholar 

  4. Lippmann B. A., Schwinger J. (1950) Variational principles for scattering processes I. Phys Rev 79: 469–480

    Article  Google Scholar 

  5. Scherzer O. (1949) The theoretical resolution limit of the electron microscope. J Appl Phys 20: 20–29

    Article  CAS  Google Scholar 

  6. Thon F. (1966) Zur Defokussierungsabhängigkeit des Phasenkontrastes bei der elektronenmikroskopischen Abbildung. Z Naturforsch 21a: 476–478

    CAS  Google Scholar 

  7. Zemlin F., Weiss K., Schiske P., Herrmann K.H. (1977) Coma-free alignment of high-resolution electron microscopes with the aid of optical diffractograms. Ultramicroscopy 3: 49–60

    Article  Google Scholar 

  8. Rose H. (1990) Outline of a spherically corrected semiaplanatic medium-voltage transmission electron microscope. Optik 85: 19–24

    Google Scholar 

  9. Haider M., Rose H., Uhlemann S., Kabius B., Urban K. (1998) Towards 0.1 nm resolution with the first spherically corrected transmission electron microscope. J Electr Micr 47: 395–405

    Article  CAS  Google Scholar 

  10. Scherzer O. (1936) Uber einige Fehler von Elektronenlinsen. Z Phys 101: 593603

    Google Scholar 

  11. Born M., Wolf E. (1999) Principles of Optics, 7th edn. Cambridge Univ. Press, Cambridge

    Google Scholar 

  12. Schwarzschild K. (1905/1906) Untersuchung zur geometrischen Optik. Abhandlungen der Gesellschaft der Wissenschaften in Göttingen. Mathematisch-Physikalische Klasse. Teil 1: 3–31, Teil 2: 3–28, Teil 3: 3–54

    Google Scholar 

  13. Glaser W. (1933) Uber geometrisch-optische Abbildung durch Elektronenstrahlen. Z Phys 80: 452–464

    Google Scholar 

  14. Sturrock P.A. (1952) Perturbation characteristic functions and their application to electron optics. Proc Roy Soc A 210: 269–289

    Google Scholar 

  15. Rose H., Petri U. (1971) Zur systematischen Berechnung elektronenoptischer Bildfehler. Optik 33: 151–165

    Google Scholar 

  16. Zach J., Haider M. (1995) Aberration correction in a low-voltage SEM by a multipole corrector. Nucl Instrum Meth Phys Res A 363: 316–325

    Article  CAS  Google Scholar 

  17. Uhlemann S, Haider M. (1998) Residual wave aberrations in the first spherical aberration corrected transmission electron microscope. Ultramicroscopy 72: 109–119

    Article  CAS  Google Scholar 

  18. Rose H. (1987) Hamiltonian magnetic optics. Nucl Instrum Meth Phys Res A 258: 374–401

    Article  Google Scholar 

  19. Beck V. (1979) A hexapole spherical aberration corrector. Optik 53: 241–255

    Google Scholar 

  20. Rose H. (1981) Correction of aperture aberrations in magnetic systems with threefold symmetry. Nucl Instrum Meth 187: 187–199

    Article  Google Scholar 

  21. Rose H. (1999) Prospects for realizing a sub-A sub-eV resolution EFTEM. Ultramicroscopy 78: 13–25

    Article  CAS  Google Scholar 

  22. Hawkes P.W., Kasper E. (1996) Principles of Electron Optics, Vol. 1: Basic geometrical optics. Academic Press, London

    Google Scholar 

  23. Scherzer O. (1970) Communication in his lecture on Electron Optics, unpublished

    Google Scholar 

  24. Rose, H. (1971) Elektronenoptische Aplanate. Optik 34: 285–311

    Google Scholar 

  25. Kahl F. (1999) Design eines Monochromators für Elektronenquellen. PhD Thesis, Darmstadt University of Technology, Darmstadt

    Google Scholar 

  26. Uhlemann S., Rose H. (1994) The MANDOLINE filter — a new high-performance imaging filter for sub-eV EFTEM. Optik 96: 163–178

    Google Scholar 

  27. Rose H. (1978) Aberration correction of homogeneous magnetic deflection systems. Optik 51: 15–38

    Google Scholar 

  28. Lanio S. (1986) High-resolution imaging magnetic energy filters with simple structure. Optik 73: 99–107

    Google Scholar 

  29. Rose H., Krahl D. (1995) Electron optics of imaging energy filters. In: Reimer L. (Ed.) Energy-Filtering Transmission Electron Microscopy. Springer, Berlin Heidelberg, 43–149

    Google Scholar 

  30. Haider M., Uhlemann S., Schwan E., Rose H., Kabius B., Urban K. (1998) Electron microscopy image enhanced. Nature 392: 768–769

    Article  CAS  Google Scholar 

  31. Haider M., Rose H., Uhlemann S., Schwan E., Kabius B., Urban K. (1998) A spherical-aberration corrected 200 kV transmission electron microscope. Ultramicroscopy 75: 53–60

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rose, H. (2003). Advances in Electron Optics. In: Ernst, F., Rühle, M. (eds) High-Resolution Imaging and Spectrometry of Materials. Springer Series in Materials Science, vol 50. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-07766-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-07766-5_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07525-4

  • Online ISBN: 978-3-662-07766-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics