Quantitative Analytical Transmission Electron Microscopy

  • P. Kohler-Redlich
  • J. Mayer
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 50)

Abstract

Over the past decade analytical transmission electron microscopy (ATEM) has experienced a more rapid growth than any other major TEM technique. The main reasons for this development are the growing interest in the wealth of information that can be revealed by electron energy loss spectroscopy (EELS) and the rapid spread of new instrumental developments, in particular field-emission guns and imaging energy filters. One of the trends in transmission electron microscopy is to consider a microscope not primarily as an instrument to obtain micrographs but as an experimental tool on which information from a sample can be obtained via various channels in parallel [1]. The channels are defined by the available detectors, such as two-dimensional detectors for imaging and diffraction, electron counting devices for STEM bright-and dark-field imaging, an electron energy-loss spectrometer and an energy-dispersive X-ray spectrometer (EDS). There are also many competing analytical or spectroscopic techniques (some of which are be discussed in other chapters of this book) that are better in terms of energy resolution, detection limits, error of absolute compositional quantification, angular dependence, retrieval of three-dimensional information and reduction of sample damage due to irradiation. However, none of them offers a spatial resolution comparable to the one obtainable on a TEM, and none of them offers all the other high resolution imaging and diffraction techniques mentioned above.

Keywords

Titanium Boron Tungsten Milling Coherence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jeanguillaume, C. Colliex C. (1992) New STEM multisignal imaging modes, made accessible through the evaluation of detection efficiencies. Ultramicroscopy 45: 205–217CrossRefGoogle Scholar
  2. 2.
    Leapman R.D., Hunt J.A. (1991) Comparison of detection limits for EELS and EDXS. Microsc Microanal Microstruct 2: 231–244CrossRefGoogle Scholar
  3. 3.
    Williams D.B., Carter C.B. (1996) Transmission Electron Microscopy-A Textbook for Materials Science, Plenum Press, New York/LondonGoogle Scholar
  4. 4.
    Dorneich A.D., French R.H., Müllejans H., Loughin S., Rühle M. (1998) Quantitative analysis of valence electron energy-loss spectra of aluminium nitride. J Microscopy 191: 286–296CrossRefGoogle Scholar
  5. 5.
    Moreau, P., Brun, N., Walsh, C.A., Colliex, C., Howie, A. (1997) Relativistic Effects in Electron Energy-loss-spectroscopy observations of the Si/SiO2 interface plasmon peak. Phys Rev B 56: 6774–6781CrossRefGoogle Scholar
  6. 6.
    Ugarte D., Colliex C., Trebbia P. (1992) Surface-and interface-plasmon modes on small semiconducting spheres. Phys Rev B 45: 4332–4343CrossRefGoogle Scholar
  7. 7.
    Nellist P.D., Pennycook S.J. (1998) Sub-Angstrom resolution by underfocused incoherent transmission electron microscopy. Phys Rev Lett 81: 4156–4159CrossRefGoogle Scholar
  8. 8.
    Pennycook S.J., Boatner L.A. (1988) Chemically sensitive structure-imaging with a scanning transmission electron microscope. Nature 336: 565–567CrossRefGoogle Scholar
  9. 9.
    Pennycook S.J., Jesson, D.E. (1990) High-resolution incoherent imaging of crystals. Phys Rev Lett 64: 938–941CrossRefGoogle Scholar
  10. 10.
    Silcox J., Xu P., Loane R.F. (1992) Resolution limits in annular dark field STEM. Ultramicroscopy 47: 173–186CrossRefGoogle Scholar
  11. 11.
    Browning N.D., Chisholm M.F., Pennycook S.J. (1993) Atomic-resolution chemical analysis using a scanning transmission electron microscope. Nature 366: 143–146CrossRefGoogle Scholar
  12. 12.
    Duscher G., Browning N.D., Pennycook S.J. (1999) Atomic column resolved electron energy-loss spectroscopy. phys stat sol (a) 166: 327–342Google Scholar
  13. 13.
    Browning N.D., Pennycook S.J. (1995) Atomic-resolution electron energy-loss spectroscopy in the scanning transmission electron microscope. J Microscopy 180: 230–237CrossRefGoogle Scholar
  14. 14.
    Batson P.E. (1996) Atomic resolution electronic structure in silicon-based semiconductors. J Electron Microscopy 45: 51–58CrossRefGoogle Scholar
  15. 15.
    Muller D.A., Shashkov D.A., Benedek R., Yang L.H., Silcox J., Seidman D.N. (1998) Phys Rev Lett 80: 4741–4744CrossRefGoogle Scholar
  16. 16.
    Reimer L. (1995) Energy Filtering Transmission Electron Microscopy Springer, BerlinGoogle Scholar
  17. 17.
    Stöckli T., Bonard J.M., Stadelmann P.A., Chatelain A. (1997) EELS investigation of plasmon excitations in aluminum nanospheres and carbon nanotubes, Z Physik D 40: 425–428CrossRefGoogle Scholar
  18. 18.
    Stöckli T., Bonard J. M., Chatelain A., Wang Z. L., Stadelmann P. (1998) Plasmon excitations in graphitic carbon spheres, Phys Rev B 57: 15599–15612CrossRefGoogle Scholar
  19. 19.
    Fink J. (1989) Recent developments in energy-loss spectroscopy. In: Advances in Physics and Electron Physics, Academic Press, London 75: 121–232Google Scholar
  20. 20.
    Kruit P., Venables J.A. (1988) High-spatial-resolution surface-sensitive electron spectroscopy using a magnetic parallelizer. Ultramicroscopy 25: 183–194CrossRefGoogle Scholar
  21. 21.
    Egerton R. (1996) Electron Energy-loss Spectroscopy in the Transmission Electron Microscope. 2nd edition, Plenum Press, New York/LondonGoogle Scholar
  22. 22.
    Kothleitner G., Hofer F. (1998) Optimization of the signal to noise ratio in EFTEM elemental maps with regard to different ionization edge types. Micron 29: 349–357CrossRefGoogle Scholar
  23. 23.
    Inokuti M. (1971) Inelastic collisions of fast charged particles with atoms and molecules: the Bethe theory revisited. Rev Mod Phys 43: 297–347CrossRefGoogle Scholar
  24. 24.
    Jeanguillaume C., Colliex C. (1989) Spectrum-image: The next step in EELS digital acquisition and processing. Ultramicroscopy 28: 252–257Google Scholar
  25. 25.
    Krivanek O.L., Gubbens A.J., Dellby N. (1991) Developments in EELS instrumentation for spectroscopy and imaging. Microsc Microanal Microstr 2: 315312Google Scholar
  26. 26.
    Lanio, S. (1986) High-resolution imaging magnetic energy filter with simple structure. Optik 73: 99–107Google Scholar
  27. 27.
    Probst W., Benner G., Bihr J., Weimer E. (1993) An “Omega” energy filtering TEM — principles and applications. Adv Mater 5: 297–300CrossRefGoogle Scholar
  28. 28.
    Tanaka M., Tsuda K., Terauchi M., Tsuno K., Kaneyama T., Honda T., Ishida M. (1999) A new 200 kV Omega-filter electron microscope. J Microscopy 194: 219–227CrossRefGoogle Scholar
  29. 29.
    Krivanek O.L., Gubbens A.J., Dellby N., Meyer C.E. (1992) Design and first applications of a post-column imaging filter. Microsc Microanal Microstruct 3: 187–199CrossRefGoogle Scholar
  30. 30.
    Nellist P.D., Pennycook S.J. (1999) Incoherent imaging using dynamically scattered coherent electrons. Ultramicroscopy 78: 111–124CrossRefGoogle Scholar
  31. 31.
    Krivanek O.L., Dellby N., Lupini A.R. (1999) Towards sub-Aelectron beams. Ultramicroscopy 78: 1–11CrossRefGoogle Scholar
  32. 32.
    James E.M., Browning N.D. (1999) Practical aspects of atomic resolution imaging and analysis in STEM. Ultramicroscopy 78: 125–139CrossRefGoogle Scholar
  33. 33.
    Rose H. (1999) Prospects for realizing a sub-A sub-eV resolution EFTEM. Ultramicroscopy 78: 13–25CrossRefGoogle Scholar
  34. 34.
    Uhlemann S., Rose H. (1994) The MANDOLINE-filter — a new high-performance imaging filter for sub-eV EFTEM. Optik 96: 163–178Google Scholar
  35. 35.
    Gatts C., Duscher G., Müllejans H., Rühle M. (1995) Analyzing line scan profiles with neural pattern recognition. Ultramicroscopy 59: 229–240CrossRefGoogle Scholar
  36. 36.
    Colliex C., Tencé M., Lefevre E., Mory C., Gu H., Bouchet D.,Jeanguillaume C. (1994) Electron energy-loss spectrometry mapping. Microchim Acta 112: 71–87Google Scholar
  37. 37.
    Tencé M., Quartuccio M., Colliex, C. (1995) PEELS compositional profiling and mapping at nanometer spatial resolution. Ultramicroscopy 58: 42–54CrossRefGoogle Scholar
  38. 38.
    Bonnet N., Brun N., Colliex C. (1999) Extracting information from sequences of spatially resolved EELS spectra using multivariate statistical analysis. Ultramicroscopy 77: 97–112CrossRefGoogle Scholar
  39. 39.
    Redlich P., Carroll D.L., Ajayan P.M. High spatial resolution imaging and spectroscopy in nanostructures. Curr Opinion Sol State Mater Sci 4: 325–336Google Scholar
  40. 40.
    Hunt J.A., Williams D.B. (1991) Electron energy-loss spectrum-imaging. Ultramicroscopy 38: 47–73CrossRefGoogle Scholar
  41. 41.
    Shin D.H., Kirkland E.J., Silcox, J. (1989) Annular dark field electron microscope images with better than 2A resolution at 100 kV. Appl Phys Lett 55: 2456–2458CrossRefGoogle Scholar
  42. 42.
    McGibbon M.M., Browning N.D., Chisholm M.F., McGibbon A.J., Penny-cook S.J., Ravikumar V., Dravid V.P. (1994) Direct determination of grain boundary atomic structure in SrTiO3. Science 266: 102–104CrossRefGoogle Scholar
  43. 43.
    Muller D.A., Tzou Y., Raj R., Silcox J. (1993) Mapping sp2 and spa states of carbon at sub-nanometre spatial resolution. Nature 366: 725–727CrossRefGoogle Scholar
  44. 44.
    Berger S.D., Pennycook S.J. (1982) Detection of nitrogen at {100} platelets in diamond. Nature 298: 635–637CrossRefGoogle Scholar
  45. 45.
    Müllejans H., Bruley J. (1995) Electron energy-loss near edge structure of internal interfaces by spatial difference spectroscopy. J Microsc 180: 12–21CrossRefGoogle Scholar
  46. 46.
    Muller D.A. (1999) Why changes in bond lengths and cohesion lead to core-level shifts in metals, and consequences for the spatial difference Method. Ultramicroscopy 78: 163–174CrossRefGoogle Scholar
  47. 47.
    Alber U. (1998) Ursachen der mechanischen Eigenschaften von Cu-Korngrenzen and Cu/a-Al2O3-Grenzflächen. Dissertation, Universität Stuttgart, Stuttgart, GermanyGoogle Scholar
  48. 48.
    Kienzle 0. (1999) Atomistische Struktur und chemische Zusammensetzung innerer Grenzflächen von Strontiumtitanat. Dissertation, Universität Stuttgart, Stuttgart, GermanyGoogle Scholar
  49. 49.
    Gu H., Ceh M., Stemmer S., Müllejans H., Rühle M. (1995) A quantitative approach for spatially-resolved electron energy-loss spectroscopy of grain boundaries and planar defects on a subnanometer scale. Ultramicroscopy 59: 215–227CrossRefGoogle Scholar
  50. 50.
    Baumann S.R., Williams D.B. (1981) A STEM/x-ray microanalytical study of the equilibrium segregation of bismuth in copper. J Microscopy 123: 299–305CrossRefGoogle Scholar
  51. 51.
    Michael J.R., Williams D.B. (1984) An analytical electron microscope study of the kinetics of the equilibrium segregation of bismuth in copper. Metall Mater Trans A. 15A: 99–105CrossRefGoogle Scholar
  52. 52.
    Alber U., Müllejans H., Rühle M. (1997) Improved quantification of grain boundary segregation by EDS in a dedicated STEM. Ultramicroscopy 69: 105116Google Scholar
  53. 53.
    Gemming T.: unpublished work (UPDATE IN PROOFS)Google Scholar
  54. 54.
    Bruley J., Keast, V.J., Williams, D.B. (1996) Measurement of the Localized Electronic Structure Associated with Bismuth Segregation to Copper Grain Boundaries. J. Phys. D: Appl. Phys., 29 1730–1739.Google Scholar
  55. 55.
    Keast V.J., Bruley J., Rez P., MacLaren J.M., Williams D.B. (1997) Chemistry and bonding changes associated with the segregation of Bi to grain boundaries in Cu. Acta Metall Mater 6: 481–490Google Scholar
  56. 56.
    Muller D.A., Subramanian S., Batson P.E., Silcox J., Sass S.L. (1996) Structure, chemistry and bonding at grain boundaries in Ni3Al-I. The role of boron in ductilizing grain boundaries. Acta metal’ mater 44: 1637–1645Google Scholar
  57. 57.
    Rühle M. (1996) Structure and composition of metal ceramic interfaces. J Eur Ceram Soc 16: 353–365CrossRefGoogle Scholar
  58. 58.
    Rühle M., Evans A.G., Ashby M.F., Hirth J.P. (1990) Metal-Ceramic Interfaces. Pergamon Press, OxfordGoogle Scholar
  59. 59.
    Dehm G., Scheu C., Rühle M., Raj R. (1998) Growth and structure of Cu/Al2O3 and Cu/Ti/Al2O3 interfaces. Acta Mater 46: 759–772CrossRefGoogle Scholar
  60. 60.
    Scheu C., Dehm G., Rühle M., Brydson, R. (1998) Electron-energy-loss spectroscopy studies of Cu-a-Al2O3 interfaces grown by molecular beam epitaxy. Phil Mag A 78: 439–465CrossRefGoogle Scholar
  61. 61.
    Scheu C. (1996) Analytische Untersuchungen an Cu/Al203- und Cu/Ti/Al2O3-Grenzflächen, Dissertation, Universität Stuttgart, Stuttgart, GermanyGoogle Scholar
  62. 62.
    Dehm G. (1995) Struktur, Zusammensetzung und mechanische Eigenschaften von Cu/Al2O3 und Cu/Ti/Al2O3 Grenzflächen, Dissertation, Universität Stuttgart, Stuttgart, GermanyGoogle Scholar
  63. 63.
    Plitzko J.M., Mayer J. (1999) Quantitative thin film analysis by energy filtering transmission electron microscopy. Ultramicroscopy 78: 207–219CrossRefGoogle Scholar
  64. 64.
    Dehm G., Rühle M., Conway D., Raj R. (1997) A microindentation method for estimating interfacial shear strength and its use in studying the influence of titanium transition layers on the interface strength of epitaxial copper films on sapphire. Acta Mater 45: 489–499CrossRefGoogle Scholar
  65. 65.
    Ahn C.C., Krivanek O.L. (1983) EELS Atlas, Center for Solid State Science, Arizona State University, Tempe, Arizona.Google Scholar
  66. 66.
    Scheu C., Dehm G., Müllejans H., Brydson R., Rühle M. (1995) Electron energy-loss spectroscopy of metal-alumina interfaces. Microsc Microanal Microstruct 6: 19–31CrossRefGoogle Scholar
  67. 67.
    Dehm G., Scheu C., Möbus G., Brydson R., Rühle M. (1997) Synthesis of analytical and high-resolution transmission electron microscopy to determine the interface structure of Cu/Al2O3. Ultramicroscopy 67: 207–217CrossRefGoogle Scholar
  68. 68.
    Alber U., Müllejans H., Rühle M. (1999) Wetting of copper on a — Al2O3 surfaces depending on the orientation and oxygen partial pressure. Micron 30: 101–108CrossRefGoogle Scholar
  69. 69.
    Scheu Ch., Stein W., Rühle M. (2000) Electron energy-loss near-edge structure studies of a Cu/(1120)a-Al2O3 interface. phys stat sol (b) 222: 199–211Google Scholar
  70. 70.
    Nufer S., Marinopoulos A.G., Gemming T., Elsässer C., Kurtz W., Köstlmeier S., Rühle M. (2001) Quantitative atomic-scale analysis of interface structures: Transmission electron microscopy and local density functional theory. Phys Rev Lett 86: 5066–5069Google Scholar
  71. 71.
    Bruley J., Brydson R., Müllejans H., Mayer J., Gutekunst G., Mader W., Knauss D., Rühle M. (1994) Investigation of the chemistry and bonding at niobium-sapphire interfaces. J Mater Res 9: 2574–2583CrossRefGoogle Scholar
  72. 72.
    Brydson R., Müllejans H., Bruley J., Trusty P., Sun X., Yeomans J., Rühle M. (1995) Spatially resolved electron energy-loss studies of metal-ceramic interfaces in transition metal/alumina cermets. J Microscopy 177: 369–386CrossRefGoogle Scholar
  73. 73.
    Liedtke A. (1997) Einflußdes Sauerstoffgehalts in Kupfer auf die Reaktivität von diffusionsverschweißten Cu—Al2O3 Grenzflächen. Dissertation, Universität Stuttgart, Stuttgart, GermanyGoogle Scholar
  74. 74.
    Reimer L., Fromm I., Rennekamp R. (1988) Operation modes of electron spectroscopic imaging and electron energy-loss spectroscopy in a transmission electron microscope. Ultramicroscopy 24: 339–354CrossRefGoogle Scholar
  75. 75.
    Reimer L., Fromm I., Hirsch P., Plate U., Rennekamp R. (1992) Combination of EELS modes and electron spectroscopic imaging and diffraction in an energy filtering electron microscope. Ultramicrosc 46: 335–347CrossRefGoogle Scholar
  76. 76.
    Hofer F., Warbichler P., Grogger W. (1995) Imaging of nanometer-sized precipitates in solids by electron spectroscopic Imaging. Ultramicroscopy 59: 1531CrossRefGoogle Scholar
  77. 77.
    Hofer F., Grogger W., Kothleitner G., and Warbichler P. (1997) Quantitative Analysis of EFTEM elemental distribution images. Ultramicroscopy 67: 83-103CrossRefGoogle Scholar
  78. 78.
    Crozier P. A. (1995) Quantitative elemental mapping of materials by energy-filtered imaging. Ultramicroscopy 58: 157–174CrossRefGoogle Scholar
  79. 79.
    Mayer J., Szabo D.V., Rühle M., Seher M., Riedel R. (1995) Polymer derived Si-based ceramics, Part II: microstructural characterisation by electron spectroscopic imaging. J Eur Ceram Soc 15: 717–727CrossRefGoogle Scholar
  80. 80.
    Körtje K.-H. (1994) Image-EELS: simultaneous recording of multiple electron energy-loss spectra from series of electron spectroscopic images. J Microscopy 174: 149–159CrossRefGoogle Scholar
  81. 81.
    Lavergne J.-L., Foa C., Bongrand P., Seux D., Martin J.-M. (1994) Application of recording and processing of energy-filtered image sequences for the elemental mapping of biological specimens: Imaging-Spectrum. J Microscopy 174: 195–206Google Scholar
  82. 82.
    Beckers A.L.D., De Bruijn W.C., Gelsema E.S., Cleton-Soeteman M.I., van Eijk H.G. (1994) Quantitative electron spectroscopic imaging in bio-medicine: methods for image acquisition, correction and analysis. J Microscopy 174: 171–182CrossRefGoogle Scholar
  83. 83.
    Beckers A.L.D., Gelsema E.S., De Bruijn W.C., Cleton-Soeteman M.I., van Eijk H.G. (1996) Quantitative electron spectroscopic imaging in bio-medicine: evaluation and application. J Microscopy 183: 78–88CrossRefGoogle Scholar
  84. 84.
    Mayer J., Eigenthaler U., Plitzko J.M., Dettenwanger F. (1997) Quantitative analysis of electron spectroscopic imaging ( ESI) series. Micron 28: 361–370Google Scholar
  85. 85.
    Martin J.-M., Vacher B., Ponsonnet L., Dupuis V. (1996) Chemical bond mapping of carbon by image-spectrum EELS in the second-derivative mode. Ultramicroscopy 65: 229–238CrossRefGoogle Scholar
  86. 86.
    Mayer J., Plitzko J.M. (1996) Mapping of ELNES on a nanometre scale by electron spectroscopic imaging. J Microscopy 183: 2–8CrossRefGoogle Scholar
  87. 87.
    Thomas P.J., Midgley P.A. (1999) Image-Spectroscopy: New developments and applications. Microsc Microanal 5 (Suppl. 2 ): 618–619Google Scholar
  88. 88.
    Jeanguillaume C., Trebbia P., Colliex C. (1978) About the use of electron energy-loss spectroscopy for chemical mapping of thin foils with high spatial resolution. Ultramicroscopy 3: 237–242CrossRefGoogle Scholar
  89. 89.
    Hofer F., Warbichler P. (1996) Improved imaging of secondary phases in solids by energy-filtering TEM. Ultramicroscopy 63: 21–25CrossRefGoogle Scholar
  90. 90.
    Bentley J., Hall E.L., Kenik E.A. (1995) Quantitative elemental concentrations by energy filtered imaging. In: G.W. Bailey, M.H. Ellisman, R.A. Hennigar and N.J. Zaluzec (Eds.) Microscopy and Microanalysis 1995, Jones and Begell (New York):268–269Google Scholar
  91. 91.
    Weickenmeier A.L., Nüchter W., Mayer J. (1995) Quantitative characterization of point spread function and detection quantum efficiency for a YAG scintillator slow scan CCD camera. Optik 99: 147–154Google Scholar
  92. 92.
    Berger A., Kohl H. (1992) Optimum imaging parameters for elemental mapping in an energy filtering transmission electron microscope. Optik 4: 175–193Google Scholar
  93. 93.
    Berger A., Mayer J., Kohl H. (1994) Detection limits in elemental distribution images produced by EFTEM: Case study of grain boundaries in Si3N4. Ultramicroscopy 55: 101–112CrossRefGoogle Scholar
  94. 94.
    Clarke D. R. (1987) On the equilibrium thickness of intergranular glass phases in ceramic materials. J Am Ceram Soc 70: 15–22CrossRefGoogle Scholar
  95. 95.
    Kleebe H.-J., Cinibulk M.K., Cannon R.M., Rühle M. (1993) Statistical analysis of the intergranular film thickness in silicon nitride ceramics. J Am Ceram Soc 76: 1969–1977CrossRefGoogle Scholar
  96. 96.
    Cinibulk M.K., Kleebe H.-J., Schneider G.A., Rühle M. (1993) Amorphous intergranular films in silicon nitride ceramics quenched from high temperatures. J Am Ceram Soc 76: 2801–2808CrossRefGoogle Scholar
  97. 97.
    Tanaka I., Kleebe H.-J., Cinibulk M.K., Bruley J., Clarke D.R., Rühle M. (1993) Calcium concentration dependence of the intergranular film thickness in silicon nitride. J Am Ceram Soc 76: 911–914Google Scholar
  98. 98.
    Rafferty B., Pennycook S.J. (1999) Towards atomic column-by-column spectroscopy. Ultramicroscopy 78: 141–151CrossRefGoogle Scholar
  99. 99.
    Golla U., Kohl H. (1997) Theoretical and experimental investigations of resolution and detection limits in energy filtering electron microscopy. Micron 28: 397–406CrossRefGoogle Scholar
  100. 100.
    Jäger W., Mayer J. (1995) Energy filtering transmission electron microscopy of Sin,Gen superlattices and Si—Ge heterostructures — I. experimental results. Ultramicroscopy 59:33-45Google Scholar
  101. 101.
    Freitag B., Mader W. (1999) Element specific imaging with high lateral resolution: An experimental study on layer structures. J Microscopy 194: 42–57Google Scholar
  102. 102.
    Frank J. (1975) A practical resolution criterion in optics and electron microscopy. Optik 43: 25–34Google Scholar
  103. 103.
    Endoh H., Hashimoto H., Makita Y. (1994) Theoretical and observed electron microscope images of impurity atoms in thin crystals formed by L-shell ionization electrons. Ultramicroscopy 56: 108–120CrossRefGoogle Scholar
  104. 104.
    Mayer J., Matsumura S., Tomokiyo Y. (1998) First ESI experiments on the new JEOL 2010 FEF. J Electron Microscopy 47: 283–291CrossRefGoogle Scholar
  105. 105.
    Stallknecht P., Kohl H. (1996) Computation and interpretation of contrast in crystal lattice images formed by inelastically scattered electrons in a transmission electron microscope. Ultramicroscopy 66: 261–275CrossRefGoogle Scholar
  106. 106.
    Knippelmeyer R., Kohl H. (1999) Relativistic calculations of intensity distributions in elemental maps using contrast transfer functions. J Microscopy 194:30-41Google Scholar
  107. 107.
    Lavergne J.-L., Foa C., Bongrand P., Seux D., Martin J.-M. (1994) Application of recording and processing of energy-filtered image sequences for the elemental mapping of biological specimens: Imaging-spectrum. J Microscopy 174: 195–206Google Scholar
  108. 108.
    Körtje K.-H. (1994) Image-EELS: Simultaneous recording of multiple electron energy-loss spectra from series of electron spectroscopic images. J Microscopy 174: 149–159CrossRefGoogle Scholar
  109. 109.
    Rösler M., Zachai R., Füßer H.-J., Jiang X., Klage, C.-P. (1993) Structural properties of heteroepitaxial diamond on silicon. In: Proc. 2nd International Conference on the Applications of Diamond Films and Related Materials. Yoshikawa, M. Murakawa, M., Tokyo,691–696Google Scholar
  110. 110.
    Stoner B.R., Ma G.-H.M., Wolter S.D., Glass J.T. (1992) Characterization of bias-enhanced nucleation of diamond on silicon by in vacuo surface analysis and transmission electron microscopy. Phys Rev B 45: 11067–11084CrossRefGoogle Scholar
  111. 111.
    Tzou Y., Bruley J., Ernst F., Rühle M., Raj R. (1994) TEM study of the structure and chemistry of a diamond/silicon interface. J Mater Res 9: 1566-1572Google Scholar
  112. 112.
    Plitzko J., Rösler M., Nickel K.G. (1997) Heteroepitaxial growth of diamond thin films on silicon: Information transfer by epitaxial tilting. Diamond Rel Mater 6: 935–939Google Scholar
  113. 113.
    Egerton R.F., Whelan M.J. (1974) Electron energy-loss spectra of diamond, graphite and amorphous carbon. J Electron Spectrosc 3: 232–236CrossRefGoogle Scholar
  114. 114.
    Berger S.D., McKenzie D.R., Martin P.J. (1988) EELS analysis of vacuum arc-deposited diamond-like films Phil Mag Lett 57: 285–290Google Scholar
  115. 115.
    Spence J.C.H., Zuo J.M. (1992) Electron Microdiffraction. Plenum Press, New YorkGoogle Scholar
  116. 116.
    Mayer J., Deininger C., Reimer L. (1995) Electron Spectroscopic Diffraction. In: L. Reimer (Ed.) Energy Filtering Transmission Electron Microscopy. Springer Series in Optical Sciences 71: 291–345Google Scholar
  117. 117.
    Zuo J.M., Spence J.C.H. (1991) Automated structure factor measurement by convergent-beam electron diffraction. Ultramicroscopy 35: 185–196CrossRefGoogle Scholar
  118. 118.
    Deininger C., Necker G., Mayer J. (1994) Determination of structure factors, lattice strains and accelerating voltage by energy filtered convergent beam electron diffraction. Ultramicroscopy 54: 15–30CrossRefGoogle Scholar
  119. 119.
    Bird D.M., Saunders M. (1992) Sensitivity and accuracy of CBED pattern matching. Ultramicroscopy 45: 241–251CrossRefGoogle Scholar
  120. 120.
    Swaminathan S., Jones I.P., Zaluzec N.J., Maher D.H., Fraser H.L. (1993) Experimental determination of low order structure factors in the intermetallic compound TiA1. Mater Sci Eng A170: 227–235CrossRefGoogle Scholar
  121. 121.
    Holmestad R., Zuo J.M., Spence J.C.H., HOier R, Horita Z. (1995) Effect of Mn doping on charge density in gamma-TiAl by quantitative convergent beam electron diffraction. Phil Mag A 72: 579–601CrossRefGoogle Scholar
  122. 122.
    Fox A.G., Tabbernor M.A. (1991) The bonding charge density of bNiAl. Acta Metall Mater 39: 669–678CrossRefGoogle Scholar
  123. 123.
    Menon E.S., Fox A.G. (1996) On the determination of the Debye-Waller factor and structure factors of NiAl by X-ray powder diffraction. Acta Mater 44: 2547–2555CrossRefGoogle Scholar
  124. 124.
    Lu Z.W., Wei S.-H., Zunger A. (1992) Theory of bonding charge density in ‘NiAl. Acta Metall Mater 40: 2155–2165CrossRefGoogle Scholar
  125. 125.
    Davenport J.W., Schultz P.A. (1992) Bonding and brittleness in B2 structure 3d transition metal aluminides: ionic, directional, or does it make a difference? Scripta Metall Mater 27: 629–634CrossRefGoogle Scholar
  126. 126.
    Nüchter W., Weickenmeier A.L., Mayer J. (1998) Determination of bonding charge density in NiAl by quantitative convergent beam electron diffraction. phys stat sol (a) 166: 367–379Google Scholar
  127. 127.
    Zuo J.M., Spence J.C.H., Downs J., Mayer J. (1993) Measurement of individual structure factor phases with one degree accuracy: the (002) in BeO studied by dynamical electron diffraction. Acta Cryst A49: 422–429Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • P. Kohler-Redlich
  • J. Mayer

There are no affiliations available

Personalised recommendations