Skip to main content

Quantitative Analytical Transmission Electron Microscopy

  • Chapter
Book cover High-Resolution Imaging and Spectrometry of Materials

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 50))

Abstract

Over the past decade analytical transmission electron microscopy (ATEM) has experienced a more rapid growth than any other major TEM technique. The main reasons for this development are the growing interest in the wealth of information that can be revealed by electron energy loss spectroscopy (EELS) and the rapid spread of new instrumental developments, in particular field-emission guns and imaging energy filters. One of the trends in transmission electron microscopy is to consider a microscope not primarily as an instrument to obtain micrographs but as an experimental tool on which information from a sample can be obtained via various channels in parallel [1]. The channels are defined by the available detectors, such as two-dimensional detectors for imaging and diffraction, electron counting devices for STEM bright-and dark-field imaging, an electron energy-loss spectrometer and an energy-dispersive X-ray spectrometer (EDS). There are also many competing analytical or spectroscopic techniques (some of which are be discussed in other chapters of this book) that are better in terms of energy resolution, detection limits, error of absolute compositional quantification, angular dependence, retrieval of three-dimensional information and reduction of sample damage due to irradiation. However, none of them offers a spatial resolution comparable to the one obtainable on a TEM, and none of them offers all the other high resolution imaging and diffraction techniques mentioned above.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jeanguillaume, C. Colliex C. (1992) New STEM multisignal imaging modes, made accessible through the evaluation of detection efficiencies. Ultramicroscopy 45: 205–217

    Article  CAS  Google Scholar 

  2. Leapman R.D., Hunt J.A. (1991) Comparison of detection limits for EELS and EDXS. Microsc Microanal Microstruct 2: 231–244

    Article  CAS  Google Scholar 

  3. Williams D.B., Carter C.B. (1996) Transmission Electron Microscopy-A Textbook for Materials Science, Plenum Press, New York/London

    Google Scholar 

  4. Dorneich A.D., French R.H., Müllejans H., Loughin S., Rühle M. (1998) Quantitative analysis of valence electron energy-loss spectra of aluminium nitride. J Microscopy 191: 286–296

    Article  CAS  Google Scholar 

  5. Moreau, P., Brun, N., Walsh, C.A., Colliex, C., Howie, A. (1997) Relativistic Effects in Electron Energy-loss-spectroscopy observations of the Si/SiO2 interface plasmon peak. Phys Rev B 56: 6774–6781

    Article  CAS  Google Scholar 

  6. Ugarte D., Colliex C., Trebbia P. (1992) Surface-and interface-plasmon modes on small semiconducting spheres. Phys Rev B 45: 4332–4343

    Article  Google Scholar 

  7. Nellist P.D., Pennycook S.J. (1998) Sub-Angstrom resolution by underfocused incoherent transmission electron microscopy. Phys Rev Lett 81: 4156–4159

    Article  CAS  Google Scholar 

  8. Pennycook S.J., Boatner L.A. (1988) Chemically sensitive structure-imaging with a scanning transmission electron microscope. Nature 336: 565–567

    Article  CAS  Google Scholar 

  9. Pennycook S.J., Jesson, D.E. (1990) High-resolution incoherent imaging of crystals. Phys Rev Lett 64: 938–941

    Article  CAS  Google Scholar 

  10. Silcox J., Xu P., Loane R.F. (1992) Resolution limits in annular dark field STEM. Ultramicroscopy 47: 173–186

    Article  CAS  Google Scholar 

  11. Browning N.D., Chisholm M.F., Pennycook S.J. (1993) Atomic-resolution chemical analysis using a scanning transmission electron microscope. Nature 366: 143–146

    Article  CAS  Google Scholar 

  12. Duscher G., Browning N.D., Pennycook S.J. (1999) Atomic column resolved electron energy-loss spectroscopy. phys stat sol (a) 166: 327–342

    Google Scholar 

  13. Browning N.D., Pennycook S.J. (1995) Atomic-resolution electron energy-loss spectroscopy in the scanning transmission electron microscope. J Microscopy 180: 230–237

    Article  CAS  Google Scholar 

  14. Batson P.E. (1996) Atomic resolution electronic structure in silicon-based semiconductors. J Electron Microscopy 45: 51–58

    Article  CAS  Google Scholar 

  15. Muller D.A., Shashkov D.A., Benedek R., Yang L.H., Silcox J., Seidman D.N. (1998) Phys Rev Lett 80: 4741–4744

    Article  CAS  Google Scholar 

  16. Reimer L. (1995) Energy Filtering Transmission Electron Microscopy Springer, Berlin

    Google Scholar 

  17. Stöckli T., Bonard J.M., Stadelmann P.A., Chatelain A. (1997) EELS investigation of plasmon excitations in aluminum nanospheres and carbon nanotubes, Z Physik D 40: 425–428

    Article  Google Scholar 

  18. Stöckli T., Bonard J. M., Chatelain A., Wang Z. L., Stadelmann P. (1998) Plasmon excitations in graphitic carbon spheres, Phys Rev B 57: 15599–15612

    Article  Google Scholar 

  19. Fink J. (1989) Recent developments in energy-loss spectroscopy. In: Advances in Physics and Electron Physics, Academic Press, London 75: 121–232

    Google Scholar 

  20. Kruit P., Venables J.A. (1988) High-spatial-resolution surface-sensitive electron spectroscopy using a magnetic parallelizer. Ultramicroscopy 25: 183–194

    Article  Google Scholar 

  21. Egerton R. (1996) Electron Energy-loss Spectroscopy in the Transmission Electron Microscope. 2nd edition, Plenum Press, New York/London

    Google Scholar 

  22. Kothleitner G., Hofer F. (1998) Optimization of the signal to noise ratio in EFTEM elemental maps with regard to different ionization edge types. Micron 29: 349–357

    Article  CAS  Google Scholar 

  23. Inokuti M. (1971) Inelastic collisions of fast charged particles with atoms and molecules: the Bethe theory revisited. Rev Mod Phys 43: 297–347

    Article  CAS  Google Scholar 

  24. Jeanguillaume C., Colliex C. (1989) Spectrum-image: The next step in EELS digital acquisition and processing. Ultramicroscopy 28: 252–257

    Google Scholar 

  25. Krivanek O.L., Gubbens A.J., Dellby N. (1991) Developments in EELS instrumentation for spectroscopy and imaging. Microsc Microanal Microstr 2: 315312

    Google Scholar 

  26. Lanio, S. (1986) High-resolution imaging magnetic energy filter with simple structure. Optik 73: 99–107

    Google Scholar 

  27. Probst W., Benner G., Bihr J., Weimer E. (1993) An “Omega” energy filtering TEM — principles and applications. Adv Mater 5: 297–300

    Article  CAS  Google Scholar 

  28. Tanaka M., Tsuda K., Terauchi M., Tsuno K., Kaneyama T., Honda T., Ishida M. (1999) A new 200 kV Omega-filter electron microscope. J Microscopy 194: 219–227

    Article  CAS  Google Scholar 

  29. Krivanek O.L., Gubbens A.J., Dellby N., Meyer C.E. (1992) Design and first applications of a post-column imaging filter. Microsc Microanal Microstruct 3: 187–199

    Article  Google Scholar 

  30. Nellist P.D., Pennycook S.J. (1999) Incoherent imaging using dynamically scattered coherent electrons. Ultramicroscopy 78: 111–124

    Article  CAS  Google Scholar 

  31. Krivanek O.L., Dellby N., Lupini A.R. (1999) Towards sub-Aelectron beams. Ultramicroscopy 78: 1–11

    Article  CAS  Google Scholar 

  32. James E.M., Browning N.D. (1999) Practical aspects of atomic resolution imaging and analysis in STEM. Ultramicroscopy 78: 125–139

    Article  CAS  Google Scholar 

  33. Rose H. (1999) Prospects for realizing a sub-A sub-eV resolution EFTEM. Ultramicroscopy 78: 13–25

    Article  CAS  Google Scholar 

  34. Uhlemann S., Rose H. (1994) The MANDOLINE-filter — a new high-performance imaging filter for sub-eV EFTEM. Optik 96: 163–178

    Google Scholar 

  35. Gatts C., Duscher G., Müllejans H., Rühle M. (1995) Analyzing line scan profiles with neural pattern recognition. Ultramicroscopy 59: 229–240

    Article  CAS  Google Scholar 

  36. Colliex C., Tencé M., Lefevre E., Mory C., Gu H., Bouchet D.,Jeanguillaume C. (1994) Electron energy-loss spectrometry mapping. Microchim Acta 112: 71–87

    Google Scholar 

  37. Tencé M., Quartuccio M., Colliex, C. (1995) PEELS compositional profiling and mapping at nanometer spatial resolution. Ultramicroscopy 58: 42–54

    Article  Google Scholar 

  38. Bonnet N., Brun N., Colliex C. (1999) Extracting information from sequences of spatially resolved EELS spectra using multivariate statistical analysis. Ultramicroscopy 77: 97–112

    Article  CAS  Google Scholar 

  39. Redlich P., Carroll D.L., Ajayan P.M. High spatial resolution imaging and spectroscopy in nanostructures. Curr Opinion Sol State Mater Sci 4: 325–336

    Google Scholar 

  40. Hunt J.A., Williams D.B. (1991) Electron energy-loss spectrum-imaging. Ultramicroscopy 38: 47–73

    Article  CAS  Google Scholar 

  41. Shin D.H., Kirkland E.J., Silcox, J. (1989) Annular dark field electron microscope images with better than 2A resolution at 100 kV. Appl Phys Lett 55: 2456–2458

    Article  CAS  Google Scholar 

  42. McGibbon M.M., Browning N.D., Chisholm M.F., McGibbon A.J., Penny-cook S.J., Ravikumar V., Dravid V.P. (1994) Direct determination of grain boundary atomic structure in SrTiO3. Science 266: 102–104

    Article  CAS  Google Scholar 

  43. Muller D.A., Tzou Y., Raj R., Silcox J. (1993) Mapping sp2 and spa states of carbon at sub-nanometre spatial resolution. Nature 366: 725–727

    Article  CAS  Google Scholar 

  44. Berger S.D., Pennycook S.J. (1982) Detection of nitrogen at {100} platelets in diamond. Nature 298: 635–637

    Article  CAS  Google Scholar 

  45. Müllejans H., Bruley J. (1995) Electron energy-loss near edge structure of internal interfaces by spatial difference spectroscopy. J Microsc 180: 12–21

    Article  Google Scholar 

  46. Muller D.A. (1999) Why changes in bond lengths and cohesion lead to core-level shifts in metals, and consequences for the spatial difference Method. Ultramicroscopy 78: 163–174

    Article  CAS  Google Scholar 

  47. Alber U. (1998) Ursachen der mechanischen Eigenschaften von Cu-Korngrenzen and Cu/a-Al2O3-Grenzflächen. Dissertation, Universität Stuttgart, Stuttgart, Germany

    Google Scholar 

  48. Kienzle 0. (1999) Atomistische Struktur und chemische Zusammensetzung innerer Grenzflächen von Strontiumtitanat. Dissertation, Universität Stuttgart, Stuttgart, Germany

    Google Scholar 

  49. Gu H., Ceh M., Stemmer S., Müllejans H., Rühle M. (1995) A quantitative approach for spatially-resolved electron energy-loss spectroscopy of grain boundaries and planar defects on a subnanometer scale. Ultramicroscopy 59: 215–227

    Article  CAS  Google Scholar 

  50. Baumann S.R., Williams D.B. (1981) A STEM/x-ray microanalytical study of the equilibrium segregation of bismuth in copper. J Microscopy 123: 299–305

    Article  CAS  Google Scholar 

  51. Michael J.R., Williams D.B. (1984) An analytical electron microscope study of the kinetics of the equilibrium segregation of bismuth in copper. Metall Mater Trans A. 15A: 99–105

    Article  Google Scholar 

  52. Alber U., Müllejans H., Rühle M. (1997) Improved quantification of grain boundary segregation by EDS in a dedicated STEM. Ultramicroscopy 69: 105116

    Google Scholar 

  53. Gemming T.: unpublished work (UPDATE IN PROOFS)

    Google Scholar 

  54. Bruley J., Keast, V.J., Williams, D.B. (1996) Measurement of the Localized Electronic Structure Associated with Bismuth Segregation to Copper Grain Boundaries. J. Phys. D: Appl. Phys., 29 1730–1739.

    Google Scholar 

  55. Keast V.J., Bruley J., Rez P., MacLaren J.M., Williams D.B. (1997) Chemistry and bonding changes associated with the segregation of Bi to grain boundaries in Cu. Acta Metall Mater 6: 481–490

    Google Scholar 

  56. Muller D.A., Subramanian S., Batson P.E., Silcox J., Sass S.L. (1996) Structure, chemistry and bonding at grain boundaries in Ni3Al-I. The role of boron in ductilizing grain boundaries. Acta metal’ mater 44: 1637–1645

    Google Scholar 

  57. Rühle M. (1996) Structure and composition of metal ceramic interfaces. J Eur Ceram Soc 16: 353–365

    Article  Google Scholar 

  58. Rühle M., Evans A.G., Ashby M.F., Hirth J.P. (1990) Metal-Ceramic Interfaces. Pergamon Press, Oxford

    Google Scholar 

  59. Dehm G., Scheu C., Rühle M., Raj R. (1998) Growth and structure of Cu/Al2O3 and Cu/Ti/Al2O3 interfaces. Acta Mater 46: 759–772

    Article  CAS  Google Scholar 

  60. Scheu C., Dehm G., Rühle M., Brydson, R. (1998) Electron-energy-loss spectroscopy studies of Cu-a-Al2O3 interfaces grown by molecular beam epitaxy. Phil Mag A 78: 439–465

    Article  CAS  Google Scholar 

  61. Scheu C. (1996) Analytische Untersuchungen an Cu/Al203- und Cu/Ti/Al2O3-Grenzflächen, Dissertation, Universität Stuttgart, Stuttgart, Germany

    Google Scholar 

  62. Dehm G. (1995) Struktur, Zusammensetzung und mechanische Eigenschaften von Cu/Al2O3 und Cu/Ti/Al2O3 Grenzflächen, Dissertation, Universität Stuttgart, Stuttgart, Germany

    Google Scholar 

  63. Plitzko J.M., Mayer J. (1999) Quantitative thin film analysis by energy filtering transmission electron microscopy. Ultramicroscopy 78: 207–219

    Article  CAS  Google Scholar 

  64. Dehm G., Rühle M., Conway D., Raj R. (1997) A microindentation method for estimating interfacial shear strength and its use in studying the influence of titanium transition layers on the interface strength of epitaxial copper films on sapphire. Acta Mater 45: 489–499

    Article  CAS  Google Scholar 

  65. Ahn C.C., Krivanek O.L. (1983) EELS Atlas, Center for Solid State Science, Arizona State University, Tempe, Arizona.

    Google Scholar 

  66. Scheu C., Dehm G., Müllejans H., Brydson R., Rühle M. (1995) Electron energy-loss spectroscopy of metal-alumina interfaces. Microsc Microanal Microstruct 6: 19–31

    Article  CAS  Google Scholar 

  67. Dehm G., Scheu C., Möbus G., Brydson R., Rühle M. (1997) Synthesis of analytical and high-resolution transmission electron microscopy to determine the interface structure of Cu/Al2O3. Ultramicroscopy 67: 207–217

    Article  CAS  Google Scholar 

  68. Alber U., Müllejans H., Rühle M. (1999) Wetting of copper on a — Al2O3 surfaces depending on the orientation and oxygen partial pressure. Micron 30: 101–108

    Article  CAS  Google Scholar 

  69. Scheu Ch., Stein W., Rühle M. (2000) Electron energy-loss near-edge structure studies of a Cu/(1120)a-Al2O3 interface. phys stat sol (b) 222: 199–211

    CAS  Google Scholar 

  70. Nufer S., Marinopoulos A.G., Gemming T., Elsässer C., Kurtz W., Köstlmeier S., Rühle M. (2001) Quantitative atomic-scale analysis of interface structures: Transmission electron microscopy and local density functional theory. Phys Rev Lett 86: 5066–5069

    Google Scholar 

  71. Bruley J., Brydson R., Müllejans H., Mayer J., Gutekunst G., Mader W., Knauss D., Rühle M. (1994) Investigation of the chemistry and bonding at niobium-sapphire interfaces. J Mater Res 9: 2574–2583

    Article  CAS  Google Scholar 

  72. Brydson R., Müllejans H., Bruley J., Trusty P., Sun X., Yeomans J., Rühle M. (1995) Spatially resolved electron energy-loss studies of metal-ceramic interfaces in transition metal/alumina cermets. J Microscopy 177: 369–386

    Article  CAS  Google Scholar 

  73. Liedtke A. (1997) Einflußdes Sauerstoffgehalts in Kupfer auf die Reaktivität von diffusionsverschweißten Cu—Al2O3 Grenzflächen. Dissertation, Universität Stuttgart, Stuttgart, Germany

    Google Scholar 

  74. Reimer L., Fromm I., Rennekamp R. (1988) Operation modes of electron spectroscopic imaging and electron energy-loss spectroscopy in a transmission electron microscope. Ultramicroscopy 24: 339–354

    Article  Google Scholar 

  75. Reimer L., Fromm I., Hirsch P., Plate U., Rennekamp R. (1992) Combination of EELS modes and electron spectroscopic imaging and diffraction in an energy filtering electron microscope. Ultramicrosc 46: 335–347

    Article  CAS  Google Scholar 

  76. Hofer F., Warbichler P., Grogger W. (1995) Imaging of nanometer-sized precipitates in solids by electron spectroscopic Imaging. Ultramicroscopy 59: 1531

    Article  Google Scholar 

  77. Hofer F., Grogger W., Kothleitner G., and Warbichler P. (1997) Quantitative Analysis of EFTEM elemental distribution images. Ultramicroscopy 67: 83-103

    Article  CAS  Google Scholar 

  78. Crozier P. A. (1995) Quantitative elemental mapping of materials by energy-filtered imaging. Ultramicroscopy 58: 157–174

    Article  CAS  Google Scholar 

  79. Mayer J., Szabo D.V., Rühle M., Seher M., Riedel R. (1995) Polymer derived Si-based ceramics, Part II: microstructural characterisation by electron spectroscopic imaging. J Eur Ceram Soc 15: 717–727

    Article  CAS  Google Scholar 

  80. Körtje K.-H. (1994) Image-EELS: simultaneous recording of multiple electron energy-loss spectra from series of electron spectroscopic images. J Microscopy 174: 149–159

    Article  Google Scholar 

  81. Lavergne J.-L., Foa C., Bongrand P., Seux D., Martin J.-M. (1994) Application of recording and processing of energy-filtered image sequences for the elemental mapping of biological specimens: Imaging-Spectrum. J Microscopy 174: 195–206

    Google Scholar 

  82. Beckers A.L.D., De Bruijn W.C., Gelsema E.S., Cleton-Soeteman M.I., van Eijk H.G. (1994) Quantitative electron spectroscopic imaging in bio-medicine: methods for image acquisition, correction and analysis. J Microscopy 174: 171–182

    Article  Google Scholar 

  83. Beckers A.L.D., Gelsema E.S., De Bruijn W.C., Cleton-Soeteman M.I., van Eijk H.G. (1996) Quantitative electron spectroscopic imaging in bio-medicine: evaluation and application. J Microscopy 183: 78–88

    Article  CAS  Google Scholar 

  84. Mayer J., Eigenthaler U., Plitzko J.M., Dettenwanger F. (1997) Quantitative analysis of electron spectroscopic imaging ( ESI) series. Micron 28: 361–370

    Google Scholar 

  85. Martin J.-M., Vacher B., Ponsonnet L., Dupuis V. (1996) Chemical bond mapping of carbon by image-spectrum EELS in the second-derivative mode. Ultramicroscopy 65: 229–238

    Article  CAS  Google Scholar 

  86. Mayer J., Plitzko J.M. (1996) Mapping of ELNES on a nanometre scale by electron spectroscopic imaging. J Microscopy 183: 2–8

    Article  CAS  Google Scholar 

  87. Thomas P.J., Midgley P.A. (1999) Image-Spectroscopy: New developments and applications. Microsc Microanal 5 (Suppl. 2 ): 618–619

    Google Scholar 

  88. Jeanguillaume C., Trebbia P., Colliex C. (1978) About the use of electron energy-loss spectroscopy for chemical mapping of thin foils with high spatial resolution. Ultramicroscopy 3: 237–242

    Article  CAS  Google Scholar 

  89. Hofer F., Warbichler P. (1996) Improved imaging of secondary phases in solids by energy-filtering TEM. Ultramicroscopy 63: 21–25

    Article  CAS  Google Scholar 

  90. Bentley J., Hall E.L., Kenik E.A. (1995) Quantitative elemental concentrations by energy filtered imaging. In: G.W. Bailey, M.H. Ellisman, R.A. Hennigar and N.J. Zaluzec (Eds.) Microscopy and Microanalysis 1995, Jones and Begell (New York):268–269

    Google Scholar 

  91. Weickenmeier A.L., Nüchter W., Mayer J. (1995) Quantitative characterization of point spread function and detection quantum efficiency for a YAG scintillator slow scan CCD camera. Optik 99: 147–154

    Google Scholar 

  92. Berger A., Kohl H. (1992) Optimum imaging parameters for elemental mapping in an energy filtering transmission electron microscope. Optik 4: 175–193

    Google Scholar 

  93. Berger A., Mayer J., Kohl H. (1994) Detection limits in elemental distribution images produced by EFTEM: Case study of grain boundaries in Si3N4. Ultramicroscopy 55: 101–112

    Article  CAS  Google Scholar 

  94. Clarke D. R. (1987) On the equilibrium thickness of intergranular glass phases in ceramic materials. J Am Ceram Soc 70: 15–22

    Article  CAS  Google Scholar 

  95. Kleebe H.-J., Cinibulk M.K., Cannon R.M., Rühle M. (1993) Statistical analysis of the intergranular film thickness in silicon nitride ceramics. J Am Ceram Soc 76: 1969–1977

    Article  CAS  Google Scholar 

  96. Cinibulk M.K., Kleebe H.-J., Schneider G.A., Rühle M. (1993) Amorphous intergranular films in silicon nitride ceramics quenched from high temperatures. J Am Ceram Soc 76: 2801–2808

    Article  CAS  Google Scholar 

  97. Tanaka I., Kleebe H.-J., Cinibulk M.K., Bruley J., Clarke D.R., Rühle M. (1993) Calcium concentration dependence of the intergranular film thickness in silicon nitride. J Am Ceram Soc 76: 911–914

    Google Scholar 

  98. Rafferty B., Pennycook S.J. (1999) Towards atomic column-by-column spectroscopy. Ultramicroscopy 78: 141–151

    Article  CAS  Google Scholar 

  99. Golla U., Kohl H. (1997) Theoretical and experimental investigations of resolution and detection limits in energy filtering electron microscopy. Micron 28: 397–406

    Article  Google Scholar 

  100. Jäger W., Mayer J. (1995) Energy filtering transmission electron microscopy of Sin,Gen superlattices and Si—Ge heterostructures — I. experimental results. Ultramicroscopy 59:33-45

    Google Scholar 

  101. Freitag B., Mader W. (1999) Element specific imaging with high lateral resolution: An experimental study on layer structures. J Microscopy 194: 42–57

    Google Scholar 

  102. Frank J. (1975) A practical resolution criterion in optics and electron microscopy. Optik 43: 25–34

    Google Scholar 

  103. Endoh H., Hashimoto H., Makita Y. (1994) Theoretical and observed electron microscope images of impurity atoms in thin crystals formed by L-shell ionization electrons. Ultramicroscopy 56: 108–120

    Article  CAS  Google Scholar 

  104. Mayer J., Matsumura S., Tomokiyo Y. (1998) First ESI experiments on the new JEOL 2010 FEF. J Electron Microscopy 47: 283–291

    Article  CAS  Google Scholar 

  105. Stallknecht P., Kohl H. (1996) Computation and interpretation of contrast in crystal lattice images formed by inelastically scattered electrons in a transmission electron microscope. Ultramicroscopy 66: 261–275

    Article  CAS  Google Scholar 

  106. Knippelmeyer R., Kohl H. (1999) Relativistic calculations of intensity distributions in elemental maps using contrast transfer functions. J Microscopy 194:30-41

    Google Scholar 

  107. Lavergne J.-L., Foa C., Bongrand P., Seux D., Martin J.-M. (1994) Application of recording and processing of energy-filtered image sequences for the elemental mapping of biological specimens: Imaging-spectrum. J Microscopy 174: 195–206

    Google Scholar 

  108. Körtje K.-H. (1994) Image-EELS: Simultaneous recording of multiple electron energy-loss spectra from series of electron spectroscopic images. J Microscopy 174: 149–159

    Article  Google Scholar 

  109. Rösler M., Zachai R., Füßer H.-J., Jiang X., Klage, C.-P. (1993) Structural properties of heteroepitaxial diamond on silicon. In: Proc. 2nd International Conference on the Applications of Diamond Films and Related Materials. Yoshikawa, M. Murakawa, M., Tokyo,691–696

    Google Scholar 

  110. Stoner B.R., Ma G.-H.M., Wolter S.D., Glass J.T. (1992) Characterization of bias-enhanced nucleation of diamond on silicon by in vacuo surface analysis and transmission electron microscopy. Phys Rev B 45: 11067–11084

    Article  CAS  Google Scholar 

  111. Tzou Y., Bruley J., Ernst F., Rühle M., Raj R. (1994) TEM study of the structure and chemistry of a diamond/silicon interface. J Mater Res 9: 1566-1572

    Google Scholar 

  112. Plitzko J., Rösler M., Nickel K.G. (1997) Heteroepitaxial growth of diamond thin films on silicon: Information transfer by epitaxial tilting. Diamond Rel Mater 6: 935–939

    Google Scholar 

  113. Egerton R.F., Whelan M.J. (1974) Electron energy-loss spectra of diamond, graphite and amorphous carbon. J Electron Spectrosc 3: 232–236

    Article  CAS  Google Scholar 

  114. Berger S.D., McKenzie D.R., Martin P.J. (1988) EELS analysis of vacuum arc-deposited diamond-like films Phil Mag Lett 57: 285–290

    CAS  Google Scholar 

  115. Spence J.C.H., Zuo J.M. (1992) Electron Microdiffraction. Plenum Press, New York

    Google Scholar 

  116. Mayer J., Deininger C., Reimer L. (1995) Electron Spectroscopic Diffraction. In: L. Reimer (Ed.) Energy Filtering Transmission Electron Microscopy. Springer Series in Optical Sciences 71: 291–345

    Google Scholar 

  117. Zuo J.M., Spence J.C.H. (1991) Automated structure factor measurement by convergent-beam electron diffraction. Ultramicroscopy 35: 185–196

    Article  CAS  Google Scholar 

  118. Deininger C., Necker G., Mayer J. (1994) Determination of structure factors, lattice strains and accelerating voltage by energy filtered convergent beam electron diffraction. Ultramicroscopy 54: 15–30

    Article  CAS  Google Scholar 

  119. Bird D.M., Saunders M. (1992) Sensitivity and accuracy of CBED pattern matching. Ultramicroscopy 45: 241–251

    Article  Google Scholar 

  120. Swaminathan S., Jones I.P., Zaluzec N.J., Maher D.H., Fraser H.L. (1993) Experimental determination of low order structure factors in the intermetallic compound TiA1. Mater Sci Eng A170: 227–235

    Article  Google Scholar 

  121. Holmestad R., Zuo J.M., Spence J.C.H., HOier R, Horita Z. (1995) Effect of Mn doping on charge density in gamma-TiAl by quantitative convergent beam electron diffraction. Phil Mag A 72: 579–601

    Article  CAS  Google Scholar 

  122. Fox A.G., Tabbernor M.A. (1991) The bonding charge density of bNiAl. Acta Metall Mater 39: 669–678

    Article  CAS  Google Scholar 

  123. Menon E.S., Fox A.G. (1996) On the determination of the Debye-Waller factor and structure factors of NiAl by X-ray powder diffraction. Acta Mater 44: 2547–2555

    Article  CAS  Google Scholar 

  124. Lu Z.W., Wei S.-H., Zunger A. (1992) Theory of bonding charge density in ‘NiAl. Acta Metall Mater 40: 2155–2165

    Article  CAS  Google Scholar 

  125. Davenport J.W., Schultz P.A. (1992) Bonding and brittleness in B2 structure 3d transition metal aluminides: ionic, directional, or does it make a difference? Scripta Metall Mater 27: 629–634

    Article  Google Scholar 

  126. Nüchter W., Weickenmeier A.L., Mayer J. (1998) Determination of bonding charge density in NiAl by quantitative convergent beam electron diffraction. phys stat sol (a) 166: 367–379

    Google Scholar 

  127. Zuo J.M., Spence J.C.H., Downs J., Mayer J. (1993) Measurement of individual structure factor phases with one degree accuracy: the (002) in BeO studied by dynamical electron diffraction. Acta Cryst A49: 422–429

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kohler-Redlich, P., Mayer, J. (2003). Quantitative Analytical Transmission Electron Microscopy. In: Ernst, F., Rühle, M. (eds) High-Resolution Imaging and Spectrometry of Materials. Springer Series in Materials Science, vol 50. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-07766-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-07766-5_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07525-4

  • Online ISBN: 978-3-662-07766-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics