Skip to main content

Structure Determination by Quantitative High-Resolution Transmission Electron Microscopy

  • Chapter
High-Resolution Imaging and Spectrometry of Materials

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 50))

Abstract

High-resolution transmission electron microscopy (HRTEM) comprises techniques of image formation by bright-field phase contrast with the aim of resolving the lattice fringes of a crystal lattice. There is no specific resolution threshold value separating “HR”-TEM from conventional TEM. Instead, the distinction is based on the fact that several diffracted beams are necessary to form the image of crystal planes. HRTEM is most important and powerful for studies of crystal defect structures in real space. For this, the aperture of the objective lens must be large enough to allow the diffracted beams corresponding to the projected crystal planes to pass and the passband of the contrast-transfer function (aberrations and incoherence envelopes) must extend sufficiently far. Many non-equivalent diffracted electron waves then build up an interference pattern in the image plane according to Abbe’s optical microscope theory. Conventional TEM, on the other hand, uses scattering around a single diffracted beam only. An HRTEM image pattern normally mirrors well the atomic geometry and symmetry of the material examined, but not necessarily the atom positions. Visual interpretation is therefore routinely assisted by computer simulations of the experimental image formation process. The image is correctly interpreted in terms of the atomic structure once the simulated and experimental image match sufficiently. For many years, experimental and simulated HRTEM images were compared visually, but recently interest has shifted towards digital and automated interpretation of the micrographs. This trend towards computer-controlled atomic-resolution structure retrieval (as opposed to just verifying or falsifying a few structure models) has three main motivations:

  1. 1.

    Present trends in materials science. The need for accurate knowledge of the structure of crystal defects at atomic resolution has increased rapidly along with the engineering and designing of materials down to the nanometre scale. For example, the semiconductor device industry and fundamental research on quantum confinement rely on the knowledge and control of defect structure, such as interfaces, dislocations and composition fluctuations at the nanometre level. Nanostructured and nanocrystalline metals, alloys, and ceramics, and especially compound materials, thin films, and multilayered coatings likewise depend on atomic scale characterisation and control. Furthermore, the history of the development of “novel materisls” such as carbon nanotubes, high-temperature superconductors, magnetic nanostructures, or metallic quantum wires, was closely linked to their observation in the high-resolution electron microscope.

  2. 2

    Progress in instrumentation. Several important milestones have been passed in the last ten years. Nwe ultra-resolution lens designs combining low spherical aberration with acceptable tilting ranges have been introduced for 200kV–300kV instruments. Field-emission guns now combine very high brightness with high spatial and temporal coherence. The development of very stable and comfortable high-voltage/high-resolution instruments has resulted in a point-resolution of about 1Å thanks to the reduction in wavelength at 1250kV. Finally, the most recent milestone was the demonstration of sub-1.4Å Scherzer-resolution by correcting the spherical aberration at 200kV. See Chap. 6 for more details. All these modern microscope techologies share the common advantage of pushing the information resolution limit (the ultimate detectable spatial frequency, independent of associated aberrations) to regions near or even below 1Å. The information resolution has become a major figure of merit now that image processing allows image evaluation techniques that are less dependent on a Rayleigh-type point resolution limit to be employed. The development of slow-scan CCD cameras and, more recently, the image palte system was another milestone; these complement the conventional photographic film, which can, however, still be reliably used for quantitative work combined with digitisation in a high-quality scanner. The revolutionary increase of CPU power over the last decade can be appreciated from the following numbers: Thecomputing time to convert one small defect structure model into one HRTEM-image on a stata-of-the-art laboratory workstation decreased from 2–3 hours in 1990 (e.g. DEC μ VAX II) to 10–20 seconds in 1999 (e.g. DEC Alpha AXP).

  3. 3

    Progress in modelling of materials. The development of large-scale atomic modelling of defect structures now allows thousands of atomas to be included in a calculation cell, covering whole misfit dislocation networks at heterophase boundaries, for example. Methods of quantum chemistry and solid-state physics thus generate another challenge but also provide an important boost for HRTEM quantification : getting theory and experiment to agree on the Å -scale with accuracy of atom location on the pm-scale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Spence J.C.H. (1988) Experimental High Resolution Electron Microscopy. Oxford University Press, New York

    Google Scholar 

  2. Ibers J.A., Hamilton W.C. (Eds) (1974) International Tables for X-Ray Crystallography, Vol. IV. Kynoch, Birmingham.

    Google Scholar 

  3. Möbus G., Schweinfest R., Gemming T., Wagner T.,Rühle R. (1998) Iterative structure retrieval techniques: A comparative study and a modular program package. J Microsc, 190, 109–130

    Google Scholar 

  4. Gemming T., Möbus G., Exner M., Rühle M. (1998) Ab-initio high resolution electron microscopy: A case study of sapphire. J Microsc, 190, 89–98

    Article  CAS  Google Scholar 

  5. Möbus G., Gemming T., Gumbsch P. (1998) Influence of phonon scattering on HRTEM-images. Acta Cryst A, 54, 83–90

    Article  Google Scholar 

  6. Ishizuka K. (1980) Contrast transfer of crystal images in TEM. Ultramicroscopy, 5, 55–65

    Article  CAS  Google Scholar 

  7. Stadelmann P. (1987) EMS a software package for electron diffraction analysis and HREM image simulation in materials science. Ultramicroscopy, 21, 131145

    Google Scholar 

  8. Möbus G., Rühle M. (1994) Structure determination of metal-ceramic interfaces by numerical contrast evaluation of HRTEM-micrographs. Ultramicroscopy, 56, 54–70

    Article  Google Scholar 

  9. Marks L.D. (1985) Image localisation. Ultramicroscopy, 18, 33–38

    Article  CAS  Google Scholar 

  10. Coene W., Jansen A.J.E.M. (1992) Image delocalisation in HRTEM. Scann Micr Suppl, 6, 379–403

    Google Scholar 

  11. Lichte H. (1991) Optimum focus for taking holograms. Ultramicroscopy, 38, 13–22

    Article  Google Scholar 

  12. Decaro L., Giuffrida A., Carlino E., Tapfer L. (1995) Elastic stress relaxation in HRTEM specimens of strained semiconductor heterostructures. Microsc Microanal Microstr, 6, 465–472

    Article  CAS  Google Scholar 

  13. Hÿtch M.J., Plamann T. (2000) Imaging conditions for reliable measurement of rapidly varying displacement and strain in HREM. Ultramicroscopy, 87, 199–212

    Article  Google Scholar 

  14. Hÿtch M.J., Plamann T. (2000) Effect of the objective lens on the measurement of rapidly varying displacement fields from HRTEM images. Proceed. EUREM Brno, Czechia, 1, 119–120

    Google Scholar 

  15. Bierwolf R., Hohenstein M., Phillipp F., Brandt O., Crook G.E., Ploog K. (1993). Direct measurement of local lattic distortions in strained layer structures by HREM. Ultramicroscopy, 49, 273–285

    Article  CAS  Google Scholar 

  16. Seitz H., Ahlborn K., Seibt M., Schröter W. (1998) Sensitivity limits of strain mapping procedures using HREM. J Microscopy, 190, 184–189

    Article  CAS  Google Scholar 

  17. Wang S.Q. (1995) Atom: X-windows based software for quantitative analysis of atomic images. J Appl Cryst, 28, 837–839

    Article  CAS  Google Scholar 

  18. Hofmann D. and Ernst F. (1994) Quantitative high-resolution transmission electron microscopy of the incoherent J’3(211) boundary in Cu. Ultramicroscopy, 53, 205–221

    Article  CAS  Google Scholar 

  19. Kilaas R., Paciornik S., Schwartz A.J., Tanner L.E. (1994) Quantitative analysis of atomic displacements in HRTEM images. J Comp Assist Microsc, 6, 129–138

    Google Scholar 

  20. Bayle P., Thibault J. (1994) Quantitative HREM Study of [001] Au/Ni Multi-layers Proceed. ICEM, Paris, 1, 397–398

    CAS  Google Scholar 

  21. Robertson M.D., Currie J.E., Corbett J.M., Webb J.B. (1995) Determination of lattice strains in epitaxial layers in HRTEM. Ultramicroscopy, 58, 175–184

    Article  CAS  Google Scholar 

  22. Rosenauer A., Remmele T., Fischer U., Forster A., Gerthsen D. (1997) Strain determination in mismatched semiconductor heterostructures by the digital analysis of lattice images. Inst Phys conf series, Bristol, UK, 157, 39–42

    CAS  Google Scholar 

  23. Hÿtch M.J. (1997) Analysis of variations in structure from HREM images by combination of real space and Fourier space information. Microsc Microanal Microstruct, 8, 41–57

    Article  Google Scholar 

  24. C.J.D. Hetherington C.J.D., Dahmen U. (1992) An optical moiré technique for the analysis of displacements in lattice images Scann Microsc Suppl, 6, 405–414

    Google Scholar 

  25. Inkson B.J., Möbus G., Rühle M. (1997) Atomic-resolution electron microscopy of TiB2 precipitates in an industrial TiAl alloy. MRS Symp Proc, Boston, 466, 151–156

    CAS  Google Scholar 

  26. Möbus G., Wagner T. (1999) Direct versus iterative structure retrieval for a Cu/Ti misfit dislocation: A comparison of various 1A HREM Technologies. J Microsc, 194, 124–141

    Article  Google Scholar 

  27. Paciornik S., Kilaas R., Dahmen U. (1993) Assessment of specimen noise in HREM images of simple structures. Ultramicroscopy, 50, 255–262

    Article  CAS  Google Scholar 

  28. Möbus G., Necker G., Rühle M. (1993) Adaptive Fourier filtering technique for quantitative evaluation of high resolution electron micrographs of interfaces. Ultramicroscopy, 49, 46–65

    Article  Google Scholar 

  29. Paciornik S., Kilaas R., Turner J., Dahmen U. (1996) A pattern recognition technique for the analysis of grain boundary structures by HREM. Ultramicroscopy, 62, 15–27

    Article  CAS  Google Scholar 

  30. Kilaas R., Gronsky R. (1985) The effect of amorphous surface layers on imaging of crystals in HRTEM. Ultramicroscopy, 16, 193–201

    Article  CAS  Google Scholar 

  31. Kienzle O., Ernst F., Möbus G. (1998) Reliability of atom column positions in a ternary system determined by quantitative HRTEM. J Micros, 190, 144–158

    Article  CAS  Google Scholar 

  32. Hillebrand R. (1995) Quantitative analysis of HREM images: Measures of similarity. phys stat sol (a), 150, 65–76

    CAS  Google Scholar 

  33. Taupin D. (1988) Probabilities, data reduction and error analysis in the physical sciences. les editions de physique, Les Ulis Cedex, France

    Google Scholar 

  34. Hÿtch M.J., Stobbs W.M. (1994) Quantitative comparison of high resolution TEM images with image simulation. Ultramicroscopy, 53, 191–205

    Article  Google Scholar 

  35. Hÿtch M.J., Stobbs W.M. (1994) Quantitative criteria for the matching of simulations with experimental HREM images. Microsc Microanal Microstruct, 5, 133–151

    Article  Google Scholar 

  36. Boothroyd C.B. (1998) Why don’t high-resolution simulations and images match? J Micros, 190, 99–108

    Article  CAS  Google Scholar 

  37. Press W.H. et al. (1992) Numerical Recipes, 2nd ed. Cambridge University Press, Cambridge, UK

    Google Scholar 

  38. Schwefel H-P. (1981) Numerical Optimization of Computer Models. J. Wiley, New York

    Google Scholar 

  39. Bäck T., Schwefel H-P. (1993) An overview of evolutionary algorithms for parameter optimization. Evolutionary Computation, 1, 1–23

    Article  Google Scholar 

  40. Smith A.R., Eyring L. (1982) Calculation, display and comparison of electron microscope images modelled and observed. Ultramicroscopy, 8, 65–78

    Article  CAS  Google Scholar 

  41. Barry J.C. (1989) Semiquantitative image matching in HRTEM. In W. Krakow and M. O’Keefe, Eds, Computer Simulation of Electron Microscope Diffraction and Images. The Minerals, Metals and Materials Society, Pennsylvania

    Google Scholar 

  42. Thust A., Urban K. (1992) Quantitative high-speed matching of high-resolution electron microscopy images. Ultramicroscopy, 45, 23–42

    Article  Google Scholar 

  43. King W.E., Campbell G.H. (1993) Determination of thickness and defocus by quantitative comparison of experimental and simulated high-resolution images. Ultramicroscopy, 51, 128–135

    Article  CAS  Google Scholar 

  44. Tang D., Kirkland A.I., Jefferson D.A. (1994) Optimization of high-resolution image simulations. Ultramicroscopy, 53, 137–146

    Article  CAS  Google Scholar 

  45. Möbus G. (1994) Optimierung der digitalen Kontrastauswertung hochaufgelöster elektronenmikroskopischer Aufnahmen innerer Grenzfiächen. Dissertation, Universität Stuttgart, Germany

    Google Scholar 

  46. Möbus G., Gutekunst G., Mayer J., Rühle M. (1994) High precision iterative digital image matching and limitations of quantitative HRTEM. Proceed 13th Int Congr Electron Microscopy, Paris, France, 1, 373–374

    Google Scholar 

  47. Hofmann D., Möbus G., Ernst F. (1992) Quantitative HRTEM of incoherent twin boundaries in copper. Proceed Xth Europ Congr Electron Microscopy, Granada, Spain, 513–514

    Google Scholar 

  48. King W.E., Campbell G.H. (1993) Quantitative HREM study of the atomic structure of the J(310)/[001] symmetric tilt grain boundary in Nb. MRS Symp Proc, 295, 83–88

    Article  CAS  Google Scholar 

  49. King W.E., Campbell G.H. (1994) Quantitative HREM using non-linear least-squares methods. Ultramicroscopy, 56, 46–53

    Article  CAS  Google Scholar 

  50. Zhang H., Marks L.D., Wang Y.Y., Zhang H., Dravid V.P., Han P., Payne D.A. (1995) Structure of planar defects in (Sro.9Cao.3)i.1CuO2 infinite-layer superconductors by quantitative high-resolution electron microscopy. Ultra-microscopy, 57, 103–111

    CAS  Google Scholar 

  51. Möbus G., Dehm G. (1996) Retrieval of crystal defect structures from HREM images by simulated evolution: II experimental image evaluation. Ultramicroscopy, 65, 217–228

    Article  Google Scholar 

  52. King W.E., Campbell G.H., Foiles S.M., Cohen D., Hanson K.M. (1998) Quantitative HREM observation of the E’11(113)/[110] grain-boundary structure in aluminium and comparison with atomistic simulation. J Microsc, 190, 131–143

    Article  CAS  Google Scholar 

  53. Nadarzinski K., Ernst F. (1996) The atomistic structure of a Sigma=3,(111) grain boundary in NiAI studied by quantitative HRTEM. Phil Mag A, 74, 641–664

    Article  CAS  Google Scholar 

  54. Höche T., Kenway P.R., Kleebe H-J., Rühle M., Morris P.M. (1994) High-resolution transmission electron microscopy studies of a near all grain boundary in a-alumina. J Amer Ceram Soc, 77, 339–348

    Article  Google Scholar 

  55. Kienzle O., Ernst F., Möbus G. (1998) Reliability of atom column positions in a ternary system determined by high-resolution transmission electron microscopy. J Microsc, 190, 144–158

    Article  CAS  Google Scholar 

  56. Schweinfest R., Ernst F., Wagner T., Rühle M. (1998) Quantitative HRTEM at the Al/MgAl2O4 interface. Proceed ICEM-14, Cancun/Mexico (IOP-publ., Bristol, UK), 1, 635–636

    CAS  Google Scholar 

  57. Möbus G. (1996) Retrieval of crystal defect structures from HREM images by simulated evolution: I basic technique. Ultramicroscopy, 65, 205–216

    Article  Google Scholar 

  58. Merkle K.L., Csencsits R., Rynes K.L., Withrow J.P., Stadelmann P.A. (1993) The effect of the three-fold astigmatism on measurments of grain boundary volume expansion by HRTEM. J. Microscopy, 190, 204–213

    Article  Google Scholar 

  59. Möbus G., Kienzle O. (1999) Interface structure retrieval by HREM: From entropy maximisation to r-factor fits. In Kiely, C.J., Edt, Proceedings of EMAG 1999, Sheffield, 263–266. IOP, Bristol, UK

    Google Scholar 

  60. Möbus G. (2000) Probability Calculus for quantitative HREM. Part II: Entropy and Likelihood concepts. Ultramicroscopy, 85, 199–213

    Article  Google Scholar 

  61. Skilling J. (1998) Probabilistic data analysis: An introductory guide. J Microsc, 190, 28–36

    Article  Google Scholar 

  62. Jaynes E.T. (1957) Information theory and statistical mechanics. Phys Rev, 106, 620–630

    Article  Google Scholar 

  63. Buck B., Macaulay V.A. (1990) Maximum Entropie in Action. Oxford Science Publications, Oxford, UK

    Google Scholar 

  64. Möbus G., Kienzle O. (2000) Probability Calculus for quantitative HREM. Part I: Monte Carlo and Point Cloud Techniques. Ultramicroscopy, 85, 183–213

    Article  Google Scholar 

  65. Ourmazd A., Baumann F.H., Bode M., Kim Y. (1990) Quantitative chemical lattice imaging: theory and practice. Ultramicroscopy, 34, 237–255

    Article  Google Scholar 

  66. Schwander P., Kisielowski C., Seibt M., Baumann F.H., Kim Y.O., Ourmazd A. (1993) Mapping Projected Potential, Interfacial Roughness, and Composition in General Crystalline Solids by Quantiative Transmission Electron-Microscopy Phys Rev Lett, 71, 4150–4153

    CAS  Google Scholar 

  67. Stenkamp D., Jäger W. (1993) Compositional and structural characterization of SixGei_x alloys and heterostructures by HRTEM. Ultramicroscopy, 50, 321–354

    Article  CAS  Google Scholar 

  68. Hillebrand R. (1998) Fuzzy logic approaches to the analysis of HREM images of III-V compounds. J Microscopy, 190, 61–72

    Article  CAS  Google Scholar 

  69. Stenkamp D. (1998) Detection and quantitative assessment of image aberrations from single HRTEM lattice images. J Microscopy, 190, 194–203

    Article  CAS  Google Scholar 

  70. Saxton W.O. (1978) Computer Techniques for Image Processing in Electron Microscopy. Academic Press, New York

    Google Scholar 

  71. Kirkland E.L. (1984) Improved high resolution image processing of bright field electron micrographs. Ultramicroscopy, 15, 151–172

    Article  Google Scholar 

  72. Coene W., Janssen A., Op de Beeck M., Van Dyck D. (1992) Phase Retrieval Through Focus Variation For Ultra-Resolution in Field-Emission Transmission Electron-Microscopy Phys Rev Lett, 69, 3743–3746

    CAS  Google Scholar 

  73. Thust A., Coene W.M.J., Op de Beeck M., Van Dyck D. (1996) Focal-series reconstruction in HRTEM: Simulation studies on non-periodic objects. Ultra-microscopy, 64, 211–230

    CAS  Google Scholar 

  74. Lichte H. (1986) Electron holography approaching atomic resolution. Ultra-microscopy, 20, 283–304

    Google Scholar 

  75. Lehmann M. (2000) Determination and correction of the coherent wave aberration from a simple off-axis electron hologram by means of a genetic algorithm. Ultramicroscopy, 85, 165–182

    Article  CAS  Google Scholar 

  76. Pennycook S.J., Jesson D.E. High-resolution incoherent imaging of crystals. Phys Rev Lett, 64, 938–941

    Google Scholar 

  77. Nellist P., Pennycook S. (1998) Accurate structure determination from image reconstruction in ADF STEM. J Microsc, 190, 159–170

    Article  CAS  Google Scholar 

  78. Jansen J., Tang D., Zandbergen H.W., Schenk H. (1998) A least-square procedure for accurate crystal structure refinement from dynamical electron diffraction patterns. Acta Cryst A, 54, 91–101

    Article  Google Scholar 

  79. Zuo J.M, Spence J.C.H. (1991) Automated structure factor refinement from convergent beam patterns. Ultramicroscopy, 35, 185–196

    Article  CAS  Google Scholar 

  80. Lentzen M., Urban K. (1996) Reconstruction of the projected crystal potential from a periodic high-resolution electron microscopy exit plane wave function. Ultramicroscopy, 62, 89–102

    Article  CAS  Google Scholar 

  81. Scheerschmidt K. (1998) Retrieval of object information by inverse problems in electron diffraction. J microscopy, 190, 238–248

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Möbus, G. (2003). Structure Determination by Quantitative High-Resolution Transmission Electron Microscopy. In: Ernst, F., Rühle, M. (eds) High-Resolution Imaging and Spectrometry of Materials. Springer Series in Materials Science, vol 50. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-07766-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-07766-5_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07525-4

  • Online ISBN: 978-3-662-07766-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics