Skip to main content

Electron Scattering

  • Chapter

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 50))

Abstract

The propagation of electrons is governed by the Schrödinger wave equation. Owing to this wave property, the scattering of electrons differs appreciably from that of classical solid particles. In particular, the interference between different partial waves affects the intensity distribution of an electron micrograph and prevents straightforward interpretation in many cases. Without such interference, the formation of an image would not be possible. The description of image formation in an electron microscope must, therefore, account for the possibility of interference, which is determined by the degree of coherence of the electron wave-field. Interference effects must be considered in order to extract correctly the information about the spatial structure of an object from the image. The modulation of the image intensity depends on the partial coherence of the electron wave-field. Partial coherence is caused by the finite energy width and the lateral extent of the effective electron source, by parasitic incoherent perturbations, and by unavoidable inelastic scattering processes within the object. Inelastic scattering generally decreases the degree of coherence. Even for energy-filtered high-resolution imaging, inelastic scattering effects are important because electrons that have suffered a very small energy-loss cannot be separated from the unscattered or elastically scattered electrons by a conventional energy filter [1]. Thermal diffuse scattering, for example, produces this kind of very small energy-losses below 0.1 eV and contributes appreciably to the intensity at high scattering angles [2].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Reimer L. (1995) Energy-filtering Transmission Electron Microscopy. Springer, New York

    Google Scholar 

  2. Bartel P., Rose H., Dinges C. (1996) Conditions and reasons for incoherent imaging in STEM. Ultramicroscopy 63: 93–114

    Article  Google Scholar 

  3. Landau L.D., Lifschitz E.M. (1979) Lehrbuch der theoretischen Physik, Vol. 3. Akademie Verlag, Berlin

    Google Scholar 

  4. Sakurai J.J. (1985) Modern Quantum Mechanics. Addison-Wesley, New York, 325–326

    Google Scholar 

  5. Glauber R.J. (1959) High-energy collision theory. In: Lectures in Theoretical Physics, Boulder Vol.l. Interscience, New York, 315–414

    Google Scholar 

  6. Kohl H., Rose H. (1985) Theory of image formation by inelastically scattered electrons in the electron microscope. In: Advances in Electronics and Electron Physics, Vol. 65. Academic Press, London, 173–227

    Google Scholar 

  7. Rose H. (1984) Information transfer in transmission electron microscopy. Ultramicroscopy 15: 173–192

    Article  Google Scholar 

  8. Dinges C., Berger A., Rose H. (1995) Simulation of TEM and STEM images considering phonon and electronic excitations. Ultramicroscopy 6: 49–70

    Article  Google Scholar 

  9. Müller H., Rose H., Schorsch P. (1998) A coherence function approach to image simulation. J Microsc 190: 73–88

    Article  Google Scholar 

  10. Kirkland E.J. (1998) Advanced Computing in Electron Microscopy. Plenum Press, New York

    Google Scholar 

  11. Reimer L. (1992) Transmission Electron Microscopy. Springer, Berlin

    Google Scholar 

  12. Spence J.C.H., Zuo J.M. (1982) Electron Microdiffraction. Plenum Press, New York

    Google Scholar 

  13. Glaser W. (1952), Grundlagen der Elektronenoptik. Springer, Wien

    Google Scholar 

  14. Ferwerda H.A., Hoenders B.J., Slump C.H. (1986) Fully relativistic foundation of linear transfer theory in electron optics based on the Dirac equation. Optica Acta 33: 159–183

    Article  Google Scholar 

  15. Kittel C. (1996) Introduction to Solid State Physics. Wiley, New York

    Google Scholar 

  16. Lippmann B.A., Schwinger J. (1940) Variational principles for scattering processes. Phys Rev 79: 469–480

    Article  Google Scholar 

  17. Goodman J.W. (1996) Introduction to Fourier Optics. McGraw-Hill, New York, 63–95

    Google Scholar 

  18. Newton R.G. (1989) Inverse Schrödinger Scattering in Three Dimensions. Springer, New York

    Book  Google Scholar 

  19. Born M., Wolf E. (1999) Principles of Optics, 7th edn.. Cambridge University Press, Cambridge

    Google Scholar 

  20. Lenz F. (1957) Zur Streuung mittelschneller Elektronen in kleinste Winkel. Z Naturforsch 9a: 185–204

    Google Scholar 

  21. Koppe H. (1948) Der Streuquerschnitt von Atomen für unelastische Streuung von schnellen Elektronen. Z Physik 124: 658–664

    Article  CAS  Google Scholar 

  22. Rose H. (1976) Image formation by inelastically scattered electrons in electron microscopy. Optik 45: 139–158

    Google Scholar 

  23. Mott N.F. (1930) The scattering of electrons by atoms. Proc Roy Soc London A 127: 658–665

    Article  CAS  Google Scholar 

  24. Doyle P.A., Turner P.S. (1968), Relativistic Hartree—Fock x-ray and electron scattering factors. Acta Cryst A 24: 390–397

    Article  CAS  Google Scholar 

  25. Weickenmeier A., Kohl H. (1991) Computation of absorptive form factors for high-energy electron diffraction. Acta Cryst A 47: 590–603

    Article  Google Scholar 

  26. Eusemann R., Rose H., Dubochet J. (1982) Electron scattering in ice and organic materials. J Microsc 128: 239–249

    Article  Google Scholar 

  27. Compton A.H. (1930) The determination of electron distributions from measurements of x-rays. Phys Rev 35: 925–938

    Article  CAS  Google Scholar 

  28. Hawkes P.W. (1978) Coherence in electron optics. In: Advances in Optical and Electron Microscopy, Vol. 7. Academic Press, London, 101–184

    Google Scholar 

  29. Fertig J., Rose H. (1977) A reflection on partial coherence in electron microscopy. Ultramicroscopy 2: 269–279

    Article  CAS  Google Scholar 

  30. Van Hove L. (1954) Correlations in space and time and Born approximation scattering in systems of interacting particles. Phys Rev 95: 249–262

    Article  Google Scholar 

  31. Cowley J.M., Moodie A.F. (1957) The scattering of electrons by atoms and crystals. Acta Cryst 10: 609–619

    Article  CAS  Google Scholar 

  32. Self P.G., O’Keefe M.A., Buseck P.R., Spargo A.E.C. (1983) Practical computation of amplitudes and phases in electron diffraction. Ultramicroscopy 11: 35–52

    Article  Google Scholar 

  33. Stadelmann P.A. (1987) EMS — A software package for electron diffraction analysis and HREM image simulation in materials science. Ultramicroscopy 21: 131–146

    Article  CAS  Google Scholar 

  34. Abramowitz M., Stegun I.A. (1970) Handbook of Mathematical Functions. Dover Publications, New York

    Google Scholar 

  35. Ahn C.C., Krivanek O.L. (1983) EELS Atlas. Center for Solid State Science, Arizona State University

    Google Scholar 

  36. Loane R.F., Xu P., Silcox J. (1991) Thermal vibrations in convergent-beam electron diffraction. Acta Cryst A 47: 267–278

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Müller, H., Rose, H. (2003). Electron Scattering. In: Ernst, F., Rühle, M. (eds) High-Resolution Imaging and Spectrometry of Materials. Springer Series in Materials Science, vol 50. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-07766-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-07766-5_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07525-4

  • Online ISBN: 978-3-662-07766-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics