Microcharacterisation of Materials

  • F. Ernst
  • W. Sigle
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 50)


No material has a perfect structure. On the contrary: most of the materials we encounter in daily life are full of microscopic defects — regions where the actual arrangement of the atoms deviates from the ideal structure. The atomic configuration in the bulk of a crystalline material, for example, may contain defects such as vacancies, atoms on interstitial sites, impurity atoms, dislocations, stacking faults, grain boundaries, phase boundaries, voids, or cracks. Similar types of defects exist in non-crystalline materials. The entirety of these bulk defects, except for those that occur in thermodynamic equilibrium, such as a certain concentration of vacancies, constitutes the microstructure of the respective material.


Impurity Atom Scanning Probe Microscopy Microscopic Defect Fluorescent Screen Tomographic Atom Probe 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sorby H.C. (1887) On the microscopical structure of iron and steel. J Iron Steel Inst 1, 255–288Google Scholar
  2. 2.
    Friedrich W., Knipping P., von Laue M. (1912) Interferenz—Erscheinungen bei Röntgenstrahlen. Sitzungsbericht der Math-Phys Klasse der Königl Bayer Akad Wiss 303–322; (1952) Naturwiss 39, 361–368Google Scholar
  3. 3.
    von Ardenne M. (1938) The scanning electron microscope: theoretical fundamentals (in German) Z Physik 109, 553–572; The scanning electron microscope: practical construction (in German). Z Tech Phys 19, 407–416Google Scholar
  4. 4.
    Müller E.W. (1960) Field ionization and field ion microscopy. Adv Electron Electron Phys 13, 83–179CrossRefGoogle Scholar
  5. 5.
    Knoll M., Ruska E. (1932) Das Elektronenmikroskop. Z Physik 78, 318–339CrossRefGoogle Scholar
  6. 6.
    Bollmann W. (1956) Interference effects in the electron microscopy of thin crystal foils. Phys Rev 103, 1588–1589CrossRefGoogle Scholar
  7. 7.
    Hirsch P.B., Home R.W., Whelan M.J. (1956) Direct observations of the arrangement and motion of dislocations in aluminium. Phil Mag 1, 677–684.CrossRefGoogle Scholar
  8. 8.
    Iijima S. (1971) High resolution electron microscopy of crystal lattice of titanium—niobium oxide. J Appl Phys 42, 5891–5893CrossRefGoogle Scholar
  9. 9.
    Panitz J.A. (1973) The 10 cm atom probe. Rev. Sci. Instrum. 44, 1034–1038CrossRefGoogle Scholar
  10. 10.
    Telieps W., Bauer E. (1985) An analytical reflection and emission UHV surface electron microscope. Ultramicroscopy 17, 57–66CrossRefGoogle Scholar
  11. 11.
    Bauer E. (1994) Field ionization and field ion microscopy. Rep Prog Phys 57, 895–938CrossRefGoogle Scholar
  12. 12.
    Pohl D.W., Denk W., Lanz M. (1984) Optical stethoscopy — image recording with resolution lambda/20. Appl Phys Lett 44, 651–653CrossRefGoogle Scholar
  13. 13.
    Binnig G., Rohrer H. (1985) The scanning tunneling microscope. Scientific American 253/2, 40–46Google Scholar
  14. 14.
    Nufer S., Marinopoulos A.G., Gemming T., Elsässer C., Kurtz W., Köstlmeier S., Rühle M. (2000) Quantitative atomic-scale analysis of interface structures: transmission electron microscopy and local density functional theory. Phys Rev Lett 86, 5066–5069CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • F. Ernst
  • W. Sigle

There are no affiliations available

Personalised recommendations