Advertisement

Plant Respiration under the Influence of Heavy Metals

  • R. Lösch
  • K. I. Köhl

Abstract

The effect of transition metals and Al on plant catabolism has received less attention than their effect on other metabolic traits. Applied and ecological studies concentrate on the role of metal exclusion from the symplast or metal sequestration in the vacuole for plant survival on substrates with toxic metal concentrations (Ernst 1969, 1976; Denny and Wilkins 1987). Physiological studies about metabolic effects of excess levels of heavy metals focus on effects on photosynthesis (Vallee and Ulmer 1972; Clijsters and Van Assche 1985) and, more recently, on specific gene expression (Tomsett and Thurman 1988). The lack of detailed insight into heavy metal interactions with metabolic processes and with other ions hinders causal understanding of toxicity and tolerance mechanisms (Foy et al. 1978; Jackson et al. 1990; Mukhopadhyay and Sharma 1991; Barceló and Poschenrieder 1992). This statement is particularly true in the case of heavy metal effects on plant respiration.

Keywords

Heavy Metal Metal Tolerance Euglena Gracilis Plant Respiration Citrate Cycle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson I, Evans HJ (1956) Effect of manganese and certain other metal cations on isocitric dehydrogenase and malic enzyme activities in Phaseolus vulgaris. Plant Physiol 31: 22–28PubMedCrossRefGoogle Scholar
  2. Barceló J, Poschenrieder C (1992) Respuestas de las plantas a la contaminación por metales pesados. Suelo y Planta 2: 345–361Google Scholar
  3. Bittell JE, Koeppe DE, Miller RJ (1974) Sorption of heavy metal cations by corn mitochondria and the effects on electron and energy transfer reactions. Physiol Plant 30: 226–230CrossRefGoogle Scholar
  4. Bopp LH, Chakrabarty AM, Ehrlich HL (1983) Chromate resistance plasmids in Pseudomonas fluorescens. J Bacteriol 155: 1105–1109PubMedGoogle Scholar
  5. Brierley GP (1976) The uptake and extrusion of monovalent cations by isolated heart mitochondria. Mol Cell Biochem 10: 41–62PubMedCrossRefGoogle Scholar
  6. Brierley GP (1977) Effects of heavy metals on isolated mitochondria. In: Lee SD (ed) Biochemical effects of environmental pollutants. Ann Arbor Sci, Ann Arbor, 397–411Google Scholar
  7. Brierley GP, Knight VA (1967) Ion transport by heart mitochondria. X. The uptake and release of Zn2+ and its relation to the energy-linked accumulation of Mg. Biochemistry 6: 3892–3902PubMedCrossRefGoogle Scholar
  8. Brooks RR, Shaw S, Marfil AA (1981) The chemical form and physiological function of nickel in some Iberian Alyssum species. Physiol Plant 51: 167–170CrossRefGoogle Scholar
  9. Cataldo DA, Garland TR, Wildung RE (1983) Cadmium uptake kinetics in intact soybean plants. Plant Physiol 73: 844–848PubMedCrossRefGoogle Scholar
  10. Chappell JB, Cohn M, Greville GD (1963) The accumulation of divalent ions by isolated mitochondria. In: Chance B (ed) Energy-linked functions of mitochondria. Acad. Press, New York, pp. 219–231Google Scholar
  11. Clarkson DT, Hanson JB (1980) The mineral nutrition of higher plants. Annu Rev Plant Physiol 31: 239–298CrossRefGoogle Scholar
  12. Clarkson DT, Lunge U (1989) Mineral nutrition: Divalent cations, transport and compartmentation. Prog Bot 51: 93–112CrossRefGoogle Scholar
  13. Clijsters H, Van Assche F (1985) Inhibition of photosynthesis by heavy metals. Photosynth Res 7: 31–40CrossRefGoogle Scholar
  14. Cumming JR, Taylor GJ (1990) Mechanisms of metal tolerance in plants: physiological adaptation for exclusion of metal ions from the cytoplasm. In: Alscher RG, Cumming JR (eds) Stress responses in plants: adaptation and acclimation mechanisms. Wiley-Liss. New York Cichester, pp. 329–356Google Scholar
  15. Cutler JM, Rains DW (1974) Characterization of cadmium uptake by plant tissue. Plant Physiol 54: 67–71PubMedCrossRefGoogle Scholar
  16. Davies KL, Davies MS, Francis D (1995) The effects of zinc on cell viability and on mitochondrial structure in contrasting cultivars of Festuca rubra L. — A rapid test for zinc tolerance. Environ Pollut 88: 109–113PubMedCrossRefGoogle Scholar
  17. De Filippis LF, Hampp R, Ziegler H (1981) The effects of sublethal concentrations of zinc, cadmium and mercury on Euglena. II. Respiration, photosynthesis and photochemical activities. Arch Microbiol 128: 407–411CrossRefGoogle Scholar
  18. Denny HJ, Wilkins DA (1987) Zinc tolerance in Betula spp. II. Microanalytical studies of zinc uptake into root tissues. New Phytol. 106: 525–534Google Scholar
  19. Earnshaw MJ, Cooke A (1984) The role of cations in the regulation of electron transport. In: Palmer JM (ed) The physiology and biochemistry of plant respiration. Cambridge University Press. London New York pp. 177–182Google Scholar
  20. Edjlali M, Calvayrac R (1991) Effects des ions métalliques sur l’intensité respiratoire et sur les capacités cataltiques chez Euglena gracilis Z. C R Acad Sci Paris 312: 177–182Google Scholar
  21. Efstathiou JD, McKay LL (1977) Inorganic salts resistance associated with a lactose-fermenting plasmid in Streptococcus lactis. J Bacteriol 130: 257–265PubMedGoogle Scholar
  22. Eide E, Broderius M, Fett J, Guerinot ML (1996) A novel iron-regulated metal transporter from plants identified by functional expression in yeast. Proc Natl Acad Sci USA 93: 5624–5628.PubMedCrossRefGoogle Scholar
  23. Ernst WHO (1969) Zur Physiologie der Schwermetallpflanzen–subzelluläre Speicherungsorte des Zinks. Ber Deutsch Bot Ges 82: 161–164Google Scholar
  24. Ernst WHO (1976) Physiological and biochemical aspects of metal tolerance. In: Mansfield TA (ed) Effects of air pollutants on plants, Cambridge Univ. Press, Cambridge, pp. 115–133Google Scholar
  25. Ernst WHO (1982) Schwermetallpflanzen. In: Kinzel H (ed) Pflanzenökologie und Mineralstoffwechsel, Ulmer Stuttgart, pp 472–506Google Scholar
  26. Ernst W, Mathys W, Janiesch P (1975) Physiologische Grundlagen der Schwermetallresistenz — Enzymaktivitäten und organische Säuren. Forschungsberichte des Landes Nordrhein-Westfalen 2496, 1–50, Westdeutscher Verlag OpladenGoogle Scholar
  27. Ernst WHO, Verkleij JAC, Schat H (1992) Metal tolerance in plants. Acta Bot Neerl 41: 229–248Google Scholar
  28. Fernandes JC, Henriques FS (1991) Biochemical, physiological, and structural effects of excess copper in plants. Bot Rev 57: 246–273CrossRefGoogle Scholar
  29. Fonyo A, Palmieri F, Ritvay J, Quagliariello E (1974) Kinetics and inhibitor sensitivity of the mitochondrial phosphate carrier. In: Azzone GF (ed) Membrane proteins in transport and phosphorylation. North Holland Publ., Amsterdam, pp. 283–286Google Scholar
  30. Foy CD, Chaney RL, White MC (1978a) The physiology of metal toxicity in plants. Annu Rev Plant Physiol 29: 511–566CrossRefGoogle Scholar
  31. Foy CD, Chaney RL, White MC (1978b) The physiology of plant tolerance to excess available aluminum and manganese in acid soils. In: Jung GA (ed) Crop tolerance to suboptimal land conditions. Publ. 32 Amer Soc Agron, Madison, pp. 301–328Google Scholar
  32. Godbold DL, Horst WJ, Collins JC, Thurman DA, Marschner H (1984) Accumulation of zinc and organic acids in roots of zinc tolerant and non-tolerant ecotypes of Deschampsia caespitosa. J Plant Physiol 116: 59–69PubMedCrossRefGoogle Scholar
  33. Grill E, Winnacker E-L, Zenk MH (1985) Phytochelatins: the principal heavy-metal complexing peptides of higher plants. Science 230: 674–676PubMedCrossRefGoogle Scholar
  34. Grotz N, Fox T, Connolly E, Park W, Guerinot ML, Eide D (1998). Identification of a family of zinc transporter genes from Arabidopsis that respond to zinc deficiency. Proc Nat Acad Scienc USA 95: 7220–7224.CrossRefGoogle Scholar
  35. Gupta UC (1979) Copper in agricultural crops. In: Nriagu JO (ed) Copper in the environment. Part I: Ecological cycling. Wiley & Sons, New York-Chicester, pp. 255–288Google Scholar
  36. Hanson JB, Malhotra SS, Stoner CD (1965) Action of calcium on corn mitochondria. Plant Physiol 40: 1033–1040PubMedCrossRefGoogle Scholar
  37. Harmens H, Koevoets PLM, Verkleij JAC, Ernst WHO (1994) The role of low molecular weight organic acids in the mechanism of increased zinc tolerance in Silene vulgaris (Moench) Garcke. New Phytol 126: 615–621.CrossRefGoogle Scholar
  38. Harper FA, Smith SE, Macnair MR (1997) Where is the cost in copper tolerance in Mimulus guttatus? Testing the trade-off hypothesis. Funct Ecol 11: 764–774CrossRefGoogle Scholar
  39. Harrington CF, Roberts DJ, Nickless G (1996) The effect of cadmium, zinc, and copper on the growth, tolerance index, metal uptake, and production of malic acid in two strains of the grass Festuca rubra. Can J Bot 74: 1742–1752CrossRefGoogle Scholar
  40. Horio T, Higashi T, Okunuki K (1955) Copper resistance of Mycobacterium tuberculosis avium. II. The influence of copper ion on the respiration of the parent cells and copper-resistant cells. J Biochem, Tokyo 42: 491–498Google Scholar
  41. Howden R, Goldsbrough PB, Andersen CR, CobbettCS (1995) Cadmium-sensitive, cadi mutants of Arabidopsis thaliana are phytochelatin deficient. Plant Physiol 107: 1059–1066.CrossRefGoogle Scholar
  42. Huett DO, Menary RC (1979) Aluminium uptake by excised roots of cabbage, lettuce and Kikuyu grass. Aust J Plant Physiol 6: 643–653CrossRefGoogle Scholar
  43. Jackson PJ, Unkefer PJ, Delhaize E, Robinson NJ (1990) Mechanisms of trace metal tolerance in plants. In: Katterman F (ed) Environmental injury to plants. Acad Pr, San Diego, New York, Boston, pp. 231–255Google Scholar
  44. Jana S, Choudhuri MA (1982) Senescence in submerged aquatic angiosperms: effects of heavy metals. New Phytol 90: 477–484CrossRefGoogle Scholar
  45. Kampfenkel K, Kushnir S, Babiychuk E, Inze D, Vanmontagu M (1995) Molecular charac terization of a putative Arabidopsis thaliana copper transporter and its yeast homologue. J Biol Chem 270: 28479–28486PubMedCrossRefGoogle Scholar
  46. Kesseler A, Brand MD (1995) The mechanism of the stimulation of state 4 respiration by cadmium in potato tuber (Solanum tuberosum) mitochondria. Plant Physiol Biochem 33: 519–528Google Scholar
  47. Kinraide TB (1988) Proton extrusion by wheat roots exhibiting severe aluminum toxicity symptoms. Plant Physiol 88: 418–423PubMedCrossRefGoogle Scholar
  48. Kleiner D (1974) The effect of Zn2+ on mitochondrial electron transport. Arch Biochem Biophys 165: 121–125PubMedCrossRefGoogle Scholar
  49. Köhl KI (1995) Ökophysiologische Grundlagen der Sippendifferenzierung bei Anneria maritima (Mill.) Willd.: Evolution von Dürre-Kochsalz und Schwermetall-Resistenz. Dissertation, H. Heine-Universität. DüsseldorfGoogle Scholar
  50. Koeppe DE, Miller RJ (1970) Lead effects on corn mitochondrial respiration. Science 167: 1376–1377PubMedCrossRefGoogle Scholar
  51. Krotz RM, Evangelou BP, Wagner GJ (1989) Relationships between cadmium, zinc Cd-peptide and organic acid in tobacco suspension cells. Plant Physiol 91: 780–787PubMedCrossRefGoogle Scholar
  52. Lamoreaux RJ, Chaney WR (1978) The effect of cadmium on net photosynthesis, transpiration, and dark respiration of excised silver maple leaves. Physiol Plant 43: 231–236CrossRefGoogle Scholar
  53. Lee KC, Cunningham BA, Paulson GM, Liang GH, Moore RB (1976) Effects of cadmium on respiration rate and activities of several enzymes in soybean seedlings. Physiol Plant 36: 4–6CrossRefGoogle Scholar
  54. Lee J, Reeves RD, Brooks RR, Jaffré T (1977) Isolation and identification of a citrate-complex of nickel from nickel-accumulating plants. Phytochemistry 16: 1503–1505CrossRefGoogle Scholar
  55. Lee J, Reeves RD, Brooks RR, Jaffré T (1978) The relation between nickel and citric acid in some nickel-accumulating plants. Phytochemistry 17: 1033–1035CrossRefGoogle Scholar
  56. Lorimer GH, Miller RJ (1969) The osmotic behavior of corn mitochondria. Plant Physiol 44: 839–844PubMedCrossRefGoogle Scholar
  57. Macklon AES, Sim A (1976) Cortical cell fluxes and transport to the stele in excised root segments of Allium cepa L. III. Magnesium. Planta 128: 5–9CrossRefGoogle Scholar
  58. Macklon AES, Sim A (1987) Cellular cobalt fluxes in roots and transport to the shoots of wheat seedlings. J Exp Bot 38: 1663–1677CrossRefGoogle Scholar
  59. Marschner H (1995) Mineral nutrition of higher plants. 2nd ed. Acad Press. London-San Diego New YorkGoogle Scholar
  60. Mathys W (1975) Enzymes of heavy-metal-resistant and non-resistant populations of Silene cucubalus and their interaction with some heavy metals in vitro and in vivo. Physiol Plant 33: 161–165CrossRefGoogle Scholar
  61. Mathys W (1977) The role of malate, oxalate, and mustard oil glucosides in the evolution of zinc-resistance in herbage plants. Physiol Plant 40: 130–136CrossRefGoogle Scholar
  62. Mattioni C, Gabbrielli R, Vangronsfeld J, Clijsters H (1997) Nickel and cadmium toxicity and enzymatic activity in Ni-tolerant and non-tolerant populations of Silene italica Pers. J Plant Physiol 150: 173–177CrossRefGoogle Scholar
  63. Meharg AA (1993) The role of the plasmalemma in metal tolerance in angiosperms. Physiol Planta 88: 191–198CrossRefGoogle Scholar
  64. Millard DL, Wiskirch JT, Robertson RN (1964) Ion uptake by plant mitochondria. Proc Natl Acad Sci USA 52: 996–1004PubMedCrossRefGoogle Scholar
  65. Miller RI, Bittell JE, Koeppe DE (1973) The effect of cadmium on electron and energy transfer reactions in corn mitochondria. Physiol Plant 28: 166–171CrossRefGoogle Scholar
  66. Mocquot B, Vangronsveld J, Clijsters H, Mench M (1996) Copper toxicity in young maize (Zea mays L.) plants: effects on growth, mineral and chlorophyll contents, and enzyme activities. Plant Soil 182: 287–300Google Scholar
  67. Mukhopadhyay MJ, Sharma A (1991) Manganese in cell metabolism of higher plants. Bot Rev 57: 117–149CrossRefGoogle Scholar
  68. Murayama T (1961) Studies on the metabolic pattern of yeast with reference to its copper resistance. Memoirs Ehime Univ Sect II, B4: 43–66Google Scholar
  69. Murphy A. Taiz L. (1997) Correlation between potassium efflux and copper sensitivity in 10 Arabidopsis ecotypes. New Phytol 136: 211–222.Google Scholar
  70. Nies DH. Siver S (1989) Plasmid-determined inducible efflux is responsible for resistance to cadmium, zinc, and cobalt in Alcaligenes eutrophus. J Bacteriol 171: 896–900Google Scholar
  71. Ortiz DF, Kreppel L, Speiser DM, Scheel G, McDonald G, Ow DW (1992) Heavy metal tolerance in the fission yeast requires an ATP-binding casette-type vacuolar membrane transporter. EMBO J 11: 3491–3499PubMedGoogle Scholar
  72. Peterson PJ (1969) The distribution of zinc-65 in Agrostis tenuis, Sibth. and A. stolonifera, L. tissues. J Exp Bot 20: 863–875CrossRefGoogle Scholar
  73. Pfeffer PE, Tu SI, Gerasimowicz WV, Cavanaugh JR (1986) In vivo “P NMR studies of corn root tissue and its uptake of toxic metals. Plant Physiol 80:77–84Google Scholar
  74. Pfeffer PE, Tu SI, Gerasimowicz WV, Boswell RT (1987) Role of the vacuole in metal ion trapping as studied by in vivo 31P-NMR spectroscopy. In: Marin B (ed) Plant vacuoles: their importance in solute compartmentation in cells and their applications in plant biotechnology. NATO ASI Series A, Life Sciences 134. Plenum Press. New York, pp. 349–359Google Scholar
  75. Poulter A, Collin HA, Thurman DA, Hardwick K (1985) The role of the cell wall in the mechanism of lead and zinc tolerance in Anthoxanthum odoratum L. Plant Sci 42: 61–66CrossRefGoogle Scholar
  76. Prebble JN (1981) Mitochondria, chloroplasts, and bacterial membranes. Longman, London New YorkGoogle Scholar
  77. Reese RN, Roberts LW (1985) Effects of cadmium on whole cell and mitochondrial respiration in tobacco cell suspension cultures (Nicotiana tabacum L. var. xanthi). J Plant Physiol 120: 123–130CrossRefGoogle Scholar
  78. Salt DE, Rauser WE (1995) MgATP-dependent transport of phytochelatins across the tonoplast of oat roots. Plant Physiol 107: 1293–1301PubMedGoogle Scholar
  79. Santa Maria GE, Cogliatti DH (1988) Bidirectional Zn-fluxes and compartmentation in wheat seedling roots. J Plant Physiol 132: 312–315CrossRefGoogle Scholar
  80. Scarpa A, Azzi A (1968) Cation binding to submitochondrial particles. Biochim Biophys Acta 150: 473–481PubMedCrossRefGoogle Scholar
  81. Scarpa A, Azzone GF (1968) Ion transport in liver mitochondria. J Biol Chem 243: 5132–5138PubMedGoogle Scholar
  82. Schat H, Kalff, MMA (1992) Are phytochelatins involved in differential metal tolerance or do they merely reflect metal-imposed strain? Plant Physiol 99: 1475–1480.PubMedCrossRefGoogle Scholar
  83. Schlegel H, Godbold DL, Hüttermann A (1987) Whole plant aspects of heavy metal induced changes in CO, uptake and water relations of spruce (Picea abies) seedlings. Physiol Plant 69: 265–270CrossRefGoogle Scholar
  84. Scott KM, Hwang KM, Jurkowitz M, Brierley GP (1971) Ion transport by heart mitochondria. XXIII. The effect of lead on mitochondrial reactions. Arch Biochem Biophys 147: 557–567PubMedCrossRefGoogle Scholar
  85. Silver S, Misra TK (1988) Plasmid-mediated heavy metal resistances. Annu Rev Microbiol 42: 717–743PubMedCrossRefGoogle Scholar
  86. Sirkar S, Amin JV (1974) The manganese toxicity of cotton. Plant Physiol 54: 539–543PubMedCrossRefGoogle Scholar
  87. Sirkar S, Amin JV (1979) Influence of auxins on respiration of manganese toxic cotton plants. Indian J Exp Biol 17: 618–619Google Scholar
  88. Suhayda CG, Haug A (1986) Organic acids reduce aluminum toxicity in maize root membranes. Physiol Plant 68: 189–185CrossRefGoogle Scholar
  89. Thurman DA, Rankin JL (1982) The role of organic acids in zinc tolerance in Deschampsia caespitosa. New Phytol 91: 629–635CrossRefGoogle Scholar
  90. Tomsett AB, Thurman DA (1988) Molecular biology of metal tolerances of plants. Plant Cell Environ 11: 383–394CrossRefGoogle Scholar
  91. Twyman ES (1951) The iron and manganese requirements of plants. New Phytol 50: 210–226CrossRefGoogle Scholar
  92. Tyler DD (1969) Evidence of a phosphate-transporter system in the inner membrane of isolated mitochondria. Biochem J 111: 665–678PubMedGoogle Scholar
  93. Tzagoloff A (1982) Mitochondria. Plenum, New York LondonGoogle Scholar
  94. Vallee BL, Ulmer DD (1972) Biochemical effects of mercury, cadmium, and lead. Annu Rev Biochem 41: 91–128PubMedCrossRefGoogle Scholar
  95. Van Assche F, Clijsters H (1990) Effects of metals on enzyme activity in plants. Plant Cell Environ 13: 195–206CrossRefGoogle Scholar
  96. Van der Werf A, Raaimakers D, Poot P, Lambers H (1991) Evidence for a significant contribution by peroxidase-mediated O2 uptake to root respiration of Brachypodium pinnatum. Planta 183: 347–352Google Scholar
  97. Verkleij JAC, Koevoets PLM, Blakekalff MMA, Chardonnens AN (1998) Evidence for an important role of the tonoplast in the mechanism of naturally selected zinc tolerance in Silene vulgaris. J Plant Physiol 153: 188–191.CrossRefGoogle Scholar
  98. Vögeli-Lange R, Wagner GJ (1990) Subcellular localization of cadmium and cadmium-binding peptides in tobacco leaves. Plant Physiol 92: 1066–1093CrossRefGoogle Scholar
  99. Wagatsuma T (1983) Effect of non-metabolic conditions on the uptake of aluminum by plant roots. Soil Sci Plant Nutr 29: 323–333CrossRefGoogle Scholar
  100. Wang J, Evangelou BP, Nielsen MT, Wagner GJ (1992) Computer simulated evaluation of possible mechanisms for sequestring metal ion activity in plant vacuoles II. Zinc. Plant Physiol 99: 621–626.CrossRefGoogle Scholar
  101. Weigel HJ, Jäger HJ (1980) Der Einfluß von Schwermetallen auf Wachstum and Stoffwechsel von Buschbohnen. Angew Bot 54: 195–205Google Scholar
  102. Weinberg JM, Harding PG, Humes HD (1982) Mitochondrial bioenergetics during the initiation of mercuric chloride induced renal injury. J Biol Chem 257: 60–74PubMedGoogle Scholar
  103. Weinstein LH, Robbins WR (1955) The effect of different iron and manganese nutrient levels on the catalase and cytochrome oxidase activities of green and albino sunflower leaf tissues. Plant Physiol 30: 27–32PubMedCrossRefGoogle Scholar
  104. Woolhouse HW (1983) Toxicity and tolerance in the response of plants to metals. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds.) Physiological plant ecology II. Responses to the chemical and biological environment. Encyclopedia of Plant Physiology. New Series 12 C. Springer, Berlin, pp 245–300.Google Scholar
  105. Wu L, Antonovics J (1978) Zinc and copper tolerance ofAgrostis stolonifera L. in tissue culture. Amer J Bot 65: 268–271CrossRefGoogle Scholar
  106. Wu L, Thurman DA, Bradshaw AD (1975) The uptake of copper and its effect upon respiratory processes of roots of copper-tolerant and non-tolerant clones of Agrostis stolonifera. New Phytol 75: 225–229CrossRefGoogle Scholar
  107. Zaitseva MG (1978) The role of cation transport in regulation of the activity of plant mitochondria. In: Ducet G, Lance C (eds) Plant mitochondria. Elsevier/North-Holland Biomed. Press. Amsterdam-New York-Oxford, pp. 183–189Google Scholar
  108. Zenk MH (1996) Heavy metal detoxification in higher plants — a review. Gene 179: 21–30PubMedCrossRefGoogle Scholar
  109. Zhang G, Taylor GJ (1989) Kinetics of aluminum uptake by excised roots of aluminum-tolerant and aluminum-sensitive cultivars of Triticum aestivum L. Plant Physiol. 91: 1094–1099PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • R. Lösch
    • 1
  • K. I. Köhl
    • 2
  1. 1.Abteilung GeobotanikH.Heine-UniversitätDüsseldorfGermany
  2. 2.Max Planck-Institut für Molekulare PflanzenphysiologieGolmGermany

Personalised recommendations