Skip to main content

Membrane Lipid Alterations in Heavy Metal Exposed Plants

  • Chapter
Book cover Heavy Metal Stress in Plants

Abstract

Lipids are a group of fat and fat-like substances, rich in carbon and hydrogen, that dissolve in organic solvents. They are necessary for maintaining the structural integrity of membranes and constitute approximately 40% of the total dry weight of membranes, the remaining 60% being proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akeson MA, Munns DN, Burau RG (1989) Adsorption of Al’ to phosphotidylcholine vesicles. Biochim Biophys Acta 986: 33–40

    PubMed  CAS  Google Scholar 

  • Ali S, Jain SK, Abdulla M, Athar M (1996) Paraquat-induced damage by reactive oxygen species. Biochem Mol Biol Int 39: 63–67

    PubMed  CAS  Google Scholar 

  • Allen RD (1995) Dissection of oxidative stress tolerance using transgenic plants. Plant Physiol 107: 1047–1054

    Google Scholar 

  • Alscher RG, Dooahoe JL, Cramer CL (1997) Reactive oxygen species and antioxidants: relationships in green cells. Physiol Plant 100: 224–233

    CAS  Google Scholar 

  • Alvarez ME, Lamb C (1997) Oxidative burst-mediated defence response in plant disease resistance. In: Scandalios J (ed) Oxidative stress and the molecular biology of antioxidant defences. Cold Spring Harbor Laboratory Press, New York, pp 815–839

    Google Scholar 

  • Anderson B, Styring S (1991) Photosystem II. Molecular organization, function and acclimation. Curr Top Bioenerg 16: 1–81

    Google Scholar 

  • Ansell GB, Spanner S (1982) Phosphotidylserine, phosphotidylethanolamine and phosphotidyl-choline. In: Hawthrone JN, Ansell GB (eds) Phospholipids. Elsevier, Amsterdam, pp 1–50

    Google Scholar 

  • Aust SD, Marchouse LA, Thomas CE (1985) Role of metals in oxygen radical reactions. J. Free Radic Biol Med 1: 3–25

    PubMed  CAS  Google Scholar 

  • Babiz-Hayev MA (1988) The biphasic effect of calcium on lipid peroxidation. Arch Biochem Biophys 266: 446–451

    CAS  Google Scholar 

  • Baszynski T, Tukendorf A, Ruszkowska M, Skorzynska E, Maksymiec W (1988) Characteristics of the photosynthetic apparatus of Cu non-tolerant spinach exposed to excess copper. J Plant Physiol 132: 708–713

    CAS  Google Scholar 

  • Bengtsson B, Asp H, Jensen P, Berggren D (1988) Influence of aluminium on phosphate and calcium uptake in nutrient solution and soil solution. Physiol Plant 74: 294–305

    Google Scholar 

  • Borochov A, Cho MH, Boss WF (1994) Plasma membrane lipid metabolism of Petunia petals during senescence. Physiol Plant 90: 279–284

    CAS  Google Scholar 

  • Burzynski M, Buczek J (1994) The influence of Cd, Pb, Cu and Ni on NO’ uptake by cucumber seedlings II. In vitro and in vivo effects on the plasmalemma ATPase and oxidoreductase from cucumber seedling roots. Acta Physiol Plant 16: 297–302

    Google Scholar 

  • Cakmak I, Horst WJ (1991) Effect of aluminum on net efflux of nitrate and potassium from root tips of soybean (Glycine max L.). J Plant Physiol 130: 400–403

    Google Scholar 

  • Calba H, Jaillard B (1997) Effect of aluminum on ion uptake and H+ release by maize. New Phytol 137: 607–616

    CAS  Google Scholar 

  • Chaoui A, Mazhoudi S, Ghorbal MH, Ferjani EE (1997) Cadmium and Zn induction of lipid peroxidation and effects of antioxidant enzyme activities in bean (Phaseolus vulgaris L.). Plant Sci 127: 139–147

    CAS  Google Scholar 

  • Ciscato M, Valke R, Van Loven K, Clijsters H, Navari-Izzo F (1997) Effects of in vivo copper treatment on the photosystems of different stress sensitivity. Physiol Plant 99: 901–908

    Google Scholar 

  • Cooke DT, Burden R (1990) Lipid modulation of plasma membrane bound ATPases. Physiol. Plant 78: 153–159

    Google Scholar 

  • De Vos CHR, Schat H (1991) Free radicals and heavy metal tolerance. In: Rozema J, Verkleij JAC (eds) Ecological responses to environmental stress. Kluwer, Dordrecht, pp 22–30

    Google Scholar 

  • De Vos CHR, Schat H, Vooijs R, Ernst WHO (1989) Copper induced damage to the perme-ability barrier in roots of Silene cucubalus, J Plant Physiol 135: 164–169

    Google Scholar 

  • De Vos CHR, Schat H, Vooijs R, Ernst WHO (1991) Increased resistance to copper induced damage of the root cell plasmalemma in copper tolerant Silene cucubalus. Physiol Plant 82: 523–528

    Google Scholar 

  • De Vos CHR, Vonk MJ, Vooijs R, Schat H (1992) Glutathione depletion due to copper induced phytochelatin synthesis causes oxidative stress in Silene cucubalus. Plant Physiol 98: 853–858

    PubMed  Google Scholar 

  • De Vos CHR, Bookum WMT, Vooijs R, Schat H, De Kok U (1993) Effect of copper on fatty acid composition and peroxidation of lipids in the roots of copper tolerant and sensitive Silene cucubalus. Plant Physiol Biochem 31: 151–158

    Google Scholar 

  • Demidchik V, Sokolik A, Yurin V (1997) The effects of Cu’ on ion transport systems of the plant cell membranes. Plant Physiol 114: 1313–1325

    PubMed  CAS  Google Scholar 

  • Devi SR, Prasad MNV (1998) Copper toxicity in Ceratophyllum demersum L. (coon tail), a free floating macrophyte: response of antioxidant enzymes and antioxidants. Plant Sci 138: 157–165

    CAS  Google Scholar 

  • Dong CZ, Mantillet JL, Triantaphylides C (1994) Effects of gamma irradiation on the plasma membranes of suspension cultured cells. Rapid irreversible inhibition of H+ ATPase activity. Physiol Plant 90: 307–312

    Google Scholar 

  • Durieux RP, Jackson WA, Kamprath EI, Moll RH (1993) Inhibition of nitrate uptake by aluminum in maize. Plant Soil 151: 97–104

    CAS  Google Scholar 

  • Edwards JC, Chapman D, Cramp WA, Yatvin MB (1984) The effects of ionizing radiation on biomembrane structure and function. Prog Biophys Mol Biol 43: 71–93

    PubMed  CAS  Google Scholar 

  • Foder E, Szabo-Nagy A, Erdei L (1995) The effects of cadmium on the fluidity and H+ ATP-ase activity of plasma membrane from sunflower and wheat roots. J Plant Physiol 147: 87–92

    Google Scholar 

  • Foyer CH, Lopez-Delgado H, Dat JE, Scott DI (1997) Hydrogen peroxide and glutathioneassociated mechanisms ofacclimatory stress tolerance and signalling. Physiol Plant 100: 241254.

    Google Scholar 

  • Girotti AW (1985) Mechanism of lipid peroxidation. J Free Radic Biol Med 2:87–95 Goldbeck JH, Martin IF, Fowler CF (1980) Mechanism of linolenic acid induced inhibition of photosynthetic electron transport. Plant Physiol 65: 707–713

    Google Scholar 

  • Gutteridge JMC, Quinlan GJ, Clark I, Halliwell B (1985) Aluminum salts accelerate peroxid-ation of membrane lipids stimulated by iron salts. Biochim Biophys Acta 835: 441–447

    PubMed  CAS  Google Scholar 

  • Halliwell B (1994) Free radicals and antioxidants: personal view. Nutr Rev 52: 253–265

    PubMed  CAS  Google Scholar 

  • Harwood JL, Russel NJ (1984) Lipids in plants and microbes. Allen and Unwin, London

    Google Scholar 

  • Hendry GAF, Baker AJM, Ewart CF (1992) Cadmium tolerance and toxicity, oxygen radical processes and molecular damage in cadmium tolerant and cadmium sensitive clones of Holcus lanatus L. Acta Bot Neerl 41: 271–281

    CAS  Google Scholar 

  • Hernandez LE, Cooke DT (1997) Modification of the root plasma membrane lipid composition of cadmium treated Pisum sativum. J Exp Bot 48: 1375–1381

    CAS  Google Scholar 

  • Jones DL, Kochian LV (1997) Aluminum interaction with plasma membrane lipids and enzyme metal binding sites and its potential role in Al cytotoxicity. FEBS Lett 400: 51–57

    PubMed  CAS  Google Scholar 

  • Jones GJ, Nichols PB, Johns RS, Smith JB (1993) The effect of mercury and cadmium on the fatty acid and sterol composition of the marine diatom Asterionellaglacialis. Phytochemistry 26: 1343–1348

    Google Scholar 

  • Kampfankel K, Montagu MV, Inze DC (1995) Effects of iron excess on Nicotiana plumbaginifolia plants. Implications to oxidative stress. Plant Physiol 107: 725–728

    Google Scholar 

  • Kappus H (1985) Lipid peroxidation: mechanisms, analysis enzymology and biological relevance. In: Sies H (ed) Oxidative stress. Academic Press, London, pp 273–310

    Google Scholar 

  • Kasamo K, Nouchi I (1987) The role of phospholipids in plasma membrane ATPase activity in ligna radiata L. (mung bean) roots and hypocotyls. Plant Physiol 83: 823–828

    Google Scholar 

  • Kastrup V, Steiger S, Luttge U, Fischer-Schliebs E (1996) Regulatory effects of Zn on corn root plasma membrane H+-ATPase. New Phytol 134: 61–74

    CAS  Google Scholar 

  • Kennedy CD, Gonsalves EAN (1987) The action of divalent Zn, cadmium, mercury, copper and lead on transroot potential and H+ efflux of excised roots. J Exp Bot 38: 800–817

    CAS  Google Scholar 

  • Krupa Z (1988) Acyl lipids in the supramolecular chlorophyll protein complexes of photo-systems: isolation artifacts or integral components regulating their structure and functions? Acta Soc Bot Pol 57: 401–418

    CAS  Google Scholar 

  • Krupa Z, Baszynski T (1989) Acyl lipid composition of thylakoid membranes of cadmium-treated tomato plants. Acta Physiol Plant 11: 111–116

    CAS  Google Scholar 

  • Krupa Z, Skorzynska E, Maksymiec W, Baszynski T (1987) Effect of cadmium treatment on the photosynthetic apparatus and its photochemical activities in greening radish seedlings. Photosynthetica 21: 275–281

    Google Scholar 

  • Kuiper PJC (1984) Lipid metabolism of higher plants as a factor in environmental adaptation. In: Siegenthaler PA, Eichenberger W (eds) Structure, function and metabolism of plant lipids. Elsevier, Amsterdam, pp 525–530

    Google Scholar 

  • Kuiper PJC (1985) Environmental changes and lipid metabolism of higher plants. Physiol Plant 64: 118–127

    CAS  Google Scholar 

  • Lindberg S, Griffiths G (1993) Aluminum effects on ATPase activity and lipid composition of plasma membranes in sugar beet roots. J Exp Bot 44: 1543–1550

    CAS  Google Scholar 

  • Lindberg S, Strid H (1997) Aluminum induces rapid changes in cytosolic pH and free calcium and potassium concentrations in root protoplasts of wheat (Triticum aestivum). Plant Physiol 99: 405–414

    CAS  Google Scholar 

  • Lindberg S, Szynkier K, Greger M (1991) Aluminum effects on transmembrane potential in cells of fibrous roots of sugarbeet. Physiol Plant 83: 54–62

    CAS  Google Scholar 

  • Lindon FC, Henriques FS (1991) Limiting step on photosynthesis of rice plants treated with varying copper levels. J Plant Physiol 138: 115–118

    Google Scholar 

  • Luna CM, Gonzalez VS, Trippi VS (1994) Oxidative damage caused by excess copper in oat leaves. Plant Cell Physiol 35: 11–15

    CAS  Google Scholar 

  • Lurie S, Ronen R, Lipsker Z, Aloni B (1994) Effects of paclobutrazol and chilling temperatures on lipids, antioxidants and ATPase activity of plasma membrane isolated from green ball pepper fruits. Physiol Plant 91: 593–598

    CAS  Google Scholar 

  • Maksymiec W, Russa R, Urbanik-Sypniewska T, Baszynski T (1992) Changes in acyl lipid and fatty acid composition in thylakoids of copper non-tolerant spinach exposed to excess copper. J Plant Physiol 140: 52–55

    CAS  Google Scholar 

  • Maksymiec W, Russa R, Urbanik-Sypniewska T, Baszynski T (1994) Effect of excess Cu on the photosynthetic apparatus of runner bean leaves treated at two different growth stages. Physiol Plant 91: 715–721

    CAS  Google Scholar 

  • Mansour MMF, Van Hasselt PR, Kuiper PJC (1994) Plasma membrane lipid alterations induced by NaCI in winter wheat roots. Physiol Plant 92: 473–478

    CAS  Google Scholar 

  • Mazhoudi S, Chaoui A, Chorbal MH, Ferjani EE (1997) Response of antioxidant enzymes to excess copper in tomato (Lycopersicum esculentum Mill). Plant Sci 127: 129–137

    CAS  Google Scholar 

  • Mehrag AA (1993) The role of plasmalemma in metal tolerance in angiosperms. Physiol Plant 88: 191–198

    Google Scholar 

  • Mehta RA, Fawcett TW, Porath D, Matto AR (1992) Oxidative stress causes rapid membrane translocation and in vivo degradation of ribulose 1,5-bisphosphate carboxylase/oxygenase. J Biol Chem 267: 2810–2816

    PubMed  CAS  Google Scholar 

  • Mishra S, Sanwal GG (1995) Changes in lipid composition of Brassica siliqua upon infection by Cuscuta. J Plant Physiol 146: 303–317

    CAS  Google Scholar 

  • Miyasaka SC, Kochian LV, Shaff JE, Foy CD (1989) Mechanism of aluminum tolerance in wheat. An investigation of genotypic differences in rhizosphere pH, K+ and H’ transport and root cell membrane potentials. Plant Physiol 91: 1188–1196

    PubMed  CAS  Google Scholar 

  • Murata N, Higashi SI, Fujimura Y (1990) Glycerolipids in various preparations of photosystem II from spinach chloroplasts. Biochim Biophys Acta 1019: 261–268

    CAS  Google Scholar 

  • Navari-Izzo F, Quartacci MF, Izzo R, Pinzino C (1992) Degradation of membrane lipid components and antioxidant levels in Hordeum vulgare exposed to long-term fumigation with SO,. Physiol Plant 84: 73–79

    CAS  Google Scholar 

  • Nguyen XV, Mazliak P (1990) Chilling injury induction is accompanied by galactolipid degradation in tomato pericarp. Plant Physiol Biochem 28: 283–291

    Google Scholar 

  • O’Sullivan JN, Dalling MJ (1989) The effect of thylakoid associated galactolipase on the morphology and photochemical activity of isolated wheat chloroplasts. J Plant Physiol 134: 504–509

    Google Scholar 

  • Palmgren MG (1991) Regulation of plant plasma membrane H+ ATPase activity. Physiol Plant 83: 314–323

    CAS  Google Scholar 

  • Peeler TC, Thomson GA Jr (1990) Effects of light on phospholipid metabolism in Dunaliella salira. Physiol Plant 78: 324–330

    CAS  Google Scholar 

  • Price AH, Hendry GAF (1991) Iron catalyzed oxygen radical formation and its possible contribution to drought damage in nine native grasses and three cereals. Plant Cell Environ 14: 477–484

    CAS  Google Scholar 

  • Raison JK, Wright LC (1983) Thermal phase transitions in the polar lipids of plant membranes. Their induction by disaturated phospholipids and their possible relation to chilling injury. Biochim Biophys Acta 731: 69–78

    Google Scholar 

  • Rengel Z (1992a) Role of calcium in aluminum toxicity. New Phytol 121: 499–513

    CAS  Google Scholar 

  • Rengel Z (1992b) Disturbance of cell Ca’ homeostasis as a primary trigger of Al toxicity syndrome. Plant Cell Environ 15: 931–938

    CAS  Google Scholar 

  • Rengel Z (1995) Sulphydril groups in root-cell plasma membranes of wheat genotypes differing in Zn efficiency. Physiol Plant 95: 604–612

    CAS  Google Scholar 

  • Rengel Z, Elliott DC (1992) Mechanism of aluminum inhibition of net ‘Ca’ uptake by Amaranthus protoplasts. Plant Physiol 98: 632–638

    PubMed  CAS  Google Scholar 

  • Ros R, Cooke DT, Burden RS, James CS (1990) Effect of the herbicide MCPA, and the heavy metals, cadmium and nickel, on the lipid composition, Mg-ATPase activity and fluidity of plasma membranes from rice, Oryza sativa cv. Bahia shoots. J Exp Bot 41: 457–462

    Google Scholar 

  • Ros R, Morales A, Segura J, Picazo I (1992) In vivo and in vitro effects of nickel and cadmium

    Google Scholar 

  • on the plasmalemma ATPase from rice (Oryza sativa L.) shoots and roots. Plant Sci 83:1–6

    Google Scholar 

  • Ryan PR, Reid RJ, Smith FA (1997) Direct evaluation of the Ca’ displacement hypothesis for Al toxicity. Plant Physiol 113: 1351–1357

    PubMed  CAS  Google Scholar 

  • Sandman G, Boger P (1980) Copper mediated lipid peroxidation in photosynthetic membranes. Plant Physiol 66: 797–800

    Google Scholar 

  • Shewfelt RI, Erickson MC (1991) Role of lipid peroxidation in the mechanism of membrane associated disorders in edible plant tissue. Trends Food Sci Technol 2: 152–154.

    CAS  Google Scholar 

  • Skorzynska E, Baszynski T (1993) The changes in PS II complex polypeptides under cadmium treatment–are they of direct or indirect nature? Acta Physiol Plant 15: 263–269

    CAS  Google Scholar 

  • Skorzynska E, Urbanik-Sypniewska T, Russa R, Baszynski T (1991) Galactolipase activity in Cd-treated runner bean plants. J Plant Physiol 138: 454–459

    CAS  Google Scholar 

  • Smirnoff N (1993) The role of active oxygen in the response of plants lto water deficit and desiccation. New Phytol 125: 27–58

    CAS  Google Scholar 

  • Somasekharaiah BV, Padmaja K, Prasad ARK (1992) Phytotoxicity of cadmium ions on germinating seedlings of mung bean (Phaseolus vulgaris): involvement of lipid peroxides in chlorophyll degradation. Physiol Plant 85: 85–89

    Google Scholar 

  • Stefanov S, Popova I, Kamburova E, Pancheva T, Kimenov G, Kuleva L, Popov S (1993) Lipid and sterol changes in Zea mays caused by lead ions. Phytochemistry 33: 47–51

    CAS  Google Scholar 

  • Stefanov S, Seizova K, Popova I, Petkov V, Kimenov G, Popov S (1995a) Effect of lead ions on the phospholipid composition in leaves of Zea mays and Phaseolus vulgaris. J Plant Physiol 147: 243–246

    CAS  Google Scholar 

  • Stefanov S, Pandev SD, Seizova K, Tyankova LA, Popov S (1995b) Effect of lead on the lipid metabolism in spinach leaves and thylakoid membranes. Biol Plant 37: 251–256

    CAS  Google Scholar 

  • Strass A, Horst WJ (1995) Effects of aluminum on membrane properties of soybean (Glycine max) cells in suspension culture. Plant Sci 171: 113–118

    Google Scholar 

  • Stroinski A, Floryszak-Wieczorck J (1993) Effects of cadmium on the host pathogen system IV. Influence of cadmium and Phytophthora infestans on membrane permeability of potato tuber. J Plant Physiol 142: 575–578

    CAS  Google Scholar 

  • Trivedi S, Erdei L (1992) Effects of cadmium and lead on the accumulation of Ca’ and K+ and on the influx and translocation of K+ in wheat of low and high K+ status. Physiol Plant 84: 94–100

    CAS  Google Scholar 

  • Van Camp W, Willekens H, Bowler C, Van Montagu M, Inze D (1994) Elevated levels of sup-eroxide dismutase protect transgenic plants against O, damage. Biotechnology 12: 165–168

    Google Scholar 

  • Venedictov RS, Krivosheyava AA (1983) The mechanism of fatty acid inhibition of electron transport in chloroplasts. Planta 159: 411–414

    Google Scholar 

  • Vuletic M, Kohler K (1990) Effect of aluminum on the channels in plant membranes. Stud Biophys 138: 185–188

    CAS  Google Scholar 

  • Weckx JEJ, Clijsters HMM (1996) Oxidative damage and defense mechanisms in primary leaves of Phaseolus vulgaris as a result of root assimilation of toxic amounts of copper. Physiol Plant 96: 506–512

    CAS  Google Scholar 

  • Weckx JEJ, Clijsters HMM (1997) Zn phytotoxicity induces oxidative stress in primary leaves of Phaseolus vulgaris. Plant Physiol Biochem 35: 405–410

    CAS  Google Scholar 

  • Wise RR, Naylor AW (1987) Chilling induced photoperoxidation. The peroxidative destruction of lipids during chilling injury. Plant Physiol 83: 272–277

    Google Scholar 

  • Wolter WP, Schmidt R, Heinz (1992) Chilling sensitivity of Arabidopsis thaliana with genetically engineered membrane lipids. EMBO J 11: 4685–4692

    CAS  Google Scholar 

  • Xu S, Patterson G (1985) The biochemical effects of cadmium on sterol biosynthesis by soybean suspension culture. Curr Top Plant Biochem Physiol 4: 245–248

    Google Scholar 

  • Xu Y, Siegenthaler PA (1996) Effect of non-chilling temperatures and light intensity during growth of squash cotyledons on the composition of thylakoid membrane lipids and fatty acids. Plant Cell Physiol 37: 471–479

    CAS  Google Scholar 

  • Yamamoto Y, Hachiya A, Matsumoto H (1997) Oxidative damage to membranes by a combination of aluminum and iron in suspension cultured tobacco cells. Plant Cell Physiol 38: 1333–1339

    CAS  Google Scholar 

  • Yaneva IA, Vunkova-Radeva RV, Stefanova KL, Tsenov, AS, Petrova TP and Petkov GO (1995) Changes in lipid composition of winter wheat leaves under low temperature stress: effect of molybdenum supply. Biol Plant 37: 561–566

    CAS  Google Scholar 

  • Yang X, Baliger VC, Martens DC, Clark RB (1996) Cadmium effects on influx and transport of mineral nutrients in plant species. J Plant Nutr 19: 643–656

    CAS  Google Scholar 

  • Zel J, Svetek J, Crne H, Schara M (1993) Effects of aluminum on membrane fluidity of the mycorrhizal fungus Amanita muscaria. Physiol Plant 89: 172–176

    CAS  Google Scholar 

  • Zhang G, Slaski JJ, Archambutt DJ, Taylor GJ (1997) Alteration of plasma membrane lipids in aluminum resistant and aluminum sensitive wheat genotypes in response to aluminum stress. Physiol Plant 99: 302–308

    CAS  Google Scholar 

  • Zhao XJ, Sucoff E, Stadelmann EJ (1987) Al’ and Ca alteration of plasma membrane permeability of Quercus rubra root cortical cells. Physiol Plant 83: 159–162

    CAS  Google Scholar 

  • Zwaizek JJ, Blake JJ (1990) Effects of preconditioning on electrolyte leakage and lipid composition in black spruce (Picea mariana) stresses with polyethylene glycol. Physiol Plant 79: 71–77

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Devi, S.R., Prasad, M.N.V. (1999). Membrane Lipid Alterations in Heavy Metal Exposed Plants. In: Heavy Metal Stress in Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-07745-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-07745-0_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-07747-4

  • Online ISBN: 978-3-662-07745-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics