Skip to main content

Metallothioneins and Metal Binding Complexes in Plants

  • Chapter
Book cover Heavy Metal Stress in Plants

Abstract

A heavy metal (HM) contaminated atmosphere, geosphere and hydrosphere pose serious a threat to plants. Plants growing in these environments acquire a wide range of adaptive strategies, the most prominent mechanisms being the synthesis of phytochelatins (PCs) and metallothioneins (MTs) (Reddy and Prasad 1990; Steffens 1990; Rauser 1990b, 1996; Prasad 1997; Rengel 1997). The HM deposition pattern has been correlated with forest decline and the concentration of PCs (Gawel et al. 1996). It has also been reported that certain plants function as hyperaccumulators of specific heavy metals owing to their efficient metal complexation processes (Reeves et al. 1995; Krämer et al. 1996, see Chaps. 1, 8, 13 and 14 in this Vol.). Thus, metal biomolecule complexes are of considerable interest not only for ecotoxicology but also for social point of view (Lobinski and Potin-Gautier 1998; Prasad 1998). Considering structural aspects, MTs have been classified into three groups (Fig. 3.1; Kagi and Schaffer 1988).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrahamson SL, Speiser DM, Ow DW (1992) A gel electrophoresis assay for phytochelatins. Anal Biochem 20: 239–243

    Article  Google Scholar 

  • Agrawal SB, Agrawal M, Lee EH, Kramer GF, Pillai P (1992) Changes in polyamines and glutathione content of green alga, Chlorella elongatum ( Dang) France exposed to mercury. Environ Exp Bot 32: 145–151

    Google Scholar 

  • Baker AJM, Grant CJ, Martin MH, Shaw SC, Whitebrook J (1986) Induction and loss of cadmium tolerance in Holcus lanatus L. and other grasses. New Phytol 102: 575–587

    Article  CAS  Google Scholar 

  • Bartolf M, Brennen E, Price CA (1980) Partial characterization of a cadmium-binding protein from the roots of cadmium treated tomato. Plant Physiol 66: 438–441

    Article  PubMed  CAS  Google Scholar 

  • Berger JM, Jackson PJ, Roboinson NJ, Lujan LD, Delhaize E (1989) Precursor-product relation ship of poly ry-glutamulcysteiny glycine biosynthesis in Datura innoxia. Plant Cell Rept 7: 632–635

    CAS  Google Scholar 

  • Briat JF, Massenet O, Lauthere JP (1990) Purification and characterization of an iron-induced ferritin from soybean (Glycine max) cell suspensions. J Biol Chem 264: 11550–11553

    Google Scholar 

  • Buchanan-Wallston V (1994) Isolation of cDNA clones for genes that are expressed during leaf senescence in Brassica napus. Identification of a gene encoding a senescence-specific metallothionein-like protein. Plant Physiol 105: 839–846

    Article  Google Scholar 

  • Cai XII, Traîna SJ, Logan Ti, Gustafson T, Sayre R (1995) Application of eukaryotic algae for the removal of heavy metals from water. Mol Mar Biol Biotechol 4: 338–344

    CAS  Google Scholar 

  • Casterline JL Jr, Barnett NM (1982) Cadmium binding components in soybean plants. Plant Physiol 69: 1004–1007

    Article  PubMed  CAS  Google Scholar 

  • Coppellotti 0 (1989) Glutathione, cysteine and acid-soluble thiol levels in Euglena gracilis cells exposed to copper and cadmium. Comp Biochem Physiol Comp Pharmacol Toxicol Endocrinol 94: 35–40

    Article  Google Scholar 

  • Crichton RR, Ortiz YP, Koch MHJ, Parfait R, Sturmann BH (1978) Isolation and characterization of phytoferritin from pea (Pisum sativum) and lentil (Lens esculenta). Biochem J 171: 349–356.

    PubMed  CAS  Google Scholar 

  • Czarenecka E, Edelman L, Schoffl F, Key JL (1984) Comparative analysis of physical stress responses in soybean seedlings using cloned heat-shock cDNAs. Plant Mol Biol 3: 45–58

    Article  Google Scholar 

  • De Kok LJ, Kuiper PJC (1986) Effect of short term dark incubation with sulfate, chloride and selenate on the glutathione content of spinach leaf discs. Physiol Plant 68: 477–482

    Article  Google Scholar 

  • De Miranda JR, Thomas MA, Thurman DA, Tomsett AB (1990) Metallothionein genes from the flowering plant Mimulus guttatus. FEBS Lett 260: 277–280

    Article  PubMed  Google Scholar 

  • Delhaize E, Jackson PJ, Lujan LD, Robinson NJ. (1989a) ry-glutamyl-cysteinyl-glycine synthesis in Datura innoxia and binding with cadmium. Role in cadmium tolerance. Plant Physiol 89: 700–706

    Google Scholar 

  • Dix DJ, Lin PN, Kimata Y, Theil EC (1992) The iron regulatory region ( IRE) of ferritin mRNA is also a positive control element for iron-dependent translation. Biochemistry 31: 2818–2822

    Google Scholar 

  • Eanetta NT, Steffens JC (1989) Labile sulfide and sulfite in phytochelatin complexes. Plant Physiol 89: 76

    Google Scholar 

  • Ernst WHO (1990) Poly y-glutamylcysteinyl glycines or phytochelatins and their role in Cadmium tolerance of Silene vulgaris. Plant Cell Physiol 13: 913–921

    Google Scholar 

  • Ernst WHO, Verkleij JAC, Schat H (1992) Metal tolerance in plants. Acta Bot Neerl 41:229–248 Evans 1M, Gatehouse LN, Gatehouse JA, Robinson NJ, Coy RRD (1990) A gene from pea (Pisum sativum) and its homology to metallothionein genes. FEBS Lett 262: 29–32

    Google Scholar 

  • Fobis-Loisy I, Aussel L, Briat JF (1996) Post transcriptional regulation of plant ferritin accumulation in response to iron as observed in the maize mutant ysl. FEBS Lett. 397: 149–154

    Article  PubMed  CAS  Google Scholar 

  • Fujita M (1985) The presence of two cadmium binding components in the roots of water hyacinth cultivated in a Cd-containing medium. Plant Cell Physiol 26: 295–300

    CAS  Google Scholar 

  • Fujita M, Kawanishi T (1986). Purification and characterization of a cd-binding complex from the root tissue of water hyacinth cultivated in a Cd containing-medium. Plant Cell Physiol 27: 1317–1325

    CAS  Google Scholar 

  • Fujita M, Nakano K (1988) Metal specificities on induction and binding affinities of heavy metal-binding complexes in water hyacinth root tissue. Agric Biochem 2: 2335–2336

    Google Scholar 

  • Gawel JE, Ahner BA, Friedland AJ Morel FMM. (1996) Role for heavy metals in forest decline indicated by phytochelatin measurements. Nature 381 (6577): 64–65

    Article  CAS  Google Scholar 

  • Gekeler W, Grill WE, Winnacker EL, Zenk MH (1988) Algae sequester heavy metals via synthesis of phytochelatin complexes. Arch Microbiol 150: 197–202

    Article  CAS  Google Scholar 

  • Gingrich DJ, Weber DN, Shaw CF, Garvey JS, Petering DH. (1986). Characterization of a highly negative and labile binding protein induced in Euglena gracilis by cadmium. Envir Health Perspect 65: 77–85

    CAS  Google Scholar 

  • Gottlieb CO, Swinehart JH (1988) The effect of metal ions on glycine uptake into alga Eug-lena gracilis. Comp Biochem Physiol Comp Pharmacol Toxicol Endocrine 89: 287–292

    Article  Google Scholar 

  • Grill E, Zenk MH (1985) Induction of heavy metal sequestering phytochelatin by cadmium in cell cultures of Rauvolfia serpentina. Naturwissenschaften 72: 432–433

    Article  CAS  Google Scholar 

  • Grill E, Winnacker EL, Zenk MH (1985) Phytochelatins, the principal heavy-metal complexing peptides of higher plants. Science 230: 674–676

    Article  PubMed  CAS  Google Scholar 

  • Grill E, Gekeler W, Winnacker EL, Zenk MH (1986) Homo-phyto-chelatins are heavy metal binding peptides of homo-glutathione containing fabales. FEBS Lett 205: 47–50

    Article  CAS  Google Scholar 

  • Grill E, Winnacker EL, Zenk MH (1987). Phytochelatins, a class of heavy-metal binding peptides from plants are functionally analogous to metallothioneins. Proc Nat Acad Sci USA 84: 439–443

    Article  PubMed  CAS  Google Scholar 

  • Grill E, Löffler S, Winnacker EL, Zenk MH (1989) Phytochelatins, the heavy-metal binding peptides of plants, are synthesised from glutathione by a specific -y-glytamyl-cysteine dipeptidyl transpeptidase phytochelatin synthase. Proc Natl Acad Sci USA 86: 6838–6842

    Article  PubMed  CAS  Google Scholar 

  • Grunhage L, Weigel DI, Jager HJ (1985) Isolation and partial characterization of a cadmium-binding protein from Pisum sativum. J Plant Physiol 119: 327–334

    Google Scholar 

  • Gupta A, Whitton BA, Morby AP, Huckle JW, Robinson NJ (1992) Amplification and rearrangement of prokaryotic metallothionein locus Smt in Synechococcus PCC 6301 selected for tolerance to cadmium. Proc Royal Soc London, 248: 273–281

    Article  CAS  Google Scholar 

  • Hart BA, Bertram PE (1980) Cadmium binding protein in a cadmium tolerant strain of Chlorella pyrenoidosa. Environ Exp Bot 20: 175–180

    Article  CAS  Google Scholar 

  • Heullet E, Guerbette F, Guenou C, Kader JC (1988) Induction of a cadmium-binding protein in a unicellular alga. Int J Biochem 20: 203–210

    Article  Google Scholar 

  • Hyde BB, Hodge AJ, Birnsteil ML (1962) Phytoferritin a plant protein discovered by electron microscopy. Proceedings of the 5th international congress for electron microscopy. Academic Press, New York

    Google Scholar 

  • Jackson PJ, Roth EJ, McClure PR Naranjo CM (1984) Selection, isolation, and characterization of cadmium resistant Datura innoxia suspension cultures. Plant Physiol 75: 914–918

    Article  PubMed  CAS  Google Scholar 

  • Jackson PJ, Unkefer CJ, Doolen JA, Watt K, Robinson NJ (1987) Poly -y-glutamyl cysteinyl glycine: its role in cadmium resistance in plant cells. Proc Nati Acad Sci USA 84: 6619–6623

    Article  CAS  Google Scholar 

  • Kagi JHR, Schaffer A (1988) Biochemistry of metallothionein. Biochemistry 27: 8509–8515

    Article  PubMed  CAS  Google Scholar 

  • Kaneta M, Hikichi H, Endo S, Sugiyama N (1983) Isolation of a cadmium binding protein from cadmium treated rice plants. Agric Biol Chem 47: 417–418

    Article  CAS  Google Scholar 

  • Karin M. (1985) Metallothioneins: proteins in search of function. Cell 41: 9–10

    Article  PubMed  CAS  Google Scholar 

  • Kawashima I, Inokuchi Y, Chino M, Kimura M, Shimizu N (1991) Isolation of a gene for a metallothionein protein from soybean. Plant Cell Physiol 32: 913–916

    CAS  Google Scholar 

  • Kawashima I, Kennedy TD, Chiono I, Lane BG (1992) Wheat Ec metallothionein genes Like mammalian Zn2+ metallothionein genes, wheat Zn2+ metallothionein genes are conspicuously expressed during embryogenesis. Eur. J Biochem 209: 971–976.

    Google Scholar 

  • Kneer R, Zenk MH (1992) Phytochelatins protect plant enzymes from heavy-metal poisoning. Phytochemistry 31: 2663–2667

    Article  CAS  Google Scholar 

  • Kneer R, Kutchan TM, Hochberger A, Zenk MH (1992) Saccharomyces cerevisiae and Neuro-spora crassa contain heavy metal sequestering phytochelatin. Arch Microbiol 157: 305–310

    Google Scholar 

  • Kortz RM, Evangelou BP, Wagner GJ (1989) Relationships between cadmium, zinc, cd-peptide and organic acid in tobacco suspension cells. Plant Physiol 91: 780–787.

    Google Scholar 

  • Kosakowasaka A, Falkowski L, Lewandowska J (1988) Effect of amino acids on the toxicity of heavy metals to phytoplankton. Bull Environ Contam Toxicol 40: 532–538

    Article  Google Scholar 

  • Krämer U, Cotte-Howells JD, Charnock JM, Baker AJM and Smith JAC (1996) Free histidine as a metal chelator in plants that accumulate nickel. Nature 379: 635–638

    Article  Google Scholar 

  • Kubota K, Nishizone H, Suzuki S, Ishii F (1988). A copper binding protein in root cytoplasm of Polygonum cuspidatum growing in a metalliferous habitat. Plant Cell Physiol 29: 1029–1033

    CAS  Google Scholar 

  • Kumar TR (1998). Ferritin in Vigna mungo (L.) Hepper ( Black gram ): Some functional aspects. Ph.D thesis accepted by the University of Hyderbad. pp 106

    Google Scholar 

  • Laulhere JP, Laboure AM, Briat JF (1988) Purification and characterization of ferritin from maize, pea and soybean seeds. J Biol Chem 263: 10289–10294

    PubMed  CAS  Google Scholar 

  • Leblova S, Mucha A, Spirhanzova E (1986) Compartmentation of cadmium, copper, lead and zinc in seedlings of maize (Zea mays L.) and induction of metallothionein. Biologia 41: 777–785

    CAS  Google Scholar 

  • Lefévbre DD, Miki BL, Laliberte JF (1987) Mammalian metallothionein functions in plants. Biotechnology 5: 1053–1056

    Article  Google Scholar 

  • Leshem YY, Kuiper PJC (1996) Is there a GAS (general adaptation syndrome) response to various types of environmental stress ? Biol Plan 36: 1–18

    Article  Google Scholar 

  • LobinskiR, Potin-Gautier M (1998) Metals and biomolecules–bioinorganic analytical chemistry Analusis 26: 21–24

    Google Scholar 

  • Löffler S, Hochberger A, Grill E, Winnacker EL, Zenk MH (1989) Termination of the phytochelatin synthase reaction through seque-stration of heavy metals by the reaction product. FEBS Lett 258: 42–46

    Article  Google Scholar 

  • Lolkema PC, Donker MH, Schouten AJ, Ernst WHO (1984) The possible of metallothioneins in copper tolerance of Silene cucubalus. Planta 162: 174–179

    Article  CAS  Google Scholar 

  • Macnair MR (1977) Major genes for copper tolerance in Mimulus guttatus. Nature 268: 428–430.

    Article  Google Scholar 

  • Maita Y, Kawaguchi S (1989). Amino acid composition of cadmium-binding protein induced in a marine diatom, Phaeodactylum tricornutum. Bull Environ Contam Toxicol 43: 394–401

    Article  PubMed  CAS  Google Scholar 

  • Maiti IB, Wagner GJ, Yeargan R, Hunt AG (1989) Inheritance and expression of the mouse metallothionein gene in tobacco. Physiol Planta 91: 1020–2024

    Article  CAS  Google Scholar 

  • Mehra RK, Tarbet EB, Gray WR, Winge DR (1988) Metal specific synthesis of two metallothioneins and - glutamyl peptides of Candida glabrata. Proc. Natl. Acad. Sci. ( USA ). 5: 8815–8819

    Google Scholar 

  • Mench M, Morel JJ, Guckert A (1987) Metal binding properties of high molecular weight soluble exudates from maize (Zea mays L.) roots. Biol Fertil Soils 3: 165–169

    Article  CAS  Google Scholar 

  • Mendum ML, Gupta SC, Goldsbrough PB (1990) Effect of glutathione on phytochelatin synthe-sis in tomato cells. Plant Physiol 93: 484–488

    Article  PubMed  CAS  Google Scholar 

  • Mengel K, Kirby EA (1987) Principles of plant nutrition. International Potash Institute. Berne Meuwly P, Thibault P, Schwan AL, Rauser WE (1995) Three families of thiol peptides are induced by cadmium in maize. Plant J 7: 391–400

    Google Scholar 

  • Miller J, McLachlan AD, Klug A (1985) Repetitive zinc-binding domains in the protein transcription factor IIA from Xenopus oocytes. EMBO J 4: 1609–1614

    PubMed  CAS  Google Scholar 

  • Misra S, Gedamu L (1989) Heavy metal tolerant transgenic Brassica napus L. and Nicotiana tabacum L. plants. Theoret Appl Genet 78: 161–168

    Article  CAS  Google Scholar 

  • Morel JL, Mench M, Guckert A (1986) Measurements of Pb, Cu and Cd bindings with mucilage exudates from maize (Zea mays L.) roots. Biol Fertil Soils 2: 29–34

    Article  Google Scholar 

  • Murasugi A, Wada C, Hayashi Y (1981a) Cadmium-binding peptide induced in fission yeast Schizosaccharomyces pombe. J Biochem 90: 1561–1564

    PubMed  CAS  Google Scholar 

  • Murasugi A, Wada C, Hayashi Y (1981b) Cadmium binding peptide induced in fission yeast Schizosacharomyces pombe. J Biochem 103: 1021–1028

    CAS  Google Scholar 

  • Nagano T, Watanabe Y, Hida K, Suketa Y, Okada S (1982) Property of cadmium-binding protein in Chlorella ellipsoida. Eisei Kagaku 28: 114–117

    Article  CAS  Google Scholar 

  • Nishizono H, Minemura F, Suzuki S, Ishii F (1988) An inducible copper-thiolate complex in the fern, Athyrium yokoscence: involvement in copper tolerance of the fern. Plant Cell Physiol 29: 1345–1351

    CAS  Google Scholar 

  • Nishizono H. Watanabe T, Orii T, Suzuki S (1989) Supression of inhibitory effects of copper on enzymatic activities by copper-binding substances from Athyrium yokoscense assayed in vitro. Plant Cell Physiol 30: 565–569

    Google Scholar 

  • Nussbaum S, Schmutz D, Brunold C (1988) Regulation of assimilatory sulfate reduction by cadmium in Zea mays L. Plant Physiol 88: 1407–1410

    Article  PubMed  CAS  Google Scholar 

  • Olafson RW, Abel K, Sim RG. (1979) Prokaryotic metallothionein: preliminary characterization of a blue-green alga heavy metal binding protein. Biochem Biophys Res Commun 89: 36–43

    Article  PubMed  CAS  Google Scholar 

  • Ownby JD, Popham HP (1989) Citrate reverses the inhibition of wheat root growth caused by maluminium. J Plant Physiol 135: 588–591

    Google Scholar 

  • Palma 1M, Yanez J, Gomez M, del Rio LA (1990) Copper binding proteins and copper tolerance in Pisum sativum L. Planta 81: 487–495

    Google Scholar 

  • Prasad MNV (1995) Cadmium toxicity and tolerance in vascular plants. Environ Exp Bot 35: 525–540

    Article  CAS  Google Scholar 

  • Prasad MNV (1997) Trace metals. In: MNV Prasad (ed) Plant Ecophysiology. Wiley, New York, pp 207–249

    Google Scholar 

  • Prasad MNV (1998) Metal-biomolecule complexes in plants: occurrence, functions and applications. Analusis 26 (6): 7–10

    Article  Google Scholar 

  • Rauser WE (1984a) Isolation and partial purification of cadmium-binding protein from roots of the grass Agrostis gigantea. Plant Physiol 74: 1025–1029.

    Article  PubMed  CAS  Google Scholar 

  • Rauser WE (1984b) Estimating metallothionein in small root samples of Agrostis gigantea and Zea mays exposed to cadmium. J Plant Physiol 116: 253–260

    Article  PubMed  CAS  Google Scholar 

  • Rauser WE (1986) The amount of cadmium associated with Cd-binding protein in roots of Agrostis gigantea, maize and tomato. Plant Sci 43: 85–91

    Article  CAS  Google Scholar 

  • Rauser WE (1990a). Changesin glutathione and phytochelatins in roots of maize seedlings exposed to cadmium. Plant Sci. 70: 155–166

    Article  Google Scholar 

  • Rauser WE (1990b). Phytochelatins. Annu Rev Biochem 59: 61–86

    Article  CAS  Google Scholar 

  • Rauser WE (1995) Phytochelatins and related pepetides: structure, biosynthesis, and function. Plant Physiol 109: 1141–1149.

    Article  PubMed  CAS  Google Scholar 

  • Rauser WE, Curvetto NR (1980) Metallothionein occurs in roots of Agrostis tolerant to excess copper. Nature 287: 563–564

    Article  CAS  Google Scholar 

  • Rauser WE, Hartmann H, Weser U (1983) Cadmium thiolate protein from the grass Agrostis gigantea. FEBS Lett 164: 102–104

    Article  CAS  Google Scholar 

  • Rauser WE, Hunziker PE, Kagi JHR (1986) Reversephase high-performance liquid chromato- graphy of Cd-binding proteins from the grass Agrostis gigantea. Plant Sci 45: 105–109

    Article  CAS  Google Scholar 

  • Rauser WE, Schupp R, Rennenberg H (1991) Cysteine, y-glutamylcysteine and glutatathione levels in maize seedlings. Distribution and translocation in normal and cadmium exposed plants. Plant Physiol 97: 112–122

    Google Scholar 

  • Reddy GN (1992) Heavy metal inducible proteins and metallothionein genes in higher plants. Biochem Arch 8: 87–93

    CAS  Google Scholar 

  • Reddy GN, Prasad MNV (1989) Cadmium inducible proteins in Scenedesmus quadricauda. Curr Sci 58: 1380–1382

    CAS  Google Scholar 

  • Reddy GN, Prasad MNV (1990) Heavy metal binding proteins peptides, occurrence, structure, synthesis and functions review. Environ Exp Bot 30: 252–264

    Google Scholar 

  • Reddy GN, Prasad MNV (1992a) Cadmium induced peroxidase activity and isozymes in Oryza sativa. Biochem Arch 8: 101–106

    CAS  Google Scholar 

  • Reddy GN, Prasad MNV (1992b) Characterization of cadmium binding protein from Scenedesmus quadricauda and Cd toxicity reversal by phytochelatin constituting amino acids and citrate. J Plant Physiol 140: 156–162

    Article  CAS  Google Scholar 

  • Reddy GN, Prasad MNV (1993) Tyrosine is not phosphorylated in cadmium induced hsp70 cognate in maize (Zea mays L.) seedlings. Role in chaperone function? Biochem Arch 9: 2532

    Google Scholar 

  • Reese RN, Wagner GJ (1987a) Properties of tobacco Nicotiana tabacum cadmium-binding peptides: unique non-metallothionein cadmium ligands. Biochem J 241: 641–647

    PubMed  CAS  Google Scholar 

  • Reese RN, Wagner GJ (1987b) Effects of buthionine sulfoximine on cd-binding peptide levels in suspension cultured tobacco cells treated with Cd, Zn or Cu. Plant Physiol 84: 574–577

    Google Scholar 

  • Reese RN, Winge DR (1988) Sulfide stabilization of the cadmium y -glutamyl peptide complex of Schizosaccharomyces pombe. J Biol Chem 262: 112832–112835

    Google Scholar 

  • Reese RN, Winge DR (1990) Cadmium-sulfide crystallites in Cd y-glutamyl peptide complexes from Lycopersicum and Dacus. Plant Physiol 89: 723

    Google Scholar 

  • Reese RN, Mehera RK, Tarbet EB, Winge DR (1988) Studies on y -glutamyl Cu-binding peptide from Scizosaccharomyces pombe. J Biol Chem 263: 4186–4192

    PubMed  CAS  Google Scholar 

  • Reese RN, White CA, Winge DR (1992) Cadmium sulfide crystallites in Cd-(yEC),G peptide complexes from tomato. Plant Pysiol 98: 225–229

    Article  CAS  Google Scholar 

  • Reeves RD, Baker AJM, Brooks RR (1995) Abnormal accumulation of trace metals by plants. Mining Environ Manage 3: 4–8

    Google Scholar 

  • Rengel Z. (1997). Mechanisms of plant resistance to aluminium and heavy metals. In: Basra AS, Basra RK (eds.) Mechanisms of Environmental Stress Resistance in Plants, Harwood Academic Publishers, Amsterdam. pp 241–276.

    Google Scholar 

  • Robinson NJ, Jackson PJ (1986) “Metallothionein-like” metal complexes in angiosperms,their structure and function. Physiol Planta 67:499–506

    Google Scholar 

  • Robinson NJ, Barton K, Naranjo CM, Sillerud LO, Trewhella J, Watt K, Jackson PJ (1987) Characterization of metal peptides from cadmium resistant plant cells. Experentia 52: 323–327

    CAS  Google Scholar 

  • Robinson NJ, Ratliff RL, Anderson PJ, Dehlaize E, Berger JM, Jackson PJ (1988) Biosynthesis of poly y-glutamylcysteinyl glycines in cadmium-tolerant Datura innoxia Mill. cells. Plant Sci 56: 197–204

    Article  CAS  Google Scholar 

  • Ruegsegger A, Schmutz D, Brunold C (1990) Regulation of glutathione synthesis by cadmium in Pisum sativum L. Plant Physiol 93: 1579–1584

    Article  PubMed  CAS  Google Scholar 

  • Salt DE, Thurman DA, Tomsett AB, Saewell AK (1989) Copper phyto-chelatin of Mimulus guttatus. Proc Royal Soc London B, 236: 79–89

    Article  CAS  Google Scholar 

  • Sarkar B (1997) Zinc finger-DNA interactions: effect on metal replacement, free radical generation and DNA damage and its relevance to carcinogenesis. In: Hadjiliadis ND (ed) Cytotoxic, mutagenic and carcinogenic potential of heavy metals related to human environment, Kluwer, Dordrecht, NATO ASI series 2, Environ. Vol 26: 1–14

    Chapter  Google Scholar 

  • Schat H, Kaiff MMA (1992) Are phytochelatins involved in differential metal tolerance or do they merely reflect metal imposed strain? Plant Physiol 99: 1475–1480

    Article  PubMed  CAS  Google Scholar 

  • Scheller HV, Huang B, Hatch E, Goldsbrough PB (1987) Phytochelatin synthesis and/glutathione levels in response to heavy metals in tomato cells. Plant Physiology 85: 1031–1035

    Article  PubMed  CAS  Google Scholar 

  • Schultz CL, Hutchinson TC (1988). Evidence against a key role for a metallothionein like protein in the copper tolerance mechanism ofDeschampsia cespitosa L. Beauv. New Phytol 110: 163–171

    Google Scholar 

  • Sczekan SR, Joshi JG (1989) Metal binding properties of phytoferritin and synthetic iron cores. Biochim Biophys Acta 990: 8–14

    Article  CAS  Google Scholar 

  • Singh S (1989) Cobalt-induced inhibition of growth in cyanobacteria Anabaena doliolum and Anacystis nidulans: interaction with sulphur-containing amino acids. Indian J Exp Biol 27: 1092–1093

    PubMed  CAS  Google Scholar 

  • Speiser, JL, Abrahamson SL, Banuelos G, Ow DW (1992) Brassica juncea produces a phytochelatin cadmium sulfide complex. Plant Physiol 99: 817–821

    Google Scholar 

  • Steffens JC (1990) The heavy metal-binding peptides of plants. Annu. Rev. Plant Physiol. Plant Molec. Biol. 41: 553–575

    Article  CAS  Google Scholar 

  • Steffens JC, Hunt DF, Williams BG (1986) Accumulation of non-protein metal-binding polypeptides y-glutamyl-cysteinyl glycine in selected cadmium-resistant tomato cells. J Bio Chem 261: 13879–13882

    CAS  Google Scholar 

  • Stillman M. J. (1995) Metallothioneins. Co-ordination Chem. Rev. 144: 461–511

    Google Scholar 

  • Stokes PM, Maler T, Riordan JR (1977) A low molecular weight copper binding protein in a copper tolerant strain of Scenedesmus acutiformis. In: Hemphil, DD (ed))Trace substance in environmental health 11. University of Missouri Press, Columbia, MO, pp 146–154

    Google Scholar 

  • Tomsett AB, Thurman DA. (1988) Molecular biology of metal tolerance of plants. Plant Cell Environ 11: 388–394

    Google Scholar 

  • Tommey AM, Shi J, Lindsay WP, Urwin PE, Robinson NJ (1991) Expression of the pea gene PsMT„ in E. coli metal-binding properties of the expressed protein. FEBS Lett 292: 48–52

    Article  PubMed  CAS  Google Scholar 

  • Thumann J, Grill E, Winnacker EL, Zenk MH. (1991) Reactivation of metal requiring apo-enzymes by phytochelatin-metal complex. FEBS Lett 284: 64–69

    Google Scholar 

  • Tripathi RD, Yunus, M, Mehra RK (1996) Phytochelatins and phytometallothioneins: the potential of these unique metal detoxifyng systems in plants. Physiol Mol Biol 2: 101–104

    Google Scholar 

  • Tukendorf A (1989) Characteristics of copper-binding proteins in chloroplasts of spinach tolerant to excess copper. J Plant Physiol 135: 280–284

    Article  CAS  Google Scholar 

  • Tukendorf A, Baszynski T (1985) Partial purification and characterization of copper-binding protein from roots of Avena sativa grown on excess copper. J Plant Physiol 120: 57–63

    Article  CAS  Google Scholar 

  • Tukendorf A, Rauser WE (1990) Changes in glutathione and phytochelatins in roots of maize seedlings exposed to cadmium. Plant Sci 70: 155–166

    Article  CAS  Google Scholar 

  • Tukendorf A, Lyszcz S, Baszynski B (1984) Copper binding proteins in spinach tolerant to excess copper. J Plant Physiol 115: 351–360

    Article  PubMed  CAS  Google Scholar 

  • Van Assche F, Clijsters H (1990) Effects of metals on enzyme activity in plants. Plant Cell Environ 13: 195–206

    Article  Google Scholar 

  • Vanaja M, Charyulu NVN, Rao KVN. (1989) Cadmium tolerance by Stegioclonium tenue Kuntz.

    Google Scholar 

  • Partial characterization of cadmium binding proteins. Proc Indian Nat Sci Acad B55:489–492

    Google Scholar 

  • Verkleij JAC, Koevoets P, Riet JV, Bank R, Nijdam Y, Ernst WHO (1990). Poly (-y-glutamyl cysteinyl) glycines or phytochelatins and their role in cadmium tolerance of Silene vulgaris. Plant Cell Environ 13: 913–921

    Article  CAS  Google Scholar 

  • Vögeli-Lange R, Wagner GJ (1990) Subcellular localization of cadmium and cadmium-binding peptides in tobacco leaves. Plant Physiol. 92: 1086–1093

    Article  PubMed  Google Scholar 

  • Wagner GJ. (1984) Characterization of cadmium-binding complex of cabbage leaves. Plant Physiol 76: 797–805

    Article  PubMed  CAS  Google Scholar 

  • Wagner GJ, Trotter MM (1982) Inducible cadmium binding complexes of cabbage and tomato. Plant Physiol 69: 804–809

    Article  PubMed  CAS  Google Scholar 

  • Weber DN, Shaw III, CF Petering DH (1987) Euglena gracilis cadmium binding proteins-II contain sulfide ions. J Biol Chem 262: 6962–6964

    Google Scholar 

  • Weig A, Komor E (1992) Isolation of a class II metallothionein cDNA from Ricinus communis L. GenBank Accession no. L02306

    Google Scholar 

  • White CN, Rivin CJ (1995) Characterization and expression of a cDNA encoding a seed-specific metallothionein in maize. Plant Physiol 108: 831–832

    Article  PubMed  CAS  Google Scholar 

  • Wingate VPM, Lawton, Lamb CJ (1988) Glutathione uses a massive and selective induction of plant defense genes. Plant Physiol 87: 207–210

    Article  Google Scholar 

  • Zenk MH (1996) Heavy metal detoxification in higher plants–a review. Gene 179:21–30 Zhou J, Goldsbrough PB (1994) Functional homologs of fungal metallothionein genes from Arabidopsis. Plant Cell 6: 875–884

    Google Scholar 

  • Zhou J, Goldsbrough PB (1995) Structure, organization and expression of the metallothionein gene family in Arabidopsis. Mol. Gen Genet 248: 318–328

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Prasad, M.N.V. (1999). Metallothioneins and Metal Binding Complexes in Plants. In: Heavy Metal Stress in Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-07745-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-07745-0_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-07747-4

  • Online ISBN: 978-3-662-07745-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics