Experimental Characterization of Heavy Metal Tolerance in Plants

  • K. I. Köhl
  • R. Lösch

Abstract

The capacity of some plants to survive on soils that contain high concentrations of certain (heavy) metals has fascinated ecologists for decades. Much work has been dedicated to finding differences in plant metal tolerance and decipher the underlying physiological and genetic bases for these differences (reviewed by Antonovics et al. 1971; Ernst 1974; Woolhouse 1983; Baker 1987; Baker and Walker 1989, 1990; Schat and Ten Bookum 1992a; Macnair 1993). The topic has its applied aspects as well. Detrimental effects of high aluminium concentration on crop production prompted the screening for aluminium-tolerance in commercially important germplasms (Aniol and Gustafson 1990).

Keywords

Biomass Zinc Nickel Toxicity Mercury 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aniol A (1984) Induction of aluminum tolerance in wheat seedlings by low doses of aluminum in the nutrient solution. Plant Physiol 75: 551–555CrossRefGoogle Scholar
  2. Aniol A, Gustafson JP (1990) Genetics of tolerance in agronomic plants. In: Shaw AJ (ed) Heavy metal tolerance in plants:evolutionary aspects. CRC-Press, Boca Raton, FL. pp. 255–267Google Scholar
  3. Antonovics J, Bradshaw AD, Turner RG (1971) Heavy metal tolerance in plants. Adv in Ecological Res 7: 1–85CrossRefGoogle Scholar
  4. Baier AC, Somers DJ, Gustafson JP, (1995) Aluminum tolerance in wheat:correlating hydroponic evaluations with field and soil performance. Plant Breeding 114: 291–296CrossRefGoogle Scholar
  5. Baker AJM (1978) Ecophysiological aspects of zinc tolerance in Silene maritima With. New Phytol 80: 635–642CrossRefGoogle Scholar
  6. Baker AJM (1987) Metal tolerance. New Phytol 106: 93–111CrossRefGoogle Scholar
  7. Baker MM, Walker PI (1989) Physiological responses of plants to heavy metals and the quanti- fication of tolerance and toxicity. Chemical Speciation and Bioavailability 1: 9–17Google Scholar
  8. Baker AJM, Walker PI (1990) Ecophysiology of metal uptake by tolerant plants. In: Shaw AJ (ed) Heavy metal tolerance in plants: evolutionary aspects. CRC-Press, Boca Raton, FL. pp. 155–177Google Scholar
  9. Baker MM, Brooks RR, Pease AJ, Malaisse F (1983) Studies on copper and cobalt tolerance in three closely related taxa within the genus Silene L ( Caryophyllaceae) from Zaire. Plant Soil 73: 377–385Google Scholar
  10. Baker AJM, Reeves RD, Hajar ASM (1994) Heavy metal accumulation and tolerance in British populations of the metallophyte Thlaspi caerulescens J. and C. Presi. ( Brassicaceae ). New Phytol 127: 61–68Google Scholar
  11. Bannister P, Woodman RF (1992) The influence of tolerance indices and growth on metal tolerance of pasture legumes and serpentine plants. In: Baker MM, Proctor J, Reeves RD (eds) The vegetation of ultramafic (serpentine) soils. Intercept, Andover, pp 375–390Google Scholar
  12. Baumeister W, Burghardt H (1956). Über den Einfluß des Zinks bei Silene inflata Smith. Ber Deutsch Bot Ges 69: 161–168Google Scholar
  13. Baumeister W, Ernst W (1978) Mineralstoffe und Pflanzenwachstum. 3. Aufl. Fischer, Stuttgart, New YorkGoogle Scholar
  14. Bernal MP, McGrath SP (1994) Effects of pH and heavy metal concentrations in solution culture on the proton release, growth and elemental composition of Alyssum murale and Raphanus sativus L. Plant Soil 166: 83–92CrossRefGoogle Scholar
  15. Bernal MP, McGrath SP, Miller AJ, Baker AJM (1994) Comparison of the chemical changes in the rhizosphere of the nickel hyperaccumulator Alyssum murale with the non-accumulator Raphanus sativus. Plant Soil 164: 251–259CrossRefGoogle Scholar
  16. Blarney FPC, Edemeades DC, Wheeler DM (1992) Empirical models to approximate the calcium and magnesium ameliorative effects and genetic differences in aluminum tolerance in wheat. Plant Soil 144: 281–287CrossRefGoogle Scholar
  17. Bradshaw AD, McNeilly T(1981) Evolution and pollution. Studies in Biology 130. Arnold, LondonGoogle Scholar
  18. Brown MT, Wilkins DA (1985) Zinc tolerance in Betula. New Phytol 99: 91–100CrossRefGoogle Scholar
  19. Brummer GW, Gerth J, Herms U (1986) Heavy metal species, mobility and availability in soils. Z Pflanzenernähr Bodenkd 149: 382–398CrossRefGoogle Scholar
  20. Chaney RL, Bell PF (1987) Complexity of iron nutrition: Lessons for plant-soil interaction research. J Plant Nutr 10: 963–994Google Scholar
  21. Cox RM, Hutchinson TC (1979) Metal co-tolerance in the grass Deschampsia cespitosa. Nature 279: 231–233CrossRefGoogle Scholar
  22. Dall’Agnol M, Bouton JH, Parrott WA (1996) Screening methods to develop alfalfa germplasms tolerant of acid, aluminum toxic soils. Crop Sci 36: 64–70CrossRefGoogle Scholar
  23. De Koe T, Geldmeyer K, Jaques NMM (1992) Measuring maximum root growth instead of longest root elongation in metal tolerance tests for grasses (Agrostis capillaris, Agrostis delicatula and Agrostis castellana). Plant Soil 144: 305–308CrossRefGoogle Scholar
  24. Denny HJ, Wilkins DA (1987) Zinc tolerance in Betula spp. I. Effect of external concentration of zinc on growth and uptake. New Phytol 106: 517–524Google Scholar
  25. Dueck TA, Wolting HG, Moet DR, Pasman FJM (1987) Growth and reproduction of Silene cucubalus Wib. intermittently exposed to low concentrations of air pollutants, zinc and copper. New Phytol 105: 633–645CrossRefGoogle Scholar
  26. Ebbs SD, Kochian LV (1997) Toxicity of zinc and copper to Brassica species:implications for phytoremediation. J Environ Qual 26: 776–781CrossRefGoogle Scholar
  27. Ernst W (1965) Über den Einfluß des Zinks auf die Keimung von Schwermetallpflanzen und auf die Entwicklung der Schwermetallpflanzengesellschaft. Ber Deutsch Bot Ges 78: 205–212Google Scholar
  28. Ernst W (1968) Das Violetum calaminariae westfalicum, eine Schwermetallpflanzengesellschaft bei Blankenrode in Westfalen. Mitt. Florist-Sozio. Arbeitsgem N F 13: 263–268.Google Scholar
  29. Ernst WE (1972a) Schwermetallresistenz und Mineralstoffhaushalt. Forschungsberichte des Landes NRW Nr. 2251, Westdeutscher Verlag, OpladenGoogle Scholar
  30. Ernst W (1972b) Ecophysiological studies on heavy metal plants in South Central Africa, Kirkia 8: 125–145Google Scholar
  31. Ernst W (1974) Schwermetallvegetation der Erde. G. Fischer, StuttgartGoogle Scholar
  32. ErnstW (1976) Ökologische Grenze zwischen V ioletum calaminariae and Gentiano-Koelerietum. Ber Deutsch Bot Ges 89: 381–390Google Scholar
  33. Forbes VE, Forbes TL (1994) Ecotoxicology in theory and practice. Chapmann & Hall. London. Gabbrielli R, Mattioni C, Vergnano 0 (1991) Accumulation mechanisms and heavy metal tolerance of a nickel hyperaccumulator. J Plant Nutr 14: 1067–1080Google Scholar
  34. Gries B (1966) Zellphysiologische Untersuchungen über die Zinkresistenz bei Galmeiökotypen and Normalformen von Silene cucubalus Wib. Flora B 156: 271–290Google Scholar
  35. Hagemeyer J, Heppel T, Breckle S-W (1994) Effects of Cd and Zn on the development of annual xylem rings of young Norway spruce (Picea abies) plants. Trees 8: 223–227CrossRefGoogle Scholar
  36. Hagemeyer J, Lohrie K (1995) Distribution of Cd and Zn in annual xylem rings of young spruce trees (Picea abies ( L.) Karst.) grown in contaminated soil. Trees 9: 195–199Google Scholar
  37. Harmens H, Den Hartog PR, Ten Bookum WM, Verkleij JAC (1993b) Increased zinc tolerance in Silene vulgaris ( Moench.) Garcke is not due to increased production of phytochelatins. Plant Physiol 103: 1305–1309Google Scholar
  38. Harmens H, Gusmao NGCPB, Den Hartog PR, Verkleij JAC, Ernst WHO (1993a). Uptake and transport of zinc in zinc-sensitive and zinc-tolerant Silene vulgaris. J Plant Physiol 141: 309–315CrossRefGoogle Scholar
  39. Harper FA, Smith SE, Macnair MR (1999) Can an increased copper requirement in copper tolerant Mimulus guttatus explain the cost of tolerance? II. Reproductive Phase. New Phytol 140 (in press)Google Scholar
  40. Harrington CF, Roberts DJ, Nickless G (1996) The effect of cadmium, zinc and copper on the growth, tolerance index, metal uptake and production of malic acid in two strains of the grass Festuca rubra. Can J Bot 74: 1742–1752CrossRefGoogle Scholar
  41. Hickey CW, Blaise C, Costan G (1991) Microtesting appraisal of ATP and cell recovery toxicity end points after acute exposure of Selenastrum capricornutum to selected chemicals. Environmental Toxicology and Water Quality 6: 383–403CrossRefGoogle Scholar
  42. Homer JR, Cotton R, Evans EH (1980) Whole leaf fluorescence as a technique for measurement of tolerance of plants to heavy metals. Oecologia 45: 88–89CrossRefGoogle Scholar
  43. Homer FA, Morrison RS, Brooks RR, Clemens J, Reeves RD (1991) Comparative studies of nickel, cobalt, and copper uptake by some nickel hyperaccumulators of the genus Alyssum. Plant Soil 138: 195–205CrossRefGoogle Scholar
  44. Humphrey MO, Nicholls MK (1984) Relationships between tolerance to heavy metals inAgrostis capillaris L. (A. tenuis Sibth.). New Phytol 98: 177–190CrossRefGoogle Scholar
  45. Johnson JP Jr., Carver BF, Baligar VC (1997a) Expression of aluminum tolerance transferred from atlas 66 to hard winter wheat. Crop Sci 37: 103–108CrossRefGoogle Scholar
  46. Johnson JP Jr., Carver BF, Baligar VC (1997b) Productivity in Great Plains acid soil of wheat genotypes selected for aluminum tolerance. Plant Soil 188: 101–106CrossRefGoogle Scholar
  47. Kahle H (1993) Response of roots of trees to heavy metals. Exp Environ Bot 33: 99–119CrossRefGoogle Scholar
  48. Köhl KI (1996) Population-specific traits and their implication for the evolution of a drought adapted ecotype in Armeria maritima. Bot Acta 109: 206–215Google Scholar
  49. Köhl KI (1997) Do Armeria maritima (Mill.) Willd. ecotypes from metalliferous soils and non-metalliferous soils differ in growth response under Zn stress? A comparison by a new artificial soil method. J Exp Bot 48: 1959–1967Google Scholar
  50. Köhl KI, Harper FA, Baker AJM, Smith JAC (1997) Defining a metal-hyperaccumulator plant: The relationship between metal uptake, allocation and tolerance. Plant Physiol 114: 124Google Scholar
  51. Krämer U, Cotter-Howells JD, Charnock JM, Baker AJM and Smith JAC (1996) Free histidineas a metal chelator in plants that accumulate nickel. Nature 379: 635–638CrossRefGoogle Scholar
  52. Lefèbvre C (1975) Evolutionary problems in heavy metal tolerant Armeria maritima. In: International Conference on Heavy Metals in the Environment. Toronto, Ontariao, pp. 155–168Google Scholar
  53. Liu H, Heckman JR, Murphy JA (1996) Screening fine fescues for aluminum tolerance. J Plant Nutr 19: 677–688CrossRefGoogle Scholar
  54. Macnair MR (1983) The genetic control of copper tolerance in the yellow monkey flower Mimulus guttatus. Heredity 50: 283–293CrossRefGoogle Scholar
  55. Macnair MR (1990) The genetics of metal tolerance in natural populations. In: Shaw AJ (ed) Heavy metal tolerance in plants:evolutionary aspects. CRC Press. Boca Raton, FL. pp. 235253Google Scholar
  56. Macnair MR (1993) Tansley Review No. 49. The genetics of metal tolerance in vascular plants. New Phytol 124: 541–559CrossRefGoogle Scholar
  57. Mathys W (1973) Vergleichende Untersuchungen der Zinkaufnahme von resistenten and sensitiven Populationen von Agrostis tenuis Sibth. Flora 162: 492–499Google Scholar
  58. McGrath SP, Shen ZG, Zhao RI (1997) Heavy metal uptake and chemical changes in the rhizosphere of Thlaspi caerulescens and Thlaspi ochroleucum grown in contaminated soils. Plant Soil 188: 153–159CrossRefGoogle Scholar
  59. Mead R, Curnow RN, Hasted AM (1993) Statistical methods in agriculture and experimental biology. 2nd edn. Chapman and Hall, LondonGoogle Scholar
  60. Meerts P, Van Isacker N (1997) Heavy metal tolerance and accumulation in the metallicolous and non-metallicolous populations of Thlaspi caerulescens from continental Europe. Plant Ecol 133: 221–231CrossRefGoogle Scholar
  61. Metwally AI, Mashhady AS, Falatah AM, Reda M. (1993) Effect of pH on Zn adsorption and solubility in different clays and soils. Z Pflanzenernähr Bodenkd 156: 131–135CrossRefGoogle Scholar
  62. Murphy A, Taiz L (1995a) A new vertical mesh transfer technique for metal-tolerance studies in Arabidopsis. Plant Physiol 108: 29–38PubMedGoogle Scholar
  63. Murphy A, Taiz L (1995b) Comparison of metallothionein gene expression and nonprotein thiols in ten Arabidopsis ecotypes. Plant Physiol 109: 945–954PubMedCrossRefGoogle Scholar
  64. Nash III, TH (1990) Metal tolerance in lichens. In: Shaw AJ (ed) Heavy metal tolerance in plants: evolutionary aspects. CRC-Press, Boca Raton, FL. pp 119–131Google Scholar
  65. Nicholls MK, McNeilly T (1979) Sensitivity of rooting and tolerance to copper in Agrostis tenuis Sibth. New Phytol 83: 653–664CrossRefGoogle Scholar
  66. Outridge PM, Hutchinson TC (1991) Induction of cadmium tolerance by acclimation transferred between ramets of the clonal fern Salvina minima Baker. New Phytol 117: 597–605CrossRefGoogle Scholar
  67. Ouzounidou G (1994) Copper-induced changes on growth, metal content and photosynthetic function of Alyssum montanum L. plants. Environ Exp Bot 34: 165–172CrossRefGoogle Scholar
  68. Parker DR (1995) Root growth analysis:an underutilized approach to understanding aluminum rhizotoxicity. Plant Soil 171: 151–157CrossRefGoogle Scholar
  69. Patra J, Lenka M, Panda BB (1994) Tolerance and co-tolerance of the grass Chloris barbata Sw to mercury, cadmium and zinc. New Phytol 128: 165–171CrossRefGoogle Scholar
  70. Pollard AJ, Baker AJM (1996) Quantitative genetics of zinc hyperaccumulation in Thlaspi cae rulescens. New Phytol 132: 113–118CrossRefGoogle Scholar
  71. Repp G (1963) Die Kupferrestistenz des Protoplasmas höherer Pflanzen der Kupfererzböden. Protoplasma 57: 643–659CrossRefGoogle Scholar
  72. Rorison LH, Robinson D (1986) Mineral nutrition. In: Moore PD (ed) Methods in plant ecology. 3rd edn. Blackwell, Oxford, pp. 145–211Google Scholar
  73. Schat H, Kalff MMA (1992) Are phytochelatins involved in differential metal tolerance or do they merely reflect metal-imposed strain? Plant Physiol 99: 1475–1480PubMedCrossRefGoogle Scholar
  74. Schat H, Ten Bookum WM (1992a). Metal-specificity of metal tolerance syndromes in higher plants. In:Baker AIM, Proctor J, Reeves RD (eds.) The vegetation of ultramafic (serpentine) soils. Intercept, Andover. pp. 337–351Google Scholar
  75. Schat H, Ten Bookum WM (1992b) Genetic control of copper tolerance in Silene vulgaris. Heredity 68: 219–229CrossRefGoogle Scholar
  76. Schat H, Vooijs R (1997) Multiple tolerance and co-tolerance to heavy metals in Silene vulgaris: A co-segregation analysis. New Phytol 136: 489–496Google Scholar
  77. Schat H, Vooijs R, Kuiper E (1996) Identical major gene loci for heavy metal tolerance that have independently evolved in different local populations and subspecies of Silene vulgaris. Evolution 50: 1888–1895CrossRefGoogle Scholar
  78. Scheiner SM (1993) MANOVA: multiple response variables and multispecies interactions. In Scheiner SM, Gurevitch J (eds) Designing and analysis of ecological experiments. Chapman and Hall. London. pp. 94–112Google Scholar
  79. Searcy KB, Mulcahy DL (1985) Pollen selection and the gametophytic expression on metal tolerance in Silene dioica (Caryophyllaceae) and Mimulus guttatus ( Scrophulariaceae ). Amer Bot 72: 1700–1706Google Scholar
  80. Simon E, Lefèbvre C (1977) Aspects de la tolerance aux metaux lourds chez Agrostis tenuis Sibth., Festuca ovina L. et Armeria maritima ( Mill.) Willd. Oecol Plant 12: 95–110Google Scholar
  81. Sokal RR, Rohlf FJ (1995) Biometry. The principles and practice of statistics in biological research. 3rd edn. Freeman and Company, San FranciscoGoogle Scholar
  82. Steffens JC (1990) The heavy-metal binding peptides of plants. Annu Rev Plant Physiol Plant Mol Biol 41: 553–575CrossRefGoogle Scholar
  83. Tilstone GH, Macnair MR (1997) Nickel tolerance and copper-nickel co-tolerance in Mimulus guttatus from copper mine and serpentine habitats. Plant Soil 191: 173–180CrossRefGoogle Scholar
  84. Van Frenckell-Insam BAK, Hutchinson TC (1993) Nickel and zinc tolerance and co-tolerance in populations of Deschampsia cespitosa (L.) Beauv. subject to artificial selection. New Phytol 125: 547–553Google Scholar
  85. Verkleij JAC, Schat H (1990) Mechanisms of metal tolerance in higher plants. In: Shaw AJ (ed) Heavy metal tolerance in plants:evolutionary aspects. CRC-Pres, Boca Raton, FL. pp. 179–193Google Scholar
  86. Walley KA, Khan MSI, Bradshaw AD (1971) The potential for evolution of heavy metal tolerance in plants. I Copper and zinc tolerance in Agrostis tenuis. Heredity 32: 309–319CrossRefGoogle Scholar
  87. Wells JM, Brown DH (1995) Cadmium tolerance in a metal-contaminated population of the grassland moss Rhytidiadelphus squarrosus. Ann Bot 75: 21–29PubMedCrossRefGoogle Scholar
  88. Westerbergh A (1994) Serpentine and non-serpentine Silene dioica plants do not differ in nickel tolerance. Plant Soil 167: 297–303CrossRefGoogle Scholar
  89. Wilkins DA (1957) A technique for the measurement of lead tolerance in plants. Nature 4575: 37–38CrossRefGoogle Scholar
  90. Wilkins DA (1978) The measurement of tolerance to edaphic factors by means of root growth. New Phytol 80: 623–633CrossRefGoogle Scholar
  91. Woolhouse HW (1983) Toxicity and tolerance in the response of plants to metals. In Lange OL, Nobel PS, Osmond CB, Ziegler H (eds.) Physiological plant ecology II. Responses to the chemical and biological environment. Encyclopedia of plant physiology. New Series 12C. Springer, Berlin, Heidelberg, New York, pp. 245–300Google Scholar
  92. Wu L, Antonovics J (1975) Zinc and copper uptake by Agrostis stolonifera, tolerant to both zinc and copper. New Phytol 75: 231–237CrossRefGoogle Scholar
  93. Wu L, Antonovics J (1978) Zinc and copper tolerance of Agrostis stolonifera in tissue culture. Amer J Bot 65: 268–271CrossRefGoogle Scholar
  94. Wu L, Thurman DA, Bradshaw AD (1975) The uptake of copper and its effect upon respiratory processes of roots of copper-tolerant and non-tolerant clones of Agrostis stolonifera. New Phytol 75: 225–229CrossRefGoogle Scholar
  95. Wu L (1990) Colonization and establishment of plants in contaminated sites. In: Shaw AJ (ed) Heavy metal tolerance in plants: evolutionary aspects. CRC-Press. Boca Raton, FL. pp 269–285Google Scholar
  96. Wundram M, Selmar D, Bahadir M (1996) The Chlamydonwnas test:a new phytotoxicity test based on the inhibition of algal photosynthesis enables the assessment of hazardous leachates from waste disposals in salt mines. Chemosphere 32: 1623–1631CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • K. I. Köhl
    • 1
  • R. Lösch
    • 2
  1. 1.Max Planck-Institut für Molekulare PflanzenphysiologieGolmGermany
  2. 2.Abteilung GeobotanikH.Heine-UniversitätDüsseldorfGermany

Personalised recommendations