Skip to main content

Metal Pollution and Forest Decline

  • Chapter

Abstract

Human activities influence the natural distribution and biogeochemical cycling of elements, thus changing the chemical environment where plants develop (Nriagu and Pacyna 1988). Among the elements which could affect plants, heavy metals are not naturally removed or degraded and therefore progressively accumulate in soil or water sediments (Bussotti et al. 1983; Hunter et al. 1987). In forest ecosystems different sources of heavy metal contamination are prevalent. A natural source is the background load from the parent rocks which on the whole is rather low (Table 12.1), but may be distributed unevenly. Human activities have resulted heaps and spoils from mining, short-range emissions from smelters, and long-range emissions from high stacks and the lead from automobiles. Special sources of heavy metal contamination may be of local importance, like the treatment of soils with manure from intensive animal husbandry, which may lead to wide-range contamination with copper (Ernst 1985) or polluted rivers which contaminate cosystems via aerosols (Bussotti et al. 1983).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alloway BJ, Morgan H (1985) The behaviour and availability of Cd, Ni and Pb in polluted soils. In: Assink JW, Brink WJ van den (eds) Contaminated Soil. Nijhoff, Dordrecht, pp. 101–113

    Google Scholar 

  • Arduini I, Godbold DL, Onnis A (1994) Cadmium and copper change root growth and morphology of Pinus pinea L. and Pinus pinaster Ait. seedlings. Physiol Planta 92: 675–680

    Article  CAS  Google Scholar 

  • Arduini I, Godbold DL, Onnis A (1995) Influence of copper on root growth and morphology of Pinus pinea L. and Pinus pinaster Ait. seedlings. Tree Physiol 15: 411–415.

    Article  PubMed  CAS  Google Scholar 

  • Arduini I, Godbold DL, Onnis A (1996) Cadmium and copper uptake and distribution Mediterranean tree seedlings. Physiol Plantarum 97: 111–117.

    Article  CAS  Google Scholar 

  • Baker AM, Reeves RD, Hajar ASM (1994) Heavy metal accumulation and tolerance in British population of the metallophyte Thalaspi caerulescens J. C. Presi ( Brassicaceae ). New Phytol 127: 61–68

    Google Scholar 

  • Barbolani E, Clauser M, Pantani F, Gellini R,. (1986) Residual heavy metal (Cu and Cd) removal by Iris pseudacorus. Water Air Soil Pollut 28: 277–282

    CAS  Google Scholar 

  • Bargagli R, D’Amato ML, Losco FP (1986) II degrado della vegetazione costiera di San Rossore: possibile incidenza di alcuni elementi in tracce. Atti Soc Tosc Sci Nat Mem Ser B 93: 133–144

    Google Scholar 

  • Baydina NL (1996) Inactivation of heavy metals by humus and zeolites in industrially contaminated soil Euras Soil Sci 28: 96–105

    Google Scholar 

  • Bell R, Teramura AH (1991) Soil metal effects on the germination and survival of Quercus alba L. and Q. prinus L. Environ Exp Bot 31: 145–152

    Article  Google Scholar 

  • Bender J, Grünhage L, Jäger HJ (1989) Aufnahme und Wirkung von Schwermetallen bei Waldbäumen: Bodenkontaminationsversuche mit Cadmium, Blei und Nickel. Angew Bot 63: 81–93

    Google Scholar 

  • Bergmann F, Hosius B (1996) Effects of heavy-metal polluted soils on the genetic structure of Norway spruce seedling populations. Water Air Soil Pollut 89: 363–373

    Article  CAS  Google Scholar 

  • Berthelsen BO, Olsen RA, Steinnes E (1995) Ectomycorrhizal heavy metal accumulation as a contributing factor to heavy metal levels in organic surface soils. Sci Total Environ 170: 141–149

    Article  CAS  Google Scholar 

  • Bond H, Lighthart B, Shimabuku R, Russell L (1976) Some effects of cadmium on coniferous forest soil and litter microcosm. Soil Sci 121 (5): 278–287

    Article  CAS  Google Scholar 

  • Borgegard S-O, Rydin H (1989a) Biomass, root penetration and heavy metal uptake in birch in a soil cover over copper tailings. J Appl Ecol 26: 585–595

    Article  Google Scholar 

  • Borgegard S-O, Rydin H (1989b) Utilization of waste products and inorganic fertilizer in the restoration of iron-mine tailings. J Appl Ecol 26: 1083–1088

    Article  Google Scholar 

  • Breckle SW (1991) Growth under stress. Heavy metals. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots:the hidden half, Dekker, New York, pp. 351–373

    Google Scholar 

  • Brown MT, Wilkins DA (1985) Zinc tolerance of mycorrhizal Betula. New Phytol 99: 101–106

    Article  CAS  Google Scholar 

  • Burton KW, Morgan E, Roig A (1984) The influence of heavy metals upon the growth of Sitkaspruce in South Wales forests. II. Greenhouse experiments. Plant Soil 78: 271–282

    Google Scholar 

  • Burton KW, Morgan E, Roig A (1986) Interactive effects of cadmium, copper and nickel on the growth of Sitka-spruce and studies of metal uptake from nutrient solutions. New Phytol 103: 549–557

    Article  CAS  Google Scholar 

  • Bussotti F, Rinallo C, Grossoni P, Gellini R, Pantani F, DelPanta S (1983) Degrado della egetazione costiera nella Tenuta di S. Rossore, La Provincia Pisana. Spec. Parco Nat. igliarino S. Rossore Massaciuccoli e aree protette 9: 46–52

    Google Scholar 

  • Carlson RW, Bazzaz FA (1977) Growth reduction in American sycamore (Platanus occidentalis L.) caused by Pb-Cd interaction. Environ Pollut 12: 243–253

    Article  CAS  Google Scholar 

  • Chuan MC, Shu GY, Liu JC (1996) Solubility of heavy metals in a contaminated soil: effects of redox potential and pH. Water Air Soil Pollut 90: 543–556

    Article  CAS  Google Scholar 

  • Clark RK, Clark SC (1981) Floristic diversity in relation to soil characteristics in a lead mining complex in the Pennines, England. New Phytol 87: 799–815

    Google Scholar 

  • Colpaert JV, Van Assche JA (1992) Zinc toxicity in ectomycorrhizal Pinus sylvestris. Plant Soil 143: 201–211

    Article  CAS  Google Scholar 

  • Colpaert JV, Van Assche JA (1993) The effects of cadmium on ectomycorrhizal Pinus sylvestris. New Phytol 123: 325–333

    Article  CAS  Google Scholar 

  • Czamowska K (1982) Heavy metal contents of surface soils and plants in urban gardens. Symposium on Environmental Pollution, Nov 12, Plock, (in Polish)

    Google Scholar 

  • Darlington AB, Rauser WE (1988) Cadmium alters the growth of the ectomycorrhizal fungus Paxillus involutus: a new growth model accounts for changes in branching. Can J Bot 66: 225–229

    Article  CAS  Google Scholar 

  • Denny HJ, Wilkins DA (1987) Zinc tolerance in Betula spp. I. Effect of external concentration of zinc on growth and uptake. New Phytol 106: 517–524

    Google Scholar 

  • Dickinson NM, Turner AP, Watmough SA, Lepp NW (1992) Acclimation of trees to pollution stress: cellular metal tolerance traits. Ann Bot 70: 569–572

    CAS  Google Scholar 

  • Dixon RK (1988) Response of ectomycorrhizal Quercus rubra to soil cadmium, nickel and lead. Soil Biol Biochem 20: 555–559

    Article  CAS  Google Scholar 

  • Dixon RK, Buschena CA (1988) Response of ectomycorrhizal Pinus banksiana and Picea glauca to heavy metals in soil. Plant Soil 105: 265–271

    Article  CAS  Google Scholar 

  • Ernst WHO (1985) Schwermetallimmissionen–ökophysiologische und populationsgenetische Aspekte. Düsseldorfer Geobot Kolloq 2: 43–57

    Google Scholar 

  • Faber A, Niezgoda j (1982) Cotaminanation of soils and plants in the vicinity of the zinc and lead smelter. 1. Soils. (in Polish) Roczniki Gleboznawcze 33: 93–107

    CAS  Google Scholar 

  • Fernandes JC, Henriques FS (1991) Biochemical, physiological, and structural effects of excess copper in plants. Bot Rev 57: 246–273

    Article  Google Scholar 

  • Figge DAH, Hetrick BAD, Wilson GWT (1995) Role of expanded clay and porous ceramic amendments on plant establishment in mine spoils. Environ Pollut 88: 161–165

    Article  PubMed  CAS  Google Scholar 

  • Foy CD, Chaney RL. White C (1978) The physiology of metal toxicity in plants. Ann Rev Plant Physiol 29:511–566

    Google Scholar 

  • Friedland AJ, Johnson AH, Siccama TG (1986) Zinc, Cu, Ni and Cd in the Northeastern United States. Water Air Soil Pollut 29: 233–243

    Google Scholar 

  • Gadd GM (1993) Interactions of fungi with toxic metals. Tansley review No 47. New Phytol 124: 25–60

    Article  CAS  Google Scholar 

  • Galli U, Schüepp H, Brunhold C (1994) Heavy metal binding by mycorrhizal fungi. Physiol Plant 92: 364–368

    Article  CAS  Google Scholar 

  • Galli U, Meier M, Brunhold C (1993) Effects of cadmium on nonmycorrhizal and mycorrhizal Norway spruce seedlings Picea abies (L.) Karst and its ectomycorrhizal fungus Laccaria laccata (Scop. Ex Fr.) Bk. BR.: Sulphate reduction, thiols and distribution of the heavy metal. New Phytol 125: 837–843

    Google Scholar 

  • Gellini R (1989) Inquinamento e condizioni di efficienza del bosco. Econ Montana–Linea Ecol Anno XXI 6: 11–22

    Google Scholar 

  • Gerth J, Brümmer G (1977) Quantitäts-Intensitäts-Beziehungen von Cd, Zn und Ni in Böden unterschiedlichen Stoffbestands. Mitt Dtsch Bodenkund Ges 29: 555–566

    Google Scholar 

  • Göbl F (1979) Erfahrungen in der Anwendung von Mykorrhiza-Impfmaterial I. Zirbe. Central Gesamte Forstwes 96: 30–43

    Google Scholar 

  • Göbl F (1984) Forstliche Mykorrhizaforschung in Österreich. Allg Forstz 94: 318–319

    Google Scholar 

  • Göbl F, Mutsch F (1985) Schwermetallbelastung von Wäldern in der Umgebung eines Hüttenwerkes in Brixlegg/Tirol. I. Untersuchung der Mykorrhiza und Humusauflage. Central Gesamte Forstwes 102: 28–40

    Google Scholar 

  • Godbold DL (1991) Die Wirkung von Aluminium und Schwermetallen auf Picea abies Sämlinge. Sauerländers, Frankfurt

    Google Scholar 

  • Godbold DL, Hüttermann A (1985) Effect of zinc, cadmium and mercury on root elongation of Picea abies ( Karst.) seedlings, and the significance of these metals to forest die-back. Environ Pollut 38: 375–381

    Google Scholar 

  • Greszta J, Braniewski S, Chrzanowska E (1985) Heavy metals in soils and plants around a zinc smelter. In:Kabata-Pendias A (ed) 3rd National Conference on Effects of Trace Metal pol lution on Agricultural and Environmental Quality Vol 2:58–61 (in Polish) IUNG, Pulawy

    Google Scholar 

  • Griffioen WAJ, Ietswaart JH, Ernst WHO (1994) Mycorrhizal infection of anAgrostis capillaris population on a copper contaminated soil. Plant Soil 158: 83–89

    Article  CAS  Google Scholar 

  • Heale EL, Ormrod DP (1982) Effects of nickel and copper on Acer rubrum, Cornus stolonifera, Lonicera tatarica and Pinus resinosa. Can J Bot 60: 2674–2681

    Article  CAS  Google Scholar 

  • Herms U, Brummer G (1984) Einflußgrößen der Schwermetallöslichkeit und bindung in Böden. Z Pflanzenernähr Bodenkd 147: 400–424

    Article  CAS  Google Scholar 

  • Hetrick BAD, Wilson GWT, Figge DAH (1994) The influence of mycorrhizal symbiosis and fertilizer amendments on establishment of vegetation in heavy metal mine spoil. Environ Poll 86: 171–179

    Article  CAS  Google Scholar 

  • Horvath B, Gruiz K (1996) Impact of metalliferous ore mining activity on the environment in Gyongyosoroszi, Hungary. Sci Total Environ 184: 215–227

    Google Scholar 

  • Hosius B, Bergmann F, Hattemer HH (1996) Physiologische und genetische Anpassung von Fichtensämlingen verschiedener Provenienz an schwermetallkontaminierte Böden. Forstarchiv 67: 108–114

    Google Scholar 

  • Hunter BA, Johnson MS, Thompson DJ (1987) Ecotoxicology of copper and cadmium in a contaminated grassland ecosystem. I. Soil and vegetation contamination. J Appl Ecol 24: 573–586

    Google Scholar 

  • Jentschke G, Winter S, Godbold DL (1998) Ectomycorrhizas and cadmium toxicity in Norway spruce seedlings. Tree Physiol 18, (in press)

    Google Scholar 

  • Johnson NC, McGraw A-C (1988a) Vesicular-arbuscular mycorrhizae in taconite tailings. I. Incidence and spread of endogonacenous fungi following reclamation. Agric Ecos Environ 21: 135–142

    Google Scholar 

  • Johnson NC, McGraw A-C (1988b) Vesicular-arbuscular mycorrhizae in taconite tailings. II. Effects of reclamation practices. Agric Ecos Environ 21: 143–152

    Google Scholar 

  • Jones MD, Hutchinson TC (1986) The effect of mycorrhizal infection on the response of Betula papyrifera to nickel and copper. New Phytol 102: 429–442

    Article  CAS  Google Scholar 

  • Jongbloed RH, Borst-Pauwels GWFH (1990) Differential response of some ectomycorrhizal fungi to cadmium in vitro. Acta Bot Neerl 39: 241–246

    CAS  Google Scholar 

  • Kabata-Pendias A, Bolibrzuch E, Tarlowski P (1981) Impact of a copper smelter on agricultural environments. Rocz Glebozn 32: 207–214

    CAS  Google Scholar 

  • Kabata-Pendias A, Dudka S, Chlopecka A, Gawinowska T (1992) Background levels and environ mental influences on trace metals in soils of the temperate humid zone of Europe. In: Adriano DC (ed) Biogeochemistry of trace metals. Lewis, Boca Raton, FL. pp 61–84 Kahle H (1993) Response of roots of trees to heavy metals. Environ Exp Bot 33: 99–119

    Google Scholar 

  • Kahle H, Breckle SW (1986) Wirkungen ökotoxischer Schwermetalle auf Buchenjungwuchs. Statuskolloquium “Luftverunreinigungen and Waldschäden” Düsseldorf, MURL. pp. 84–90

    Google Scholar 

  • Karczewska A (1996) Metal species distribution in top-and sub-soil in an area affected by copper smelter emissions. Appl Geochem 11: 35–42

    Article  CAS  Google Scholar 

  • Kedziorek MAM, Bourg A CM (1996) Acidification and solubilisation of heavy metals from single and dual-component model solids. Appl Geochem 11: 299–304

    Article  CAS  Google Scholar 

  • Kelly JM, Parker GR, McFee WW (1979) Heavy metal accumulation and growth of seedings of five forest species as influenced by soil cadmium levels. J Environ Qual 8: 361–364

    Article  CAS  Google Scholar 

  • Kiriluk VP (1980) Accumulation of copper and silver in chernozems of vineyards.In: Vlasyuk

    Google Scholar 

  • PA.(ed) Microelements in environnment. Naukova Dumka, Kiyev, p. 76 (in Russian) Kreutzer K, Hüttl RF (1995) Effects of forest liming on soil processes. Plant Soil 168–169: 447–470

    Google Scholar 

  • Lacatusu R, Rauta C, Carstea S, Ghelase I (1996) Soil-plant-man relationships in heavy metal polluted areas in Romania. Appl Geochem 11: 105–108

    Article  CAS  Google Scholar 

  • Lamersdorf N, Godbold DL, Knoche D (1991) Risk assessment of some heavy metals for the growth of Norway spruce. Water Air Soil Pollut 57–58: 535–543.

    Article  Google Scholar 

  • Landberg T, Greger M (1996) Differences in uptake and tolerance to heavy metals in Salix from unpolluted and polluted areas. Appl Geochem 11: 175–180;

    Article  CAS  Google Scholar 

  • Letunova S V, Krivitskiy VA (1979) Concentration of zinc in biomass of soil microflora in south Urals copper-zinc subregion of biosphere (in Russian). Agrokhimiya 6: 104–111

    Google Scholar 

  • Litzinger M (1990) Untersuchungen über die Cadmium toleranz verschiedener Aspenklone (Populus tremula cv. Ahle). Diplom, University of Göttingen

    Google Scholar 

  • Lozano F Morrison IK (1982) Growth and nutrition of white pine and white spruce seedlings in solutions of various nickel and copper concentrations. J Environ Qual 11: 437–441

    Article  Google Scholar 

  • Manecki A, Klapyta Z, Schejbal-Chwastek M, Skowrofiski A, Tarkowski J, Tokarz M (1981)

    Google Scholar 

  • The effect of industrial pollutants of the atmosphere on the geochemistry of natural environment of the Niepolomice Forest. PAN Miner Trans 71:58 (in Polish)

    Google Scholar 

  • Mannings S, Smith S, Bell JNB (1996) Effect of acid deposition on soil acidification and metal mobilisation. Appl Geochem 11: 139–143

    Article  CAS  Google Scholar 

  • Maronek DM, Hendrix JW, Kiermann J (1981) Mycorrhizal fungi and their importance in horticultural crop production. Hortic Rev 3: 172–213

    Google Scholar 

  • Marschner P (1994) Einfluß der Mykorrhizierung auf die Aufnahme von Blei bei Fichtenkeimlingen, PhD Thesis, University of Göttingen

    Google Scholar 

  • Marschner B, Stahr K, Rengen M (1989) Potential hazards of lime application in a damaged pine forest ecosystem in Berlin, Germany. Water Air Soil Pollut 48: 45–57

    Google Scholar 

  • Marschner P, Godbold DL, Jentschke G (1996) Dynamics of lead accumulation in mycorrhizal and non-mycorrhizal Norway spruce (Picea abies (L.) Karst.) Plant Soil 178: 239–24

    CAS  Google Scholar 

  • Marschner P, Klam A, Jentschke G, Godbold DL (1998) Aluminum and lead tolerance in ectomycorrhizl fungi. Z Pflanzenernähr. Bodenkd (in press)

    Google Scholar 

  • Marx DH (1975) Mycorrhizae and establishment of trees on strip-mined land. Ohio J Sci 75: 288–297

    Google Scholar 

  • Marx DH (1976) Use of specific mycorrhizal fungi on tree roots for forestation of disturbed land. In: Proceedings of the Conference on Forestation of Disturbed Surface Areas. Birmingham, Al, pp 47–65

    Google Scholar 

  • Marx DH, Bryan WC, Cordell CE (1977) Survival and growth of pine seedlings with Pisolithus ectomycorrhizae after two years in reforestation sites in North Carolina and Florida For Sci 23: 363–373

    Google Scholar 

  • Masetti C, Mencuccini M (1991) Régénération naturelle du pin pignon (Pinus pinea L.) dans la Pineta Granducale di Alberese (Parco Naturale della Maremma, Toscana, Italie). Ecol Medit 17: 103–118

    Google Scholar 

  • McBride M, Sauve B, Hendershot W (1997) Solubility control of Cu, Zn, Cd and Pb in contaminated soils. Eur J Soil Sci 48: 337–346

    Google Scholar 

  • Meharg AA (1993) The role of plasmalemma in metal tolerance in angiosperms. Physiol Plant 88: 191–198

    Article  CAS  Google Scholar 

  • Mitchell CD, Fretz TA (1977) Cadmium and zinc toxicity in white pine, red maple and Nor way spruce. J Amer Soc Hortic Sci 1021: 81–84

    Google Scholar 

  • Moser M (1963) Die Bedeutung der Mykorrhiza bei Aufforstungen unter besonderer Berücksichtigung der Hochlagen. In: Rawald W, Lyr H (eds) Mykorrhiza.

    Google Scholar 

  • Fischer Verlag Neite H (1989) Zum Einfluß von pH und organischem Kohlenstoffgehalt auf die Löslichkeit

    Google Scholar 

  • Eisen, Blei, Mangan und Zink in Waldböden. Z Pflanzenernähr Bodenkd 152: 441–445

    Google Scholar 

  • Niskavaara H, Reimann C, Chekushin V (1996) Distribution and pathways of heavy metal and sulphur in the vicinity of the copper-nickel smelters in Nikel and Zapoljarnij, Kola Peninsula, Russia as revealed by different sample media. Appl Geochem 11: 25–34

    Google Scholar 

  • Niyazova GA, Letunova SV (1981) Microelement accumulation by soil microflora under the conditions of the Sumsaraky Lead-Zinc Biogeochemical Province in Kirghizya. Ekologiya 5: 89–100, (in Russian)

    Google Scholar 

  • Noyd RK, Pfleger FL, Norland MR (1996) Field responses to added organic matter, arbuscular mycorrhizal fungi, and fertilizer in reclamation of taconite iron ore tailing. Plant Soil 179: 89–97

    Article  CAS  Google Scholar 

  • Nriagu, JO, Pacyna JM (1988) Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature 333: 134–139.

    Article  PubMed  CAS  Google Scholar 

  • Pantani F, Cellini P, DelPanta S, Bussotti F (1984) Sulla deposizione acida nell’area della tenuta di San Rossore ( Pisa ). Inf Bot Ital 16: 182–191

    Google Scholar 

  • Patterson WA III, Olson JJ (1983) Effects of heavy metals on radicle growth of selected woody species germinated on filter paper, mineral and organic soil substrates. Can J For Res 13: 233–238

    Article  CAS  Google Scholar 

  • Petrov II, Tsalev DL (1979) Atomic absorption methods for determination of soil arsenic based on arsine generation. Pochvozn Agrokhim 14: 20–25, (in Bulgarian)

    CAS  Google Scholar 

  • Piha MI, Vallack HW, Michael N, Reeler BM (1995) A low input approach to vegetation es tablish ment on mine and coal ash wastes in semi-arid regions. II. Lagooned pulverized fuel ash in Zimbabwe. J Appl Ecol 32: 382–390

    Google Scholar 

  • Rachwal L, de Temmerman LO, Istas JR (1993) Differences in the accumulation of heavy metals in poplar clones of various susceptibilities to air pollution. Arbor-Kornickie 7: 101–111

    Google Scholar 

  • RappC, Jentschke G (1994) Acid deposition and ectomycorrhizal symbiosis: field investigations and causal relationships. In:Godbold DL, Hüttermann A (eds) The effect of acid rain on forest processes. Wiley, New York, pp 181–230

    Google Scholar 

  • Rauta C, Carstea S, Mihailescu A (1987) Influence of some pollutants on agricultural soils in Romania. Arch Ochr Srodowiska 1 /2: 33–37

    Google Scholar 

  • Reddy KJ, Wang L, Gloss SP (1995) Solubility and mobility of copper, zinc and lead in acidic environments. Plant Soil 171: 53–58

    Article  CAS  Google Scholar 

  • Riddell-Black D, Pulford ID, Stewart C (1997) Clonal variation in heavy metal uptake by willow. Aspects Appl Biol 49: 327–334

    Google Scholar 

  • Rieuwerts J, Farago M (1996) Heavy metal pollution in the vicinity of a secondary lead smelter in the Czech Republic. Appl Geochem 11: 17–23

    Article  CAS  Google Scholar 

  • Rubycka EH (1996) Impact of mining and metallurgical industries on the environment in Poland. Appl Geochem 11: 3–9

    Article  Google Scholar 

  • Sabey BR, Pendleton RL, Webb BL (1990) Effect of municipal sewage sludge application on growth of two reclamation shrub species in copper mine spoils. J Environ Qual 19: 580–586

    Article  CAS  Google Scholar 

  • Sapek B (1980) Copper behavior in reclaimed peat soil of grassland. Rocz Nauk Roln 80F: 13–39 (in Polish)

    CAS  Google Scholar 

  • Scheffer F, Schachtschabel P (1989) Lehrbuch der Bodenkunde. Enke, Stuttgart

    Google Scholar 

  • Schneider FK (1982) Untersuchung über den Gehalt an Blei und anderen Schwermetallen in den Böden und Halden des Raumes Stolberg.

    Google Scholar 

  • Schweizerbarth, Stuttgart Schuler G (1995) Waldkalkung als Bodenschutz. Allg Forst Zschr 50: 430–433

    Google Scholar 

  • Schwarz T (1996) Waldböden im Bereich des Forstamtes Grund (Oberharz) als Indikator für atmosphärisch eingetragene Schadstoffe unter besonderer Berücksichtigung der kleinräumigen Elementverteilungsmuster im Umfeld eines mittelalterlichen Verhüttungsplatzes. Diplom, University of Göttingen

    Google Scholar 

  • Schweingruber FH, Voronin V (1996) Eine dendrochronologisch-bodenchemische Studie aus dem Waldschadengebiet Norilsk, Sibirien und die Konsequenzen für die Interpretation grossflächiger Kronentaxationsinventuren. Allg Forst Jagdztg 167: 53–67

    Google Scholar 

  • Sela M, Tel-Or E, Fritz E, Hüttermann A (1988) Localization and toxic effects of cadmium, copper, and uranium in Azolla. Plant Physiol 88: 30–36

    Article  PubMed  CAS  Google Scholar 

  • Shetty KG, Hetrick BAD, Figge DAH, Schwab AP (1994) Effects of mycorrhizae and other soil microbes on revegetation of heavy metal contaminated mine spoil. Environ Pollut 86: 181–188

    Article  PubMed  CAS  Google Scholar 

  • Sieghardt H (1988) Schwermetall-und Nahrelementgehalte von Pflanzen und Bodenproben schwermetallhaltiger Halden im Raum Bleiberg in Karnten (Osterreich). II. Holzpflanzen Z Pflanzenernaehr Bodenkd 151: 21–26

    Article  CAS  Google Scholar 

  • Smilde KW (1981) Heavy-metal accumulation in crops grown on sewage sludge amended with metal salts. Plant Soil 62: 3–14

    Article  CAS  Google Scholar 

  • Sutton RF (1980) Root system morphogenesis. NZ J For Sci 10: 264–292.

    Google Scholar 

  • Tamm PCF (1995) Heavy metal tolerance by ectomycorrhizal fungi and metal amelioration of Pisolithus tinctorius. Mycorrhiza 5: 181–187

    Article  Google Scholar 

  • Tchuldziyan H, Khinov G (1976) On the chemistry of copper pollution of certain soils. Pochvozn. Agrokhim 11: 41–46

    Google Scholar 

  • Turnau K, Kottke I, Oberwinkler F (1993) Paxillus involutus - Pinus sylvestris mycorrhizae from heavily polluted forest. 1. Element localization using electron energy loss spectroscopy and imaging. Bot Acta 106: 213–219

    Google Scholar 

  • Turnau K, Kottke I, Drexheimer J (1996)Toxic elements filtering in Rhizopogon roseolus–Pinus sylvestris mycorrhizas collected from calamine dumps. Mycol Res 100: 16–22

    Google Scholar 

  • Tyler G, Berggren D, Bergkvist B, Falkengren-Grerup U, Folkeson L, Ruhling A, (1987) Soil acidification and metal solubility in forests of southern Sweden. In: Hutchinson TC, Meema KM (eds.) Effects of atmospheric pollutants on forests, wetlands, and agricultural-eco systems. Springer, Berlin, Heielberg, New York. pp 347–359

    Chapter  Google Scholar 

  • Ulrich B, Mayer R, Khanna PK (1979) Deposition von Luftverunreinigungen and ihre Auswirkungen in Waldökosystemen im Solling. Sauerländer, Frankfurt

    Google Scholar 

  • Umifiska R (1988) Assessment of hazardous levels of trace elements to health in contaminated soils of Poland. Inst. Medycyny Wsi. Warsaw, p 188 (in Polish)

    Google Scholar 

  • Ustyak S, Petrikova V (1996) Heavy metal pollution of soils and crops in northern Bohemia. Appl Geochem 11: 77–80

    Article  CAS  Google Scholar 

  • Vare H (1991) Aluminium polyphosphate in the ectomycorrhizal fungus Suillus variegates (Fr) O.Kunze as revealed by energy dispersive spectrometry. New Phytol 116: 663–668

    Article  Google Scholar 

  • Vermes L (1987) Results of research work and status of regulation of heavy metal contamiation concerning sewage sludge land application in Hungary, Arch Ochr Srodowiska 2: 21–32

    Google Scholar 

  • Verner JF, Ramsey MH, Helios-Rybicka E, Jedrzejczyk B (1996) Heavy metal contamination of soils around a Pb-Zn smelter in Bukowno, Poland. Appl Geochem 11: 11–16

    Google Scholar 

  • Walendzik RJ (1993) Deterioration of forest soils in the Western Sudety mountains (Poland) and attempts of its limitation. Sylwan 137: 29–38

    Google Scholar 

  • Watmough SA, Dickinson NM (1996) Variability of metal resistance in Acer pseudoplatanus L. (sycamore) callus tissue of different origins. Environ Exp Bot 36: 293–302

    Article  CAS  Google Scholar 

  • Watmough SA, Hutchinson TC (1997) Metal resistance in red maple (Acer rubrum) callus cultures from mine and smelter sites in Canada. Can J For Res 27: 693–700

    Article  Google Scholar 

  • Watmough SA, Gallivan CC, Dickinson NM (1995) Induction of zinc and nickel resistance in Acer pseudoplatanus L. (sycamore) callus cell lines. Environ Exp Bot 35: 465–473

    Article  CAS  Google Scholar 

  • Wzhenin IG, Bolshakov WA (198)11-union conference of the joint departments on methodical principles of mapping soil contamination with heavy metals and methods of their determination. Pochvovedenie 2:151–159 (in Rus sian)

    Google Scholar 

  • Widera S (1980) Contamination of the soil and assimilative organs of the pine tree at various distances from the source of emission. Arch Ochr Srodowiska 3 /4: 141–146

    Google Scholar 

  • Wilkins DA (1991) The influence of sheathing (ecto-)mycorrhizas of trees on the uptake and toxicity of heavy metals. Agric Ecos Environ 35: 245–260

    Article  CAS  Google Scholar 

  • Wilson MJ, Bell N (1996) Acid deposition and heavy metal mobilization. Appl Geochem 11: 133–137

    Article  Google Scholar 

  • Winter S (1995) Der Einfluß von Cadmium auf das Wachstum von Fichten am Beispiel der Mykorrhizapilze Zaccaria laccata and Paxillus involutus. M.Sc Thesis, University of Göttingen

    Google Scholar 

  • Woolouse HW (1983) Toxicity and tolerance in the responses of plants to metals. In: Lange OL, Nobel PS, Osmond CB Ziegler H (eds) Physiological Plant Ecology III. Responses to the chemical and biological environment. Encyclopedia of Plant Physiology, new series, Vol. 12C. Sringer, Berlin Heidelberg New York. pp 245–300

    Chapter  Google Scholar 

  • Wotton DL, Jones DC, Phillips SF (1986) The effect of nickel and copper deposition from a mining and smelting complex on coniferous regeneration in the boreal forest of northern Manitoba. Water Air Soil Pollut 31: 349–358

    Article  CAS  Google Scholar 

  • Zhu B, Alva AK (1993) Effect of pH on growth and uptake of copper by single citrumelo seedlings. J Plant Nutr 16: 1837–1845

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hüttermann, A., Arduini, I., Godbold, D.L. (1999). Metal Pollution and Forest Decline. In: Heavy Metal Stress in Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-07745-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-07745-0_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-07747-4

  • Online ISBN: 978-3-662-07745-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics