Skip to main content

Water Relations in Heavy Metal Stressed Plants

  • Chapter
Heavy Metal Stress in Plants

Abstract

Almost every plant process is affected directly or indirectly by the water supply, and water may be considered as a major factor in the regulation of plant growth (Kramer and Boyer 1995). Therefore many investigations on plant responses to environmental stresses pay considerable attention to water relations from the cell to the whole plant and community level. The influence of excess ions on plant water relations has mainly been investigated in plants exposed to high concentrations of Na+, Cl, and other ions that cause adverse effects in plants at concentrations in the 0.1 to 1 M range. The interest of water relation studies under salt stress is obvious, because of the significant influence of such high ion concentrations on the osmotic potential of the substrate, and the difficulties for water acquisition by plants under those circumstances. In addition to osmotic stress, ion specific effects of high salt concentrations on water relations and growth are well documented (Levitt 1980; Montero et al. 1997,1998).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alia, Saradhi PP (1991) Proline accumulation under heavy metal stress. J Plant Physiol 138: 504–508

    Google Scholar 

  • Aloni R (1987) Differentiation of vascular tissues. Annu Rev Plant Physiol 38: 179–204

    Google Scholar 

  • Angelov T, Uzunova A, Gaidardjieva K (1993) Cue+ effect upon photosynthesis, chloroplast structure, RNA and protein synthesis of pea plants. Photosythetica 28: 341–350

    Google Scholar 

  • Armstrong JK, Huenneke LF (1992) Spatial and temporal variation in species composition in California grasslands: the interaction of drought and substratum. In: Baker AJM, Proctor J, Reeves RD (eds) The vegetation of ultramafic (serpentine) soils, Intercept, Andover, Hampshire, pp. 213–233

    Google Scholar 

  • Baker AJM, Dalby DH (1980) Morphological variation between some isolated populations of Silene maritima With. in the British Isles with particular reference to inland populations on-metalliferous soils. New Phytol 84: 123–138

    Google Scholar 

  • Baker AJM, Walker PL (1989) Ecophysiology of metal uptake by tolerant plants In: Shaw AJ(ed) Heavy metal tolerance in plants: evolutionary aspects, CRC Press, Boca Raton, FL, pp 155–193

    Google Scholar 

  • Barceló J, Poschenrieder C (1990) Plant water relations as affected by heavy metal stress: a review. J Plant Nutr 13: 1–37

    Google Scholar 

  • Barceló J, Poschenrieder C (1997) Chromium in plants. In: Canali S, Tittarelli F, Sequi P (eds) Chromium environmental issues. Angeli, Milan, pp 101–129

    Google Scholar 

  • Barceló J, Poschenrieder C, Gunsé B (1986a) Water realtions of chromium VI treated bush bean plants (Phaseolus vulgaris L. cv Contender) under both normal and water stress conditions. J Exp Bot 37: 178–187

    Google Scholar 

  • Barceló J, Poschenrieder C, Vazquez MD, Gunsé B (1988a) Synergism between cadmium-i ed ion stress and drought. In: Öztürk MA (ed) Plants and pollutants in developed and developing countries. Ege University Press, Izmir, pp 529–544

    Google Scholar 

  • Barceló J, Vazquez MD, Poschenrieder C (1988b) Cadmium-induced structural and ultrastructural changes in the vascular system of bush bean stems. Bot Acta 101: 254–261

    Google Scholar 

  • Barceló J, Vazquez MD, Poschenrieder C (1988c) Structural and ultrastructural disorders in cadmium-treated bush bean plants (Phaseolus vulgaris L.). New Phytol 108: 37–49

    Google Scholar 

  • Barceló J, Poschenrieder C, Andreu I, Gunsé B (1986b) Cadmium-induced decrease of water stress resistance in bush bean plants (Phaseolus vulgaris L cv Contender). I. Effects of Cd on water potential, relative water content, and cell wall elasticity. J Plant Physiol 125: 17–25

    Google Scholar 

  • Barceló J, Cabot C, Poschenrieder C (1986c) Cadmium-induced decrease of water stress resistance in bush bean plants (Phaseolus vulgaris L cv Contender). II Effects of Cd on endogenous abscisic acid levels. J Plant Physiol 125: 27–34

    Google Scholar 

  • Barceló J, Poschenrieder C, Vazquez MD, Gunsé B (1996) Aluminum phytotoxicity. A challenge for plant scientists. Fertil Res 43: 217–223

    Google Scholar 

  • Bassi R, Sharma SS (1993a) Proline accumulation in wheat seedlings exposed to zinc and copper. Phytochemistry 33: 1339–1342

    CAS  Google Scholar 

  • Bassi R, Sharma SS (1993b) Changes in proline content accompanying the uptake of zinc and copper by Lemna minor. Ann Bot 72: 151–154

    CAS  Google Scholar 

  • Bazzaz FA, Carlson RW, Rolfe GL (1974) The effect of heavy metals on plants. I. Inhibition of gas exchange in sunflower by Pb, Cd, and TI. Environ Pollut 7: 241–246

    Google Scholar 

  • Becerril JM, González-Murua C, Munoz-Rueda A, de Felipe MR (1989) Changes induced by cadmium and lead in gas exchange and water relations of clover and lucerne. Plant Physiol Biochem 27: 913–918

    CAS  Google Scholar 

  • Bennet RJ, Breen CM, Fey MV (1985) Aluminum induced changes in the morphology of the quiescent center, proximal meristem and growth region of the root of Zea mays. S Afr J Bot 51: 355–362

    CAS  Google Scholar 

  • Blackmann PG, Davies WJ (1985) Root to communication in maize plants and the effect of soil drying. J Exp Bot 36: 39–48

    Google Scholar 

  • Boyd RS, Martens SN (1992) The raison d’être for metal hyperaccumulation by plants. In:Baker AJM, Proctor J, Reeves RD (eds) The vegetation of ultramafic (serpentine) soils. Intercept, Andover, Hampshire, pp 279–289

    Google Scholar 

  • Brooks RR (1987) Serpentine and its vegetation. Dioscorides, Portland, OR

    Google Scholar 

  • Carlson RW, Bazzaz FA, Rolfe GL (1975) The effect of heavy metals on plants. II Net photosynthesis and transpiration of whole corn and sunflower plants treated with Pb, Cd, Ni and Tl. Environ Res 10: 113–120

    Google Scholar 

  • Carvajal M, Cooke DT, Clarkson DT (1996) Responses of wheat plants to nutrient deprivation-may involve the regulation of water-channel function. Planta 199: 372–381

    CAS  Google Scholar 

  • Chen SL, Kao CH (1995) Cd induced changes in proline level and peroxidase activity in roots of rice seedlings. Plant Growth Regul 17: 67–71

    CAS  Google Scholar 

  • Chrispeels MJ, Maurel C (1994) Aquaporins: the molecular basis of facilitated water movement through living plant cells? Plant Physiol 105: 9–13

    PubMed  CAS  Google Scholar 

  • Clijsters H, Van Assche F (1985) Inhibition of photosynthesis by heavy metals. Photosynth Res 7: 31–40

    CAS  Google Scholar 

  • Costa G, Morel JL (1994) Water relations, gas exchange and amino acid content in Cd-treated lettuce. Plant Physiol Biochem 32: 561–570

    CAS  Google Scholar 

  • Costa G, Spitz E (1997) Influence of cadmium on soluble carbohydrates, free amino acids, protein content of in vitro cultured Lupinus albus. Plant Science 128: 131–140

    CAS  Google Scholar 

  • Dale JE, Sutcliffe JF (1986) Water relations of plant cells. In: Steward FC (ed) Water and solutes in plants. Plant physiology, a treatise, vol 9, Academic Press, London, pp 1–48

    Google Scholar 

  • Davenport DC, Fisher MA, Hagan GL (1971) Retarded stomatal closure by phenylmercuricacetate. Physiol Plant 24: 330–336

    CAS  Google Scholar 

  • Davies WJ, Zhang J (1991) Root signals and the regulation of growth and development of plants in drying soil. Annu Rev Plant Physiol Plant Mol Biol 42: 55–76

    CAS  Google Scholar 

  • De Vos RCH, Schat H, Voojs R, Ernst WHO (1989) Copper-induced damage to the permeability barrier in roots of Silene cucubalus. J Plant Physiol 135: 164–169

    Google Scholar 

  • De Vos RCH, Schat H, De Wal MAM, Vooijs R„ Ernst WHO (1991) Increased resistance to copper-induced damage of the root cell plasmalemma in copper tolerant Silene cucubalus. Physiol Plant 82: 523–528

    Google Scholar 

  • Dueck TA (1986) The combined influence of sulphur dioxide and copper on two populations of Trifolium repens and Lolium perenne. In: impact of heavy metals and air pollutants on plants. Academisch Proefschrift. Free University Press, Amsterdam, pp. 102–114

    Google Scholar 

  • Ernst WHO (1974) Schwermetallvegetation der Erde. Gustav Fischer Verlag, Stuttgart.

    Google Scholar 

  • Ernst WHO (1998) Effects of heavy metals in plants at the cellular and organismic level. In: Schüürmann G, Markert B (eds.) Ecotoxicology, Wiley, New York, Spektrum, Heidelberg, pp 587–620

    Google Scholar 

  • Ernst WHO, Verkleij JAC, Schat H (1992) Metal tolerance in plants. Acta Bot Neerl 41: 229–248

    CAS  Google Scholar 

  • Freitas H, Mooney H (1996) Effects of water stress and soil texture on the performance of two Bromus hordaceus ecotypes from sandstone and serpentine soils. Acta Oecol 17: 307–317

    Google Scholar 

  • Fuhrer J (1982) Early effects of excess cadmium uptake in Phaseolus vulgaris. Plant Cell Environ 5: 263–270

    CAS  Google Scholar 

  • Greger M, Johansson M (1992) Cadmium effects on leaf transpiration of sugar beet (Beta vulgaris). Physiol Plant 86: 465–473

    CAS  Google Scholar 

  • Gunsé B (1987) Efectos del cromo sobre la nutrición y relaciones hídricas de Phaseolus vulgaris. PhD. Thesis, Universidad Autonoma de Barcelona, Bellaterra

    Google Scholar 

  • Gunsé B, Llugany M, Poschenrieder C, Barceló J (1992) Growth, cell wall elasticity and plasticity in Zea mays L. coleoptiles exposed to cadmium. In: Contaminación: efectos fisiológicos y mecanismos de actuación de contaminantes. Alicante University Publishers, Alicante, pp 179–188

    Google Scholar 

  • Gunsé B, Poschenrieder C, Barceló J (1997) Water transport properties of roots and root cortical cells in proton-and Al-stressed maize varieties. Plant Physiol 113: 595–602

    PubMed  Google Scholar 

  • Hagemeyer J, Breckle SW (1996) Growth under trace element stress. In: Waisel Y, Eshel A, Kaikafi U (eds.) Plant roots: the hidden half. 2nd edn. Dekker, New York, pp 415K - 433

    Google Scholar 

  • Hartung W, Davies WJ (1994) Abscisic acid under drought and salt stress. In: Pessarakli M (ed.) Handbook of Plant Stress. Dekker, New York. pp 401–411

    Google Scholar 

  • Haug A, Caldwell CR (1985) Aluminum toxicity in plants: role of the root plasma membrane and calmodulin. In: St John JB, Berlin E, Jackson PC (eds.) Frontiers of Membrane Research. Beltsville symposium 9. Rowman and Allanheld, Totwa, pp 359–381

    Google Scholar 

  • Henzler T, Steudle E (1995) Reversible closing of water channels in Chara internodes provides evidence for a composite transport model of the plasma membrane. J Exp Bot 46: 199–209

    CAS  Google Scholar 

  • Heuer B (1994) Osmoregulatory role of proline in water-and salt-stressed plants. In: Pessarakli M (ed.) Handbook of Plant Stress. Dekker, New York. pp 363–381

    Google Scholar 

  • Hoogenboom G, Huck MG, Peterson CM (1987) Root growth rate of soybean as affected by drought stress. Agron J 79: 607–614

    Google Scholar 

  • Hull JC, Wood SG (1984) Water relations of oak species on and adjacent to a Maryland serpentine soil. Am Midl Nat 112: 224–234

    Google Scholar 

  • Hwang JU, Su S, Yi H, Kim J, Lee Y (1997) Actin filaments modulate both stomatal opening and inward K+-channel activities in guard cells of Vicia faba L. Plant Physiol 115: 335–342

    PubMed  CAS  Google Scholar 

  • Jones H, Leigh RA, Wyn Jones RG, Tomos AD (1988) The integration of whole-root and cellular hydraulic conductivities in cereal roots. Planta 174: 1–7

    Google Scholar 

  • Kahle H (1993) Response of roots of trees to heavy metals. Environ Exp Bot 33: 99–119

    Google Scholar 

  • Kaldenhoff R, Grote K, Zhu JJ, Zimmermann U (1998) Significance of plasma lemma aquaporins for water transport in Arabidpsis thaliana. Plant J 14: 121–128

    PubMed  CAS  Google Scholar 

  • Kaldenoff R, Grote K, Zhu JJ, Zimmermann U (1998) Significance of plasmalemma aquaporins for water transport in Arabidopsis thaliana. The Plant J 14: 121–128

    Google Scholar 

  • Kasai M, Sasaki M, Yamamoto Y, Maeshima M, Matsumoto H (1994) Possible involvement of abscisic acid in induction of two vacuolar H+-pump activities in barley roots under aluminum stress. 5th International Symposium on Genetics and Molecular Biology of Plant Nutrition. Davis, California, 118

    Google Scholar 

  • Kastori R, Petrovic M, Petrovic N (1992) Effect of excess lead, cadmium, copper and zinc on water relations in sunflower. J Plant Nutr 15: 2427–2439

    CAS  Google Scholar 

  • Kennedy CD., Gonsalves FAN (1987) The action of divalent zinc, cadmium, mercury, copper and lead on the trans-root potential and H` efflux of excised roots. J Exp Bot 38: 800–817

    CAS  Google Scholar 

  • Kirkham M (1978) Water relations of cadmium-treated plants. J Environ Qual 7: 334–336

    CAS  Google Scholar 

  • Klimashevski EL, Dedov VM(1975) Localization of the mechanism of growth inhibiting action of Al’ in elongating cell walls. Fiziol Rast 22: 1040–1046

    Google Scholar 

  • Klimov SV (1985) Interaction of stress factors: increase of drought effect by the presence of Al’ in the medium. Fiziol Rast 32: 532–538

    CAS  Google Scholar 

  • Kramer PJ, Boyer JS (1995) Water relations of plants and soils. Academic Press, San Diego, 495 pp

    Google Scholar 

  • Krizek DT, Foy CD (1988a) Role of water stress in differential aluminum tolerance of two barley cultivars grown in an acid soil. J Plant Nutr 11: 351–367

    CAS  Google Scholar 

  • Krizek DT, Foy CD (1988b) Mineral element concentration of six sunflower cultivars in relation to water deficit and aluminum toxicity. J Plant Nutr 11: 409–422

    CAS  Google Scholar 

  • Krizek DT, Foy CD, Wergin WP (1988) Role of water stress in differential aluminum tolerance of six sunflower cultivars grown in an acid soil. J Plant Nutr 11: 387–408

    CAS  Google Scholar 

  • Lamoreaux RJ, Chaney WR (1977) Growth and water movement in silver maple seedlings affected by cadmium. J Environ Qual 6: 201–205

    CAS  Google Scholar 

  • Lamoreaux RJ, Chaney WR (1978) The effect of cadmium on net photosynthesis, transpiration and dark respiration of excised silver maple leaves. Physiol Plant 43: 231–236

    CAS  Google Scholar 

  • Levitt J (1980) Water, radiation, salt, and other stresses. Responses of plants to environmental stresses. Vol 2. Academic Press, New York, 607 pp

    Google Scholar 

  • Llugany M (1994) Respuestas diferenciales de cultivares de Zea mays L a la toxicidad poraluminio. PhD Thesis Universidad Autonoma de Barcelona

    Google Scholar 

  • Ludevid D, Höfte H, Himelblau E, Chrispeels MJ (1992) The expression pattern of the tonoplast intrinsic protein y-TIP in Arabisopsis thaliana is correlated with cell enlargement. Plant Physiol 100: 1633–1639

    PubMed  CAS  Google Scholar 

  • Macnair MR (1987) Heavy metal tolerance in plants. A model evolutionary system. Tree 2: 354–359

    PubMed  CAS  Google Scholar 

  • Maggio A, Joly RJ (1995) Effects of mercuric chloride on the hydraulic conductivity of tomato root systems. Plant Physiol 109: 331–335

    PubMed  CAS  Google Scholar 

  • Marschner H (1986) Mineral nutrition of higher plants. Academic Press, London.

    Google Scholar 

  • Massot N, Poschenrieder C, Barceló J (1994) Aluminum-induced increase of zeatin riboside and dihydrozeatin riboside in Phaseolus vulgaris L. cultivars. J Plant Nutr 17: 255–265

    CAS  Google Scholar 

  • Maurel C (1997) Aquaporins and water permeability of plant membranes. Annu Rev Plant Physiol Mol Biol 48: 399–429

    CAS  Google Scholar 

  • Montero E, Cabot C, Barceló J, Poschenrieder C (1997) Endogenous abscisic acid levels are linked to decreased growth of bush bean plants treated with NaCI. Physiol Plant 101: 17–22

    CAS  Google Scholar 

  • Montero E, Cabot C,Barceló J,Poschenrieder C (1998) Relative importance of osmoticstress and ion-specific effects of ABA-mediated inhibition of leaf expansion growth in Phaseolus vulgaris. Plant Cell Environ 21: 54–62

    CAS  Google Scholar 

  • Moustakas M, Ouzounidou G, Eleftheriou EP, Lannoye R (1996) Indirect effects of aluminum on the function of the photosynthetic apparatus. Plant Physiol Biochem 34: 553–560

    CAS  Google Scholar 

  • Moustakas M, Ouzounidou G, Symeonidis L, Karataglis S (1997) Field study of the effects of excess copper on wheat photosynthesis and productivity. Soil Sci Plant Nutr 43: 531–539

    CAS  Google Scholar 

  • Müller ML, Barlow PW, Pilet PE (1994) Effect of abscisic acid on the cell cycle in the growing maize root. Planta 195: 10–16

    Google Scholar 

  • Ohki K (1986) Photosynthesis, chlorophyll and transpiration responses in aluminum stressed wheat and sorghum. Crop Sci 26: 572–575

    CAS  Google Scholar 

  • Paivöke A (1983) The short-term effects of zinc on the growth anatomy and acid phosphatase of pea seedlings. Ann Bot Fenn 20: 197–203

    Google Scholar 

  • Paul R, de Foresta E (1981) Effets du cadmium sur la transpiration du plantes. Bull Rech Agron Gembloux 16: 371–378

    CAS  Google Scholar 

  • Poschenrieder C, Gunsé B, Barceló J (1989) Influence of cadmium on water relations, stomatal resistance and abscisic acid content in expanding bean leaves. Plant Physiol 90: 1365–1371

    PubMed  CAS  Google Scholar 

  • Prasad MNV (1997) Trace metals. In: Prasad MNV (ed) Plant ecophysiology, Wiley, New York, pp. 207–249

    Google Scholar 

  • Proctor J, Woodell SRJ (1975) The ecology of serpentine soils. Adv Ecol Res 9: 255–366

    Google Scholar 

  • Proctor J, Nagy L (1992) Ultramafic rocks and their vegetation: an overview. In: Baker AJM, Proctor J, Reeves RD (eds) The vegetation of ultramafic (serpentine) soils. Intercept Ltd. Andover, Hampshire, pp. 469–494

    Google Scholar 

  • Punz WF, Sieghardt H (1993) The response of roots of herbaceous plant species to heavy metals. Env Exp Bot 33: 85–98

    CAS  Google Scholar 

  • Rauser WE, Dumbroff EB (1981) Effects of excess cobalt, nickel and zinc on the water relations of Phaseolus vulgaris. Environ Exp Bot 21: 249–255

    CAS  Google Scholar 

  • Rengel Z (1997) Mechanisms of plant resistance to toxicity of aluminum and heavy metals.In: Basra AS, Basra RK (eds) Mechanisms of environmental stress resistance in plants. Harwood Amsterdam, pp 241–276

    Google Scholar 

  • Robb J, Busch L, Rauser WE (1980) Zinc toxicity and xylem vessel alterations in white beans. Ann Bot 46: 43–50

    CAS  Google Scholar 

  • Ros R, Cooke DT, Burden RS, James CS (1990) Effects of herbicide MCPA, and the heavy metals, cadmium and nickel on the lipid composition, Mgt+-ATPase activity and fluidity of plasma membranes from rice, Oryza sativa (cv Bahia) shoots. J Exp Bot 41: 457–462

    CAS  Google Scholar 

  • Rygol J, Arnold WA, Zimmermann U (1992) Zinc and salinity effects on membrane transport in Chara connivens. Plant Cell Environ 15: 11–23

    CAS  Google Scholar 

  • Saab IN, Sharp RE, Pritchard J (1992) Effect of inhibition of ABA accumulation on the spatial distribution of elongation in the primary root and mesocotyl of maize at low water potentials. Plant Physiol 99: 26–33

    PubMed  CAS  Google Scholar 

  • Schat H, Sharma, Vooijs R (1997) heavy metal-induced accumulation of free proline in a metal-tolerant and a non-tolerant ecotype of Silene vulgaris. Physiol Plant 101: 477–482

    Google Scholar 

  • Schlegel H, Godbold DL, Hüttermann A (1987) Whole plant aspects of heavy metal induced changes in CO2 uptake and water relations of spruce (Picea abies) seedlings. Physiol Plant 69: 265–270

    CAS  Google Scholar 

  • Schnabl H, Ziegler H (1974) Der Einfluß des Aluminiums auf den Gasaustausch und das Welken von Schnittpflanzen. Ber Dtsch Bot Ges 87: 13–20

    CAS  Google Scholar 

  • Schnabl H, Ziegler H (1975) Über die Wirkung von Aluminiumionen auf die Stomatabewegung von Vicia faba Epidermen. Z Ptlanzenphysiol 74: 394–403

    Google Scholar 

  • Sharma SS, Schat H, Vooijs R (1998) In vitro alleviation of heavy metal-induced enzyme inhibition by proline. Phytochemistry 49: 1531–1535.

    PubMed  CAS  Google Scholar 

  • Steudle E (1993) Pressure probe techniques: basic principles and application to studies of water and solute relations at the cell tissue and organ level. In: Smith JAC, Griffiths H (eds) Water deficits: plant responses from cell to community, Bios Scientific, Oxford, pp 5–36

    Google Scholar 

  • Steudle E, Frensch J (1996) Water transport in plants: role of the apoplast. Plant Soil 187: 67–79

    CAS  Google Scholar 

  • Tazawa M, Asai K, Iwasaki N (1996) Characteristics of Hg-and Zn-sensitive water channels in the plasma membrane of Chara cells. Bot Acta 5: 388–396

    Google Scholar 

  • Tolrà RP, Poschenrieder C, Barceló J (1996) Zinc hyperaccumulation in Thlaspi caerulescens. II. Influence on organic acids. J Plant Nutr 19: 1541–1550

    Google Scholar 

  • Van Assche F, Clijsters H (1983) Multiple effects of heavy metals on photosynthesis. In: Marcelle R, Clijsters H, van Pouke M (eds) Effects of stress on photosynthesis. Nijhoff/Junk, The Hague, pp 371–382

    Google Scholar 

  • Van Assche F, Clijsters H (1990) Effects of metals on enzyme activity in plants. Plant Cell Environ 13: 195–206

    Google Scholar 

  • Van Assche F, Ceulemans R, Clijsters H (1980) Zinc mediated effects on leaf CO, diffusion conductances and net photosynthesis in Phaseolus vulgaris L. Photosynth Res 1: 171–180

    Google Scholar 

  • Van Assche F, Cardinaels C, Put C, Clijsters H (1984) Premature leaf ageing induced by heavy metal toxicity? Arch Int Physiol Biochim 94:PF 27–28

    Google Scholar 

  • Vazquez MD, Poschenrieder C, Barceló J (1987) Chromium VI induced structural and ultrastructural changes in bush bean plants (Phaseolus vulgaris L.). Ann Bot 59: 427–438

    CAS  Google Scholar 

  • Vazquez MD, Poschenrieder C, Barceló J (1989) Pulvinus structure and leaf abscission in cadmium treated bean plants (Phaseolus vulgaris). Can J Bot 67: 2756–2764

    CAS  Google Scholar 

  • Williamson A, Johnson MS (1981) Reclamation of metalliferous mine waste. In: Lepp NW (ed) Effect of heavy metal pollution on plants, vol 2, Applied Science, London, pp 185–212

    Google Scholar 

  • Wyn Jones RG, Storey R (1981) Betaines. In: Paleg LG, Aspinall D (eds) The physiology anbiochemistry of drought resistance in plants. Academic Press, Sydney, pp 171–204

    Google Scholar 

  • Zhao XJ, Sucoff E, Stadelmann EJ (1987) Al’ and Ca’ alteration of membrane permeability of Quercus rubra root cortex cells. Plant Physiol 83: 159–162

    PubMed  CAS  Google Scholar 

  • Zimmermann MH (1983) Xylem structure and the ascent of sap. Springer, Berlin, Heidelberg, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Poschenrieder, C., Barceló, J. (1999). Water Relations in Heavy Metal Stressed Plants. In: Heavy Metal Stress in Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-07745-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-07745-0_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-07747-4

  • Online ISBN: 978-3-662-07745-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics