Skip to main content

Metal Availability and Bioconcentration in Plants

  • Chapter
Book cover Heavy Metal Stress in Plants

Abstract

Heavy metals are natural elements that are found at various high background levels (Table 1.1) at different places throughout the world, due to various concentrations in the bedrock. Thus, for example, Ni, Cr and Co are abundant in serpentine soils whereas Zn, Pb and Cd are high in calamine soils. Heavy metals are persistent and cannot be deleted from the environment. Thus, a problem arises when their availability is high due to high background levels or to human activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baker AJM (1981) Accumulators and excluders–strategies in the response of plants to heavy metals. J Plant Nutr 3: 643–654

    Article  CAS  Google Scholar 

  • Baker AJM, McGrath SP, Reeves RD, Smith JAC (1998) Metal hyperaccumulator plants: a review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils. In Terry N, Banuelos GS (eds) Phytoremediation. Ann Arbor Press, Ann Arbor, MI

    Google Scholar 

  • Beckett RP, Brown DH (1984) The control of cadmium uptake in the lichen genus Peltigra. J Exp Bot 35: 1071–1082

    Article  CAS  Google Scholar 

  • Blinda A, Koch B, Ramanjulu S, Dietz K-J (1997) De novo synthesis and accumulation of apoplastic proteins in leaves of heavy metal-exposed barley seedlings. Plant Cell Environ 20: 969–981

    Article  CAS  Google Scholar 

  • Bowen JE (1987) Physiology of genotyping differences in zinc and copper uptake in rice and tomato. Plant Soil 99: 115–125

    Article  CAS  Google Scholar 

  • Brooks RR, Morrison RS, Reeves RD, Malaisse F (1978) Copper and cobalt in African species of Aeollanthus Mart. ( Plectranthinae, Labiatae). Plant Soil 50: 503–507

    Google Scholar 

  • Brooks RR, Morrison RS, Reeves RD, Dudley TR, Akman Y (1979) Hyperaccumulation of nickel by Alyssum Linnaeus ( Cruciferae ). Proc R Soc Lond B Biol Sci 203: 387–403

    Google Scholar 

  • Brooks RR, Thow IM, Veillon J, Jaffre T (1981) Studies on manganese-accumulating Alyxia from New Caledonia. Taxon 30: 420–423

    Article  Google Scholar 

  • Brown PH, Dunemann L, Schulz R, Marschner H (1989) Influence of redox potential and plant species on the uptake of nickel and cadmium from soil. Z Pflanzenernähr Bodenkd 152: 85–91

    Article  CAS  Google Scholar 

  • Buffle J (1988) Complexsation reactions in aquatic systems, an analytical approach. Wiley, Chichester

    Google Scholar 

  • Cataldo DA, Garland TR, Wildung RE (1978) Nickel in plants; II: Distribution and chemical form in soybean plants. Plant Physiol 62: 566–570

    Google Scholar 

  • Cataldo DA, Garland TR, Wildung RE (1983) Cadmium uptake kinetics in intact soybean plants. Plant Physiol 73: 844–848

    Article  PubMed  CAS  Google Scholar 

  • Chang AC, Page AL, Warneke JE (1987) Long-term sludge application on cadmium and zinc accumulation in Swiss chard and radish. J Environ Qual 16: 217–221

    Article  CAS  Google Scholar 

  • Chawla G, Singh J, Viswanathan PN (1991) Effect of pH and temperature on the uptake of cadmium by Lemna minor L. Bull Environ Contam Toxicol 47: 84–90

    Article  PubMed  CAS  Google Scholar 

  • Clarkson DT (1966) Effect of aluminum and some other trivalent metal cations on cell division in the root apices of Allium cepa. Ann Bot NS 29: 309–315

    Google Scholar 

  • Costa G, Morel JL (1994) Water relations, gas exchange and amino acid content in Cd-treated lettuce. Plant Physiol Biochem 32: 561–570

    CAS  Google Scholar 

  • Cutler JM, Rains DW (1974) Characterization of cadmium uptake by plant tissue. Plant Physiol 54: 67–71

    Article  PubMed  CAS  Google Scholar 

  • Dean JG, Bosqui FL, Lanouette VH (1972) Removing heavy metals from waste water. Environ Sci Technol 6: 518–522

    Article  CAS  Google Scholar 

  • DeKock PC, Mitchell RL (1957) Uptake of chelated metals by plants. Soil Sci 84: 55–62

    Article  Google Scholar 

  • Förstner U (1979) Metal transfer between solid and aqueous phases. In: Förstner U, Wittman GTW (eds) Metal pollution in the aquatic environment. Springer, Berlin, Heidelberg, New York, pp 197–270

    Google Scholar 

  • Förstner U, Wittmann GTW (eds)(1979) Metal pollution in the aquatic environment. Springer, Berlin, Heidelberg, New York

    Google Scholar 

  • Franke W (1967) Mechanism of foliar penetration of solutions. Annu Rev Plant Physiol 18: 281300

    Google Scholar 

  • Galli U, Schüepp H, Brunold C (1994) Heavy metal binding by mycorrhizal fungi. Physiol Plant 92: 364–368

    Article  CAS  Google Scholar 

  • Greger M (1997) Willow as phytoremediator of heavy metal contaminated soil. Proceedings of the 2nd International Conference on element cycling in the environment, Warsaw, pp 167–172

    Google Scholar 

  • Greger M, Bertell G (1992) Effects of Cat+ and Cd2+ on the carbohydrate metabolism in sugar beet (Beta vulgaris) J Exp Bot 43: 167–173

    CAS  Google Scholar 

  • Greger M, Johansson M (1992) Cadmium effects on leaf transpiration of sugar beet (Beta vulgaris). Physiol Plant 86: 465–473

    Article  CAS  Google Scholar 

  • Greger M, Kautsky L (1993) Use of macrophytes for mapping bioavailable heavy metals in shallow coastal areas, Stockholm, Sweden. Appl Geochem Suppl 2: 37–43

    Google Scholar 

  • Greger M, Landberg T (1995) Cadmium accumulation in Salix in relation to cadmium con-

    Google Scholar 

  • centration in the soil. Report from Vattenfall Utveckling AB 1995/9 (in swedish)

    Google Scholar 

  • Greger M, Lindberg S (1986) Effects of Cd2+ and EDTA on young sugar beets (Beta vulgaris). I. Cd2+ uptake and sugar accumulation. Physiol Plant 66: 69–74

    Article  CAS  Google Scholar 

  • Greger M, Brammer E, Lindberg S, Larsson G., Idestam-Almquist J (1991) Uptake and physiological effects of cadmium in sugar beet (Beta vulgaris) related to mineral provision. J Exp Bot 42: 729–737

    Article  CAS  Google Scholar 

  • Greger M, Tillberg J-E, Johansson M (1992) Aluminum effects on Scenedesmus obtusiusculus

    Google Scholar 

  • with different phosphorus status. I. Mineral uptake. Physiol Plant 84: 193–201

    Google Scholar 

  • Greger M, Johansson M, Stihl A, Hamza K (1993) Foliar uptake of Cd by pea (Pisum sativum)

    Google Scholar 

  • and sugar beet (Beta vulgaris). Physiol Plant 88:563–570

    Google Scholar 

  • Greger M, Kautsky L, Sandberg T (1995) A tentative model of Cd uptake in Potamogeton pectinatus in relation to salinity. Environ Exp Bot 35: 215–225

    Article  CAS  Google Scholar 

  • Haghiri FE (1974) Plant uptake of cadmium as influenced by cation exchange capacity, organic matter, zinc, and soil temperature. J Environ Qual 3: 180–182

    Article  CAS  Google Scholar 

  • Hardiman RT, Jacoby B (1984) Absorption and translocation of Cd in bush beans (Phaseolus vulgaris). Physiol Plant 61: 670–674

    Article  CAS  Google Scholar 

  • Hardiman RT, Jacoby B, Banin A (1984) Factors affecting the distribution of cadmium, copper and lead and their effect upon yield and zinc content in bush beans (Phaseolus vulgaris L.). Plant Soil 81: 17–27

    Article  CAS  Google Scholar 

  • Harmens H, Koevoets PLM, Verkleij JAC, Ernst WHO (1994) The role of low molecular weight organic acids in mechanisms of increased zinc tolerance in Silene vulgaris ( Moench) Garcke. New Phytol 126: 615–621

    Google Scholar 

  • Herren T, Feller U (1994) Transfer of zinc from xylem to phloem in the penduncle of wheat. J Plant Nutr 17: 1587–1598

    Article  CAS  Google Scholar 

  • Herren T, Feller U (1996) Effect of locally increased zinc contents on zinc transport from the flag leaf lamina to the maturing grains of wheat. J Plant Nutr 19: 379–387

    Article  CAS  Google Scholar 

  • Holloway PJ (1982) Structure and histochemistry of plant cuticular membranes: an overview. In:

    Google Scholar 

  • Cutler DF, Alvin KL, Price CE (eds) The plant cuticle. Academic Press, London. pp 1–32 Hooda PS, Alloway BJ (1993) Effects of time and temperature on the bioavailability of Cd and

    Google Scholar 

  • Pb from sludge-amended soils. J Soil Sci 44:97–110

    Google Scholar 

  • Hu S, Tang CH, Wu M (1996) Cadmium accumulation by several seaweeds. Sci Total Environ 187: 65–71

    Article  CAS  Google Scholar 

  • Hunt GM, Baker EA (1982) Developmental and environmental variations in plant epicuticular vaxes: some effects on the penetration of naphtylacetic acid. In: Cutler DF, Alvin KL, Price CE (eds) The plant cuticle. Academic Press, London, pp 279–292

    Google Scholar 

  • Jackson PJ, Unkefer PJ, Delhaize E, Robinson NJ (1990) Mechanisms of trace metal tolerance in plants. In Katterman F (ed) Environmental injury to plants. Academic Press, San Diego, pp 231–258

    Google Scholar 

  • Jarvis SC, Jones LHP, Hopper MJ (1976) Cadmium uptake from solution by plants and its transport from roots to shoots. Plant Soil 44: 179–191

    Article  CAS  Google Scholar 

  • Johanson L-Â (1985) Chromatographic analysis of epicuticular plant waxes. Sver UtsädesförenTidskr 95: 129–136

    Google Scholar 

  • Kabata-Pendias A, Pendias H (1992) Trace elements in soils and plants. CRC Press, Boca Raton, FL

    Google Scholar 

  • Keller P, Deuel H (1957) Kationenaustauschkapazität and Pektingehalt von Pflanzenwurzeln. Z Pflanzenernähr Dung Bodenkd 79: 119–131

    Article  CAS  Google Scholar 

  • King LD (1988) Effect of selected soil properties on cadmium content in tobacco. J Environ Qual 17: 251–255

    Article  CAS  Google Scholar 

  • König N, Baccini P, Ulrich B (1986) The influence of natural organic matter on the transport of metals in soils and soil solutions in an acidic forest soil. Z Pflanzenernaehr Bodenkd 149: 68–82 (in German)

    Article  Google Scholar 

  • Kozuchowski J, Johnson DL (1978) Gaseous emmissions of mercury from an aquatic vascular plant. Nature 274: 468–469

    Article  CAS  Google Scholar 

  • Krämer U, Cotter-Howells JD, Charnock JM, Baker AJM, Smith JAC (1996) Free histidine as a metal chelator in plants that accumulate nickel. Nature 379: 635–639

    Article  Google Scholar 

  • Lagerwerff JV (1971) Uptake of cadmium, lead and zinc by radish from soil and air. Soil Sci 111: 129–133

    Article  CAS  Google Scholar 

  • Lagerwerff JV (1972) Pb, Hg, and Cd as contaminants. In: Mortvedt JJ, Giordano PM, Lindsay

    Google Scholar 

  • WL (eds) Micronutrients in agriculture. Soil Sci Soc Am, Madison, pp 593–636

    Google Scholar 

  • Landberg T, Greger M (1994) Influence of selenium on uptake and toxicity of copper and cadmium in pea (Pisum sativum) and wheat (Triticum aestivum). Physiol Plant 90: 637–644

    Article  CAS  Google Scholar 

  • Landberg T, Greger M (1996) Differences in uptake and tolerance to heavy metals in Salix from unpolluted and polluted areas. Appl Geochem 11: 175–180

    Article  CAS  Google Scholar 

  • Lindberg SE, Meyers TP, Taylor GE Jr, Turner RR, Schroeder WH (1992) Atmosphere–surface exchange of mercury in a forest: results of modeling and gradient approaches. J Geophys Res 97: 2519–2528

    Article  CAS  Google Scholar 

  • Little P (1973) A study of heavy metal contamination of leaf surfaces. Environ Pollut 5:159–172 Little P, Martin MH (1972) A survey of zinc, lead and cadmium in soil and natural vegetation around a smelting complex. Environ Pollut 3: 241–254

    Google Scholar 

  • Lodenius M, Kuusi T, Laaksovirta K, Liukkonen-Lilja H, Piepponen S (1981) Lead, cadmium and mercury contents of fungi in Mikkeli, SE Finland. Ann Bot Fenn 18: 183–186

    Google Scholar 

  • Logan TJ, Chaney RL (1983) Metals. In: Page AL (ed) Utilization of municipal wastewater and sludge on land. University of California, Riverside, CA. pp 235–326

    Google Scholar 

  • Macek T, Kotrba P, Suchova M, Skacel F, Demnerova K, Ruml T (1994) Accumulation of cadmium by hairy-root cultures of Solanum nigrum. Biotechnol Lett 16: 621–624

    Article  CAS  Google Scholar 

  • Maier-Maercker U (1979) “Peristomatal transpiration” and stomatal movements: a controversial view. I. Additional proof of peristomatal transpiration by photography and a comprehensive discussion in the light of recent results. Z Pflanzenphysiol 91:25–43

    Google Scholar 

  • Markert B (1994) Plants as biomonitors–Potential advantages and problems. In: Adriano DC, Chen ZS, Yang SS (eds) Biogeochemistry of trace elements. Science and Technology Letters. Northwood, NY. pp 601–613

    Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic Press, Cambridge

    Google Scholar 

  • Martin HW, Kaplan DI (1998) Temporal changes in cadmium, thallium, and vanadium mobility in soil and phytoavailability under field conditions. Water Air Soil Pollut 101: 399–410

    Article  CAS  Google Scholar 

  • Martin TJ, Juniper EB (1970) The cuticles of plants. Edward Arnolds, Edinburgh

    Google Scholar 

  • Mathys W (1977) The role of malate, oxalate and mustard oil glucosides in the evolution of zincresistance in herbage plants. Physiol Plant 40: 130–136

    Article  CAS  Google Scholar 

  • Mautsoe PJ, Beckett RP (1996) A preliminary study of the factors affecting the kinetics of cadmium uptake by the liverwort Dumortiera hirsuta. S Afr J Bot 62: 332–336

    CAS  Google Scholar 

  • McGrath SP, Sanders JR, Shalaby MH (1988) The effect of soil organic matter levels on soil solution concentrations and extractabilities of manganese, zinc and copper. Geoderma 42: 177–188

    Article  CAS  Google Scholar 

  • Meharg AA (1994) Integrated tolerance mechanisms: constitutive and adaptive plant responses to elevated metal concentrations in the environment. Plant Cell Environ 17: 989–939

    Article  CAS  Google Scholar 

  • Mench M, Morel JL, Cuckert A, Guillet B (1988) Metal binding with root exudates of low molecular weight. J Soil Sci 33: 521–527

    Google Scholar 

  • Mengel K, Kirkby EA (1982) Principles of plant nutrition. International Potash Institute Bern, Switzerland

    Google Scholar 

  • Mérida T, Schönherr J, Schmidt HW (1981) Fine structure of plant cuticles in relation to water permeability: the fine structure of the cuticle of Clivia miniata Reg. leaves. Planta 152: 259267

    Google Scholar 

  • Morel F, McDuff RE, Morgan JJ (1973) Interactions and chemostasis in aquatic chemical systems: role of pH, pE, solubility, and complexation. In Singer PC (ed) Trace metals and metal-organic interactions in natural waters. Ann Arbor Press, Ann Arbor, MI. pp 157–200

    Google Scholar 

  • Munda IM, Hudnik V (1988) The effects of Zn, Mn and Co accumulation on growth and chemical composition of Fucus vesiculosus L. under different temperature and salinity conditions. Mar Ecol 9: 213–225

    Article  CAS  Google Scholar 

  • Muranyi A, Seeling B, Ladewig E, Jungk A (1994) Acidification in the rhizosphere of rape seedlings and in bulk soil by nitrification and ammonium uptake. Z Pflanzenernähr Bodenkd 157: 61–65

    Article  CAS  Google Scholar 

  • Nieboer E, Richardson DHS (1980) The replacement of the nondescript term “heavy metals” by biologically and chemically significant classification of metal ions. Environ Pollut (Series B) 1: 2–26

    Article  Google Scholar 

  • Österäs AH, Ekvall L, Greger, M (1997) Differences in cadmium sensitivity and uptake of Cd of forest trees from different provenances in Sweden. An ash application problem? Proceeding of the 2nd International Conference on Element Cycling in the Environment, Warsaw, pp 97–104

    Google Scholar 

  • Pearson R (1968) Hard and soft acids and bases. HSAB, Part I. Fundamental principles. J Chem Educ 45: 581–587

    Article  CAS  Google Scholar 

  • Puthotä V, Cruz-Ortega R, Johnson J, Ownby J (1991) An ultrastructural study of the inhibition of mucilage reaction in the wheat root cap by aluminium. In Wright RJ, Baligar VC, Murrmann RP (eds) Plant-soil interactions at low pH. Kluwer, Dordrecht, pp 779–787

    Chapter  Google Scholar 

  • Reeves RD, Baker AJM (1998) Metal-accumulating plants. In Ensley BD, Raskin I (eds) Phytoremediation of toxic metals: using plants to clean the environment. Wiley, New York

    Google Scholar 

  • Reeves RD, Brooks RR (1983) Hyperaccumulation of lead and zinc by two metallophytes from mining areas of Central Europe. Environ Pollut 31: 277–285

    Article  CAS  Google Scholar 

  • Römheld V (1991) The role of phytosiderophores in acquisition of iron and other micronutrients in graminaceous species: an ecological approach. Plant Soil 130: 127–134

    Article  Google Scholar 

  • Ross S (1994) Retention, transformation and mobility of toxic metals in soils. In Ross S (ed) Toxic metals in soil-plant systems. Wiley, Chichester

    Google Scholar 

  • Salim R, Al-Subu MM, Douleh A, Khalaf S (1992) Effects on growth and uptake of broad beans (Vicia faba L.) by root and foliar treatments of plants with lead and cadmium. J Environ Sci Health A 27 (7): 1619–1642

    Google Scholar 

  • Salomons W, Förstner U (1984) Metals in the hydrocycle. Springer, Berlin, Heidelberg, New York

    Google Scholar 

  • Schönherr H, Bukovac MJ (1970) Preferential polar pathways in the cuticle and their relationship to ectodesmata. Planta 92: 189–201

    Article  Google Scholar 

  • Siegel AM, Puerner NJ, Speitel TW (1974) Release of volatile mercury from vascular plants. Physiol Plant 32: 174–176

    Article  CAS  Google Scholar 

  • Sposito G (1989) The chemistry of soils. Oxford University Press, Oxford

    Google Scholar 

  • Steffens JC (1990) The heavy metal-binding peptides of plants. Ann Rev Plant Physiol Plant Mol Biol 41: 553–575

    Article  CAS  Google Scholar 

  • Stephan UW, Scholz G (1993) Nicotinamine: mediator of transport of iron and heavy metals in phloem? Physiol Plant 88: 522–529

    Article  CAS  Google Scholar 

  • Svenningsson M, Liljenberg C (1986) Changes in cuticular transpiration rate and cuticular lipids of oat (Avena sativa) seedlings induced by water stress. Physiol Plant 66: 9–14

    Article  CAS  Google Scholar 

  • Temmerman LO, Hoenig M, Scokart PO (1984) Determination of “normal” levels and upper limit values of trace elements in soils. Z Pflanzenernähr Bodenkd 147: 687–694

    Article  Google Scholar 

  • Thursby GB (1984) Root-exudated oxygen in the aquatic angiosperm Ruppia maritima. Mar Ecol Prog Ser 16: 303–305

    Article  Google Scholar 

  • Verloo M, Eeckhout M (1990) Metal species transformations in soil: an analytical approach. Intern J Environ Anal Chem 39: 179–186

    Article  CAS  Google Scholar 

  • Vesely J, Majer V (1994) The effect of pH and atmospheric deposition on concentrations of trace elements in acidified freshwaters: a statistical approach. Water Air Soil Pollut 88: 227–246

    Article  Google Scholar 

  • White MC, Decker AM, Chaney RL (198la) Metal complexation in xylem fluid. I: Chemical composition of tomato and soyabean stem exudate. Plant Physiol 67: 292–300

    Google Scholar 

  • White MC, Baker FD, Chaney RL, Decker AM (1981b) Metal complexation in xylem fluid. II: Theoretical equilibrium model and computational computer program. Plant Physiol 67: 301310

    Google Scholar 

  • Williams DE, Vlamis J, Purkite AH, Corey JE (1980) Trace element accumulation movement, and distribution in the soil profile from massive applications of sewage sludge. Soil Sci 1292: 119–132

    Article  Google Scholar 

  • Wood T, Bormann, FH (1975) Increases in foliar leaching caused by acidification of an artificial mist. Ambio 4: 169–171

    CAS  Google Scholar 

  • Yamada Y, Bukovac MJ, Wittwer SH (1964) Ion binding by surfaces of isolated cuticular membranes. Plant Physiol 39: 978–982

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Greger, M. (1999). Metal Availability and Bioconcentration in Plants. In: Heavy Metal Stress in Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-07745-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-07745-0_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-07747-4

  • Online ISBN: 978-3-662-07745-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics