Plant Mitochondrial Respiration Under the Influence of Heavy Metals

  • R. Lösch


Cell respiration like other metabolic processes is catalysed by many enzymes that require metals as cofactors, whereas higher concentrations of these metals and other non-essential metals inhibit enzyme activity. Enzymes of dissimilation processes are less affected by higher doses of heavy metals than the enzymes of the energy fixation and carbon assimilation pathways (van Assche and Clijsters 1990). This may be one reason why the majority of research on heavy metal physiology is more concentrated on processes of metal exclusion from the symplast and metal sequestration in the vacuole (e.g. Ernst 1969, 1976; Denny and Wilkins 1987; Hall 2002), on metal toxicity effects on photosynthesis (e.g. Vallee and Ulmer 1972; Clijsters and van Assche 1985), and in particular on metal interactions with gene expression (e.g. Tomsett and Thurman 1988; Cobbett 2000; Clemens 2001). Despite progress in knowledge in all these fields, lack of detailed insight into heavy metal interactions with metabolic processes still hinders a complete causal understanding of toxicity and tolerance mechanisms (e.g. Foy et al. 1978a; Jackson et al. 1990; Mukhopadhyay and Sharma 1991; Barcelô and Poschenrieder 1992), and this statement is particularly true for plant respiration.


Heavy Metal Metal Tolerance Citrate Cycle Heavy Metal Detoxification Heavy Metal Species 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson I, Evans HJ (1956) Effect of manganese and certain other metal cations on isocitric dehydrogenase and malic enzyme activities in Phaseolus vulgaris. Plant Physiol 31: 22–28PubMedCrossRefGoogle Scholar
  2. Arazi T, Sunkar R, Kaplan B, Fromm H (1999) A tobacco plasma membrane calmodulin-binding transporter confers Nie+ tolerance and Pb2+ hypersensitivity in transgenic plants. Plant J 20: 171–182PubMedCrossRefGoogle Scholar
  3. Bansal P, Sharma P (2000) Effect of Pb2+ and Cd2+ on respiration and mitochondrial electron transport chain in germinating pea seeds (Pisum sativum). Indian J Environ Ecoplan 3: 249–254Google Scholar
  4. Bansal P, Sharma P, Dhindsa K (2001) Impact of Pb2+ and Cd2+ on activities of hydrolytic enzymes of respiration in germinating pea seeds. Ann Agri-Bio Res 6: 113–122Google Scholar
  5. Bansal P, Sharma P, Goyal V (2002) Impact of lead and cadmium on enzymes of citric acid cycle in germinating pea seeds. Biol Plant 45: 125–127CrossRefGoogle Scholar
  6. Barcels J, Poschenrieder C (1992) Respuestas de las plantas a la contaminaciôn por metales pesados. Suelo Planta 2: 345–361Google Scholar
  7. Barcelb J, Poschenrieder C (2002) Fast root growth responses, root exsudates, and internal detoxification as clues to the mechanisms of aluminium toxicity and resistance: a review. Environ Exp Bot 48: 75–92CrossRefGoogle Scholar
  8. Bitteil JE, Koeppe DE, Miller RJ (1974) Sorption of heavy metal cations by corn mitochondria and the effects on electron and energy transfer reactions. Physiol Plant 30: 226–230CrossRefGoogle Scholar
  9. Brierley GP (1976) The uptake and extrusion of monovalent cations by isolated heart mitochondria. Mol Cell Biochem 10: 41–62PubMedCrossRefGoogle Scholar
  10. Brierley GP (1977) Effects of heavy metals on isolated mitochondria. In: Lee SD (ed) Biochemical effects of environmental pollutants. Ann Arbor Sci, Ann Arbor, pp 397–411Google Scholar
  11. Brierley GP, Knight VA (1967) Ion transport by heart mitochondria. X. The uptake and release of Zn+2 and its relation to the energy-linked accumulation of Mg+2. Biochemistry 6: 3892–3902PubMedCrossRefGoogle Scholar
  12. Brooks RR, Shaw S, Marfil AA (1981) The chemical form and physiological function of nickel in some Iberian Alyssum species. Physiol Plant 51: 167–170CrossRefGoogle Scholar
  13. Cakmak I (2000) Possible roles of zinc in protecting plant cells from damage by reactive oxygen species. New Phytol 146: 185–205CrossRefGoogle Scholar
  14. Chardonnes AN, Koevoets PLM, van Zanten A, Schat H, Verkleij JAS (1999) Properties of enhanced tonoplast zinc transport in naturally selected zinc-tolerant Silene vulgaris. Plant Physiol 120: 779–785CrossRefGoogle Scholar
  15. Cataldo DA, Garland TR, Wildung RE (1983) Cadmium uptake kinetics in intact soybean plants. Plant Physiol 73: 844–848PubMedCrossRefGoogle Scholar
  16. Chappell JB, Cohn M, Greville GD (1963) The accumulation of divalent ions by isolated mitochondria. In: Chance B (ed) Energy-linked functions of mitochondria. Academic, New York, pp 219–231Google Scholar
  17. Chugh LK, Sawhney SK (1996) Effect of cadmium on germination, amylases and rate of respiration of germinating pea seeds. Environ Pollut 92: 1–5PubMedCrossRefGoogle Scholar
  18. Clarkson DT, Hanson JB (1980) The mineral nutrition of higher plants. Annu Rev Plant Physiol 31: 239–298CrossRefGoogle Scholar
  19. Clarkson DT, Lüttge U (1989) Mineral nutrition: divalent cations, transport and compartmentation. Prog Bot 51: 93–112CrossRefGoogle Scholar
  20. Clemens S (2001) Molecular mechanisms of plant metal tolerance and homeostasis. Planta 212: 475486Google Scholar
  21. Clijsters H, van Assche F (1985) Inhibition of photosynthesis by heavy metals. Photosynth Res 7: 31–40CrossRefGoogle Scholar
  22. Cobbett CS (2000) Phytochelatin biosynthesis and function in heavy-metal detoxification. Curr Opin Plant Biol 3: 211–216PubMedGoogle Scholar
  23. Cumming JR, Taylor GJ (1990) Mechanisms of metal tolerance in plants: physiological adaptation for exclusion of metal ions from the cytoplasm. In: Alscher RG, Cumming JR (eds) Stress responses in plants: adaptation and acclimation mechanisms. Wiley-Liss, New York, pp 329356Google Scholar
  24. Cutler JM, Rains DW (1974) Characterization of cadmium uptake by plant tissue. Plant Physiol 54: 67–71PubMedCrossRefGoogle Scholar
  25. Davies KL, Davies MS, Francis D (1995) The effects of zinc on cell viability and on mitochondrial structure in contrasting cultivars of Festuca ru bra L. A rapid test for zinc tolerance. Environ Pollut 88: 109–113Google Scholar
  26. De Filippis LF, Hampp R, Ziegler H (1981) The effects of sublethal concentrations of zinc, cadmium and mercury on Euglena. II. Respiration, photosynthesis and photochemical activities. Arch Microbiol 128: 407–411Google Scholar
  27. Denny HJ, Wilkins DA (1987) Zinc tolerance in Betula spp. II. Microanalytical studies of zinc uptake into root tissues. New Phytol 106: 525–534Google Scholar
  28. Dua A, Sawhney SK (1991) Effect of chromium on activities of hydrolytic enzymes in germinating pea seeds. Environ Exp Bot 31: 133–139CrossRefGoogle Scholar
  29. Earnshaw MJ, Cooke A (1984) The role of cations in the regulation of electron transport. In: Palmer JM (ed) The physiology and biochemistry of plant respiration. Cambridge University Press, Cambridge, pp 177–182Google Scholar
  30. Edjlali M, Calvayrac R (1991) Effects des ions métalliques sur l’intensité respiratoire et sur les capacités catalatiques chez Euglena gracilis Z. C R Acad Sci Paris 312 (I11): 177–182Google Scholar
  31. Eide E, Broderius M, Fett J, Guerinot ML (1996) A novel iron-regulated metal transporter from plants identified by functional expression in yeast. Proc Natl Acad Sci USA 93: 5624–5628PubMedCrossRefGoogle Scholar
  32. Ernst WHO (1969) Zur Physiologie der Schwermetallpflanzen–subzelluläre Speicherungsorte des Zinks. Ber Dtsch Bot Ges 82: 161–164Google Scholar
  33. Ernst WHO (1976) Physiological and biochemical aspects of metal tolerance. In: Mansfield TA (ed) Effects of air pollution on plants. Cambridge University Press, Cambridge, pp 115–133Google Scholar
  34. Ernst WHO (1982) Schwermetallpflanzen. In: Kinzel H (ed) Pflanzenökologie und Mineralstoffwechsel. Ulmer, Stuttgart, pp 472–506Google Scholar
  35. Ernst W, Mathys W, Janiesch P (1975) Physiologische Grundlagen der Schwermetallresistenz–Enzymaktivitäten und organische Säuren. Forschungsberichte des Landes Nordrhein-Westfalen 2496. Westdeutscher Verlag, Opladen, pp 1–50Google Scholar
  36. Ernst WHO, Verkleij JAC, Schat H (1992) Metal tolerance in plants. Acta Bot Neerl 41: 229–248Google Scholar
  37. Fernandes JC, Henriques FS (1991) Biochemical, physiological, and structural effects of excess copper in plants. Bot Rev 57: 246–273CrossRefGoogle Scholar
  38. Fonyo A, Palmieri F, Ritvay J, Quagliariello E (1974) Kinetics and inhibitor sensitivity of the mitochondrial phosphate carrier. In: Azzone GF (ed) Membrane proteins in transport and phosphorylation. North Holland Publ, Amsterdam, pp 283–286Google Scholar
  39. Foy CD, Chaney RL, White MC (1978a) The physiology of metal toxicity in plants. Annu Rev Plant Physiol 29: 511–566CrossRefGoogle Scholar
  40. Foy CD, Chaney RL, White MC (1978b) The physiology of plant tolerance to excess available aluminum and manganese in acid soils. In: Jung GA (ed) Crop tolerance to suboptimal land conditions. Publ 32. Am Soc Agron, Madison, pp 301–328Google Scholar
  41. Glerum DM, Shtanko A, Tzagoloff A (1996) Characterization of COX17, a yeast gene involved in copper metabolism and assembly of cytochrome oxidase. J Biol Chem 271: 14504–14509PubMedCrossRefGoogle Scholar
  42. Godbold DL, Horst WJ, Collins JC, Thurman DA, Marschner H (1984) Accumulation of zinc and organic acids in roots of zinc tolerant and non-tolerant ecotypes of Deschampsia caespitosa. J Plant Physiol 116: 59–69PubMedCrossRefGoogle Scholar
  43. Grill E, Winnacker E-L, Zenk MH (1985) Phytochelatins: the principal heavy-metal complexing peptides of higher plants. Science 230: 674–676PubMedCrossRefGoogle Scholar
  44. Grotz N, Fox T, Connolly E, Park W, Guerinot ML, Eide D (1998) Identification of a family of zinc transporter genes from Arabidopsis that respond to zinc deficiency. Proc Natl Acad Sci USA 95: 7220–7224PubMedCrossRefGoogle Scholar
  45. Gupta UC (1979) Copper in agricultural crops. hi: Nriagu JO (ed) Copper in the environment, part I. Ecological cycling. Wiley, New York, pp 255–288Google Scholar
  46. Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53: 1–11PubMedCrossRefGoogle Scholar
  47. Hanson JB, Malhotra SS, Stoner CD (1965) Action of calcium on corn mitochondria. Plant Physiol 40: 1033–1040PubMedCrossRefGoogle Scholar
  48. Harper FA, Smith SE, Macnair MR (1997) Where is the cost in copper tolerance in Mimulus guttatus? Testing the trade-off hypothesis. Funct Ecol 11: 764–774CrossRefGoogle Scholar
  49. Harrington CF, Roberts DJ, Nickless G (1996) The effect of cadmium, zinc, and copper on the growth, tolerance index, metal uptake, and production of malic acid in two strains of the grass Festuca rubra. Can J Bot 74: 1742–1752CrossRefGoogle Scholar
  50. Himmelblau E, Amasino RM (2000) Delivering copper within plant cells. Curr Opin Plant Biol 3: 205–210Google Scholar
  51. Horio T, Higashi T, Okunuki K (1955) Copper resistance of Mycobacterium tuberculosis avium. II. The influence of copper ion on the respiration of the parent cells and copper-resistant cells. J Biochem (Tokyo) 42: 491–498Google Scholar
  52. Howden R, Goldsbrough PB, Andersen CR, Cobbett CS (1995) Cadmium-sensitive, cadi mutants of Arabidopsis thaliana are phytochelatin deficient. Plant Physiol 107: 1059–1066PubMedCrossRefGoogle Scholar
  53. Huett DO, Menary RC (1979) Aluminium uptake by excised roots of cabbage, lettuce and Kikuyu grass. Aust J Plant Physiol 6: 643–653CrossRefGoogle Scholar
  54. Jackson PJ, Unkefer PJ, Delhaize E, Robinson NJ (1990) Mechanisms of trace metal tolerance in plants. In: Katterman F (ed) Environmental injury to plants. Academic, San Diego, pp 231–255Google Scholar
  55. Jana S, Choudhuri MA (1982) Senescence in submerged aquatic angiosperms: effects of heavy metals. New Phytol 90: 477–484CrossRefGoogle Scholar
  56. Kampfenkel K, Kushnir S, Babiychuk E, Inze D, Vanmontagu M (1995) Molecular characterization of a putative Arabidopsis thaliana copper transporter and its yeast homologue. J Biol Chem 270: 28479–28486PubMedCrossRefGoogle Scholar
  57. Kesseler A, Brand MD (1995) The mechanism of the stimulation of state 4 respiration by cadmium in potato tuber (Solanum tuberosum) mitochondria. Plant Physiol Biochem 33: 519–528Google Scholar
  58. Kinraide TB (1988) Proton extrusion by wheat roots exhibiting severe aluminum toxicity symptoms. Plant Physiol 88: 418–423PubMedCrossRefGoogle Scholar
  59. Kleiner D (1974) The effect of Zn+2 on mitochondria) electron transport. Arch Biochem Biophys 165: 121–125PubMedCrossRefGoogle Scholar
  60. Köhl KI (1995) Ökophysiologische Grundlagen der Sippendifferenzierung bei Armeria maritima (Mill.)Willd.: Evolution von Dürre-, Kochsalz-und Schwermetallresistenz. Dissertation, Heinrich-Heine-Universität, Düsseldorf, GermanyGoogle Scholar
  61. Koeppe DE, Miller RJ (1970) Lead effects on corn mitochondria) respiration. Science 167: 1376–1377PubMedCrossRefGoogle Scholar
  62. Krämer U, Cotter-Howells JD, Charnock JM, Baker AJM, Smith JAC (1996) Free histidine as a metal chelator in plants that accumulate nickel. Nature 379: 635–638CrossRefGoogle Scholar
  63. Krämer U, Pickering IJ, Prince RC, Raskin I, Salt DE (2000) Subcellular localization and speciation of nickel in hyperaccumulator and non-accumulator Thlaspi species. Plant Physiol 122: 1343–1353PubMedCrossRefGoogle Scholar
  64. Krotz RM, Evangelou BP, Wagner GJ (1989) Relationships between cadmium, zinc Cd-peptide and organic acid in tobacco suspension cells. Plant Physiol 91: 780–787PubMedCrossRefGoogle Scholar
  65. Llamas A, Ullrich CI, Sanz A (2000) Cd2+ effects on transmembrane electrical potential difference, respiration and membrane permeability of rice (Oryza sativa L) roots. Plant Soil 219: 21–28CrossRefGoogle Scholar
  66. Lamoreaux RJ, Chaney WR (1978) The effect of cadmium on net photosynthesis, transpiration, and dark respiration of excised silver maple leaves. Physiol Plant 43: 231–236CrossRefGoogle Scholar
  67. Lee KC, Cunningham BA, Paulson GM, Liang GH, Moore RB (1976) Effects of cadmium on respiration rate and activities of several enzymes in soybean seedlings. Physiol Plant 36: 4–6CrossRefGoogle Scholar
  68. Lee J, Reeves RD, Brooks RR, Jaffré T (1977) Isolation and identification of a citrato-complex of nickel from nickel-accumulating plants. Phytochemistry 16: 1503–1505CrossRefGoogle Scholar
  69. Lee J, Reeves RD, Brooks RR, Jaffré T (1978) The relation between nickel and citric acid in some nickel-accumulating plants. Phytochemistry 17: 1033–1035CrossRefGoogle Scholar
  70. Lorimer GH, Miller RJ (1969) The osmotic behavior of corn mitochondria. Plant Physiol 44: 839–844PubMedCrossRefGoogle Scholar
  71. Ma JF (2000) Role of organic acids in detoxification of aluminum in higher plants. Plant Cell Physiol 41: 383–390PubMedCrossRefGoogle Scholar
  72. Macklon AES, Sim A (1976) Cortical cell fluxes and transport to the stele in excised root segments of Allium cepa L. III. Magnesium. Planta 128: 5–9Google Scholar
  73. Macklon AES, Sim A (1987) Cellular cobalt fluxes in roots and transport to the shoots of wheat seedlings. J Exp Bot 38: 1663–1677CrossRefGoogle Scholar
  74. Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press, LondonGoogle Scholar
  75. Mathys W (1975) Enzymes of heavy-metal-resistant and non-resistant populations of Silene cucubalus and their interaction with some heavy metals in vitro and in vivo. Physiol Plant 33: 161–165CrossRefGoogle Scholar
  76. Mathys W (1977) The role of malate, oxalate, and mustard oil glucosides in the evolution of zincresistance in herbage plants. Physiol Plant 40: 130–136CrossRefGoogle Scholar
  77. Mattioni C, Gabbrielli R, Vangronsfeld J, Clijsters H (1997) Nickel and cadmium toxicity and enzymatic activity in Ni-tolerant and non-tolerant populations of Silene italica Pers. J Plant Physiol 150: 173–177CrossRefGoogle Scholar
  78. Mayer AM, Poljakoff-Mayber A (1989) The germination of seeds, 4th edn. Pergamon Press, Oxford Meharg AA (1993) The role of the plasmalemma in metal tolerance in angiosperms. Physiol Plant 88: 191–198Google Scholar
  79. Millard DL, Wiskirch JT, Robertson RN (1964) Ion uptake by plant mitochondria. Proc Natl Acad Sci USA 52: 996–1004PubMedCrossRefGoogle Scholar
  80. Miller RJ, Bittell JE, Koeppe DE (1973) The effect of cadmium on electron and energy transfer reactions in corn mitochondria. Physiol Plant 28: 166–171CrossRefGoogle Scholar
  81. Mocquot B, Vangronsveld J, Clijsters H, Mench M (1996) Copper toxicity in young maize (Zea mays L.) plants: effects on growth, mineral and chlorophyll contents, and enzyme activities. Plant Soil 182: 287–300Google Scholar
  82. Mukhopadhyay MJ, Sharma A (1991) Manganese in cell metabolism of higher plants. Bot Rev 57: 117–149CrossRefGoogle Scholar
  83. Murayama T (1961) Studies on the metabolic pattern of yeast with reference to its copper resistance. Memoirs Ehime Univ Sect II B4: 43–66Google Scholar
  84. Murphy A, Taiz L (1997) Correlation between potassium efflux and coppersensitivity in 10 Arabidopsis ecotypes. New Phytol 136: 211–222CrossRefGoogle Scholar
  85. Ortiz DF, Kreppel L, Speiser DM, Scheel G, McDonald G, Ow DW (1992) Heavy metal tolerance in the fission yeast requires an ATP-binding casette-type vacuolar membrane transporter. EMBO J 11: 3491–3499PubMedGoogle Scholar
  86. Parker DR, Fedler JF, Ahnstrom ZAS, Resketo M (2001) Reevaluating the free-ion activity model of trace metal toxicity towards higher plants: experimental evidence with copper and zinc. Environ Toxicol Chem 20: 899–906PubMedCrossRefGoogle Scholar
  87. Peterson PJ (1969) The distribution of zinc-65 in Agrostis tenuis, Sibth: and A. stolonifera, L. tissues. J Exp Bot 20: 863–875CrossRefGoogle Scholar
  88. Pfeffer PE, Tu SI, Gerasimowicz WV, Canvanaugh JR (1986) In vivo 31P NMR studies of corn root tissue and its uptake of toxic metals. Plant Physiol 80: 77–84Google Scholar
  89. Poulter A, Collin HA, Thurman DA, Hardwick K (1985) The role of the cell wall in the mechanism of lead and zinc tolerance in Anthoxanthum odoratum L. Plant Sci 42: 61–66CrossRefGoogle Scholar
  90. Prebble JN (1981) Mitochondria, chloroplasts, and bacterial membranes. Longman, London Rauser WE (1995) Phytochelatins and related peptides. Structure, biosynthesis, and function. Plant Physiol 109: 1141–1149Google Scholar
  91. Rauser WE (1999) Structure and function of metal chelators produced by plants. Cell Biochem Biophys 31: 19–48PubMedCrossRefGoogle Scholar
  92. Reese RN, Roberts LW (1985) Effects of cadmium on whole cell and mitochondrial respiration in tobacco cell suspension cultures (Nicotiana tabacum L. var. xanthi). J Plant Physiol 120: 123–130CrossRefGoogle Scholar
  93. Reese RN, McCall RD, Roberts LW (1986) Cadmium induced ultrastructural changes in suspension-cultured tobacco cells (Nicotiana tabacum L. var. xanthi). Exp Environ Bot 26: 169–173CrossRefGoogle Scholar
  94. Saier MI-1 (2000) A functional-phylogenetic classification system for transmembrane solute transporters. Microbiol Mol Biol Rev 64: 354–411Google Scholar
  95. Salt DE, Rauser WE (1995) MgATP-dependent transport of phytochelatins across the tonoplast of oat roots. Plant Physiol 107: 1293–1301PubMedGoogle Scholar
  96. Santa Maria GE, Cogliatti DH (1988) Bidirectional Zn-fluxes and compartmentation in wheat seedling roots. J Plant Physiol 132: 312–315CrossRefGoogle Scholar
  97. Scarpa A, Azzi A (1968) Cation binding to submitochondrial particles. Biochim Biophys Acta 150: 473–481PubMedCrossRefGoogle Scholar
  98. Scarpa A, Azzone GF (1968) Ion transport in liver mitochondria. J Biol Chem 243: 5132–5138PubMedGoogle Scholar
  99. Schat H, Kalff MMA (1992) Are phytochelatins involved in differential metal tolerance or do they merely reflect metal-imposed strain? Plant Physiol 99: 1475–1480PubMedCrossRefGoogle Scholar
  100. Schlegel H, Godbold DL, Hüttermann A (1987) Whole plant aspects of heavy metal induced changes in CO2 uptake and water relations of spruce (Picea abies) seedlings. Physiol Plant 69: 265–270CrossRefGoogle Scholar
  101. Scott KM, Hwang KM, Jurkowitz M, Brierley GP (1971) Ion transport by heart mitochondria. XXIII. The effect of lead on mitochondrial reactions. Arch Biochem Biophys 147: 557–567Google Scholar
  102. Silver S (1996) Bacterial resistances to toxic metal ions–a review. Gene 179: 9–19PubMedCrossRefGoogle Scholar
  103. Sirkar S, Amin JV (1974) The manganese toxicity of cotton. Plant Physiol 54: 539–543PubMedCrossRefGoogle Scholar
  104. Sirkar S, Amin JV (1979) Influence of auxins on respiration of manganese toxic cotton plants. Indian J Exp Biol 17: 618–619Google Scholar
  105. Suhayda CG, Haug A (1986) Organic acids reduce aluminum toxicity in maize root membranes. Physiol Plant 68: 189–185CrossRefGoogle Scholar
  106. Thurman DA, Rankin JL (1982) The role of organic acids in zinc tolerance in Deschampsia caespitosa. New Phytol 91: 629–635CrossRefGoogle Scholar
  107. Tolrà RP, Poschenrieder C, Barcelli J (1996) Zinc hyperaccumulation in Thlaspi caerulescens. II. Influence on organic acids. J Plant Nutr 19: 1541–1550Google Scholar
  108. Tomsett AB, Thurman DA (1988) Molecular biology of metal tolerances of plants. Plant Cell Environ 11: 383–394CrossRefGoogle Scholar
  109. Twyman ES (1951) The iron and manganese requirements of plants. New Phytol 50: 210–226CrossRefGoogle Scholar
  110. Tyler DD (1969) Evidence of a phosphate-transporter system in the inner membrane of isolated mitochondria. Biochem J 111: 665–678PubMedGoogle Scholar
  111. Tzagoloff A (1982) Mitochondria. Plenum Press, New YorkGoogle Scholar
  112. Vallee BL, Ulmer DD (1972) Biochemical effects of mercury, cadmium, and lead. Annu Rev Biochem 41: 91–128PubMedCrossRefGoogle Scholar
  113. Van Assche F, Clijsters H (1990) Effects of metals on enzyme activity in plants. Plant Cell Environ 13: 195–206CrossRefGoogle Scholar
  114. Van der Werf A, Raaimakers D, Poot P, Lambers H (1991) Evidence for a significant contribution by peroxidase-mediated 02 uptake to root respiration of Brachypodium pinnatum. Planta 183: 347–352CrossRefGoogle Scholar
  115. Verkleij JAC, Koevoets PLM, Blakekalff MMA, Chardonnens AN (1998) Evidence for an important role of the tonoplast in the mechanism of naturally selected zinc tolerance in Silene vulgaris. J Plant Physiol 153: 188–191CrossRefGoogle Scholar
  116. Vögeli-Lange R, Wagner GJ (1990) Subcellular localization of cadmium and cadmium-binding peptides in tobacco leaves. Plant Physiol 92: 1066–1093CrossRefGoogle Scholar
  117. Wagatsuma T (1983) Effect of non-metabolic conditions on the uptake of aluminum by plant roots. Soil Sci Plant Nutr 29: 323–333CrossRefGoogle Scholar
  118. Wang J, Evangelou BP, Nielsen MT, Wagner GJ (1992) Computer simulated evaluation of possible mechanisms for sequestring metal ion activity in plant vacuoles. II. Zinc. Plant Physiol 99: 621626Google Scholar
  119. Webster EA, Gadd GM (1996) Stimulation of respiration in Ulva lactuca by high concentrations of cadmium and zinc—evidence for an alternative respiratory pathway. Environ Toxicol Water Qual 11: 7–12CrossRefGoogle Scholar
  120. Weigel HJ, Jäger HJ (1980) Der Einfluß von Schwermetallen auf Wachstum und Stoffwechsel von Buschbohnen. Angew Bot 54: 195–205Google Scholar
  121. Weinberg JM, Harding PG, Humes HD (1982) Mitochondrial bioenergetics during the initiation of mercuric chloride induced renal injury. J Biol Chem 257: 60–74PubMedGoogle Scholar
  122. Weinstein LH, Robbins WR (1955) The effect of different iron and manganese nutrient levels on the catalase and cytochrome oxidase activities of green and albino sunflower leaf tissues. Plant Physiol 30: 27–32PubMedCrossRefGoogle Scholar
  123. Woolhouse HW (1983) Toxicity and tolerance in the response of plants to metals. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Physiological plant ecology II. Responses to the chemical and biological environment. Encyclopedia of plant physiology. New series 12 C. Springer, Berlin Heidelberg New York, pp 245–300Google Scholar
  124. Wu L, Antonovics J (1978) Zinc and copper tolerance of Agrostis stolonifera L. in tissue culture. Am J Bot 65: 268–271CrossRefGoogle Scholar
  125. Wu L, Thurman DA, Bradshaw AD (1975) The uptake of copper and its effect upon respiratory processes of roots of copper-tolerant and non-tolerant clones of Agrostis stolonifera. New Phytol 75: 225–229CrossRefGoogle Scholar
  126. Zaitseva MG (1978) The role of cation transport in regulation of the activity of plant mitochondria. In: Ducet G, Lance C (eds) Plant mitochondria. Elsevier/North-Holland Biomedical Press, Amsterdam, pp 183–189Google Scholar
  127. Zenk MH (1996) Heavy metal detoxification in higher plants–a review. Gene 179: 21–30PubMedCrossRefGoogle Scholar
  128. Zhang G, Taylor GJ (1989) Kinetics of aluminum uptake by excised roots of aluminum-tolerant and aluminum-sensitive cultivars of Triticum aestivum L. Plant Physiol 91: 1094–1099PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • R. Lösch
    • 1
  1. 1.Abt. GeobotanikH. Heine-UniversitätDüsseldorfGermany

Personalised recommendations