Skip to main content

Experimental Characterisation of Metal Tolerance

  • Chapter
Heavy Metal Stress in Plants

Abstract

The capacity of some plants to survive on soils that contain high concentrations of certain (heavy) metals has fascinated ecologists for decades. Much work (reviewed by Antonovics et al. 1971; Ernst 1974; Woolhouse 1983; Baker 1987; Baker and Walker 1989, 1990; Schat and Ten Bookum 1992a; Macnair 1993) has been dedicated to find differences in plant metal tolerance and decipher the underlying physiological and genetic basis for these differences. The topic has its applied aspects as well. Detrimental effects of high aluminium concentration on crop production prompted the screening for aluminium tolerance in commercially important germplasms (Aniol and Gustafson 1990).*

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aniol A (1984) Induction of aluminium tolerance in wheat seedlings by low doses of aluminium in the nutrient solution. Plant Physiol 75: 551–555

    Article  Google Scholar 

  • Aniol A, Gustafson JP (1990) Genetics of tolerance in agronomic plants. In Shaw AJ (ed) Heavy metal tolerance in plants: evolutionary aspects. CRC Press, Boca Raton, pp 255–267

    Google Scholar 

  • Antonovics J, Bradshaw AD, Turner RG (1971) Heavy metal tolerance in plants. Adv Ecol Res 7: 1–85

    Article  Google Scholar 

  • Baier AC, Somers DJ, Gustafson JP (1995) Aluminium tolerance in wheat: correlating hydroponic evaluations with field and soil performance. Plant Breeding 114: 291–296

    Article  CAS  Google Scholar 

  • Baker AIM (1978) Ecophysiological aspects of zinc tolerance in Silene maritima With. New Phytol 80: 635–642

    Article  CAS  Google Scholar 

  • Baker AJM (1987) Metal tolerance. New Phytol 106 [Suppl]: 93–111

    Article  CAS  Google Scholar 

  • Baker AJM, Walker PI (1989) Physiological responses of plants to heavy metals and the quantification of tolerance and toxicity. Chem Spec Bioavailab 1: 9–17

    Google Scholar 

  • Baker AJM, Walker PI (1990) Ecophysiology of metal uptake by tolerant plants. In: Shaw AJ (ed) Heavy metal tolerance in plants: evolutionary aspects. CRC Press, Boca Raton, pp 155–177

    Google Scholar 

  • Baker AJM, Brooks RR, Pease AJ, Malaisse F (1983) Studies on copper and cobalt tolerance in three closely related taxa within the genus Silene L (Caryophyllaceae) from Zaïre. Plant Soil 73: 377–385

    Article  CAS  Google Scholar 

  • Baker AJM, Reeves RD, Hajar ASM (1994) Heavy metal accumulation and tolerance in British populations of the metallophyte Thlaspi caerulescens J. and C. Presl. (Brassicaceae). New Phytol 127: 61–68

    Article  CAS  Google Scholar 

  • Bannister P, Woodman RF (1992) The influence of tolerance indices and growth on metal tolerance of pasture legumes and serpentine plants. In: Baker AJM, Proctor J, Reeves RD (eds) The vegetation of ultramafic (serpentine) soils. Intercept, Andover, pp 375–390

    Google Scholar 

  • Baumeister W, Burghardt H (1956) Über den Einfluß des Zinks bei Silene inflata Smith. Ber Deutsch Bot Ges 69: 161–168

    CAS  Google Scholar 

  • Baumeister W, Ernst W (1978) Mineralstoffe und Pflanzenwachstum, 3rd edn. Fischer, Stuttgart

    Google Scholar 

  • Bernal MP, McGrath SP (1994) Effects of pH and heavy metal concentrations in solution culture on the proton release, growth and elemental composition of Alyssum murale and Raphanus sativus L. Plant Soil 166: 83–92

    Article  CAS  Google Scholar 

  • Bernal MP, McGrath SP, Miller AJ, Baker AJM (1994) Comparison of the chemical changes in the rhizosphere of the nickel hyperaccumulator Alyssum murale with the non-accumulator Raphanus sativus. Plant Soil 164: 251–259

    Article  CAS  Google Scholar 

  • Bert V, Macnair MR, de Laguerie P, Saumitou-Laprade P, Petit D (2000) Zinc tolerance and accumulation in metallicolous and nonmetallicolous populations of Arabidopsis hallen (Brassicaceae). New Phytol 146: 225–233

    Article  CAS  Google Scholar 

  • Bert V, Bonnin I, Saumitou-Laprade P, de Laguerie P, Petit D (2002) Do Arabidopsis hallen from nonmetallicolous populations accumulate zinc and cadmium more effectively than those from metallicolous populations? New Phytol 155: 47–57

    Article  CAS  Google Scholar 

  • Blarney FPC, Edemeades DC, Wheeler DM (1992) Empirical models to approximate the calcium and magnesium ameliorative effects and genetic differences in aluminium tolerance in wheat. Plant Soil 144: 281–287

    Article  Google Scholar 

  • Bradshaw AD, McNeilly T (1981) Evolution and pollution. Studies in biology 130. Arnold, London

    Google Scholar 

  • Brown MT, Wilkins DA (1985) Zinc tolerance in Betula. New Phytol 99: 91–100

    Article  CAS  Google Scholar 

  • Brummer GW, Gerth J, Herms U (1986) Heavy metal species, mobility and availability in soils. Z Pflanzenernähr Bodenkd 149: 382–398

    Article  Google Scholar 

  • Chaney RL, Bell PF (1987) Complexity of iron nutrition: lessons for plant-soil interaction research. J Plant Nutr 10: 963–994

    Article  CAS  Google Scholar 

  • Crump KS (1979) Dose response problems in carcinogenesis. Biometrics 35: 157–167

    Article  PubMed  CAS  Google Scholar 

  • Cox RM, Hutchinson TC (1979) Metal co-tolerance in the grass Deschampsia cespitosa. Nature 279: 231–233

    Article  CAS  Google Scholar 

  • Davis FT, Puryear JD, Newton RJ, Egilla TN, Grossi JAS (2001) Mycorrhizal fungi enhance accumulation and tolerance of chromium in sunflower (Helianthus annuus). J Plant Physiol 158: 777–786

    Article  Google Scholar 

  • Dall’Agnol M, Bouton JH, Parrott WA (1996) Screening methods to develop alfalfa germplasms tolerant of acid, aluminum toxic soils. Crop Sci 36: 64–70

    Article  Google Scholar 

  • De Koe T, Geldmeyer K, Jaques NMM (1992) Measuring maximum root growth instead of longest root elongation in metal tolerance tests for grasses (Agrostis capillaris, Agrostis delicatula and Agrostis castellana). Plant Soil 144: 305–308

    Article  Google Scholar 

  • Denny HJ, Wilkins DA (1987) Zinc tolerance in Betula ssp. I. Effect of external concentration of zinc on growth and uptake. New Phytol 106: 517–524

    CAS  Google Scholar 

  • Dilworth MJ, Howieson JG, Reeve WG, Tiwari RP, Glenn AR (2001) Acid tolerance in legume root nodule bacteria and selecting for it. Aust J Exp Agric 41: 435–446

    Article  CAS  Google Scholar 

  • Dominguez-Solis JR, Gutierrze-Alcala G, Romero LC, Gotor C (2001) The cytosolic Oacetylserine(thiol)lyase gene is regulated by heavy metals and can function in cadmium tolerance. J Biol Chem 276: 9297–9302

    Article  PubMed  CAS  Google Scholar 

  • Dueck TA, Wolting HG, Moet DR, Pasman FJM (1987) Growth and reproduction of Silene cucubalus Wib. intermittently exposed to low concentrations of air pollutants, zinc and copper. New Phytol 105: 633–645

    Article  CAS  Google Scholar 

  • Ebbs SD, Kochian LV (1997) Toxicity of zinc and copper to Brassica species: implications for phytoremediation. J Environ Qual 26: 776–781

    Article  CAS  Google Scholar 

  • Ebbs S, Lau I, Ahner B, Kochian L (2002) Phytochelatin synthesis is not responsible for Cd tolerance in the Zn/Cd hyperaccumulator Thlaspi caerulescens (J. and C. Presl). Planta 214: 635–640

    Article  PubMed  CAS  Google Scholar 

  • Ernst W (1965) Über den Einfluss des Zinks auf die Keimung von Schwermetallpflanzen und auf die Entwicklung der Schwermetallpflanzengesellschaft. Ber Deutsch Bot Ges 78: 205–212

    Google Scholar 

  • Ernst W (1968) Das Violetum calaminariae westfalicum, eine Schwermetallpflanzengesellschaft bei Blankenrode in Westfalen. Mitt Florist-Soz Arbeitsgem NF 13: 263–268

    Google Scholar 

  • Ernst W (1972a) Schwermetallresistenz und Mineralstoffhaushalt. Forschungsberichte des Landes NRW no 2251, Westdeutscher Verlag, Opladen

    Google Scholar 

  • Ernst W (1972b) Ecophysiological studies on heavy metal plants in south central Africa. Kirkia 8: 125–145

    Google Scholar 

  • Ernst W (1974) Schwermetallvegetation der Erde. Fischer, Stuttgart

    Google Scholar 

  • Ernst W (1976) Ökologische Grenze zwischen Violetum calaminariae und Gentiano-Koelerietum. Ber Deutsch Bot Ges 89: 381–390

    CAS  Google Scholar 

  • Fairbrother A, Landes WG, Dominques S, Shiroyama T, Buchholz P, Roze MJ, Matthews GB (1998) A novel nonmetric multivariate approach to the evaluation of biomarkers in field studies. Ecotoxicology 7: 1–10

    Article  CAS  Google Scholar 

  • Forbes VE, Forbes TL (1994) Ecotoxicology in theory and practice. Chapmann and Hall, London

    Google Scholar 

  • Gabbrielli R, Mattioni C, Vergnano O (1991) Accumulation mechanisms and heavy metal tolerance of a nickel hyperaccumulator. J Plant Nutr 14: 1067–1080

    Article  CAS  Google Scholar 

  • Gries B (1966) Zellphysiologische Untersuchungen über die Zinkresistenz bei Galmeiökotypen and Normalformen von Silene cucubalus Wib. Flora B 156: 271–290

    CAS  Google Scholar 

  • Grill E, Winnacker EL, Zenk MH (1987) Phytochelatins, a class of heavy-metal-binding peptides from plants are functionally analogous to metallothioneins. PNAS 84: 439–443

    Article  PubMed  CAS  Google Scholar 

  • Hagemeyer J, Lohrie K (1995) Distribution of Cd and Zn in annual xylem rings of young spruce trees (Picea abies (L.) Karst.) grown in contaminated soil. Trees 9: 195–199

    Google Scholar 

  • Hagemeyer J, Heppel T, Breckle S-W (1994) Effects of Cd and Zn on the development of annual xylem rings of young Norway spruce (Picea abies) plants. Trees 8: 223–227

    Article  Google Scholar 

  • Harmens H, Gusmao NGCPB, den Hartog PR, Verkleij JAC, Ernst WHO (1993a) Uptake and transport of zinc in zinc-sensitive and zinc-tolerant Silene vulgaris. J Plant Physiol 141: 309–315

    Article  CAS  Google Scholar 

  • Harmens H, den Hartog PR, Ten Bookum WM, Verkleij JAC (1993b) Increased zinc tolerance in Silene vulgaris (Moench) Garcke is not due to increased production of phytochelatins. Plant Physiol 103: 1305–1309

    PubMed  CAS  Google Scholar 

  • Harper FA, Smith SE, Macnair MR (1998) Can an increased copper requirement in copper tolerant Mimulus guttatus explain the cost of tolerance? II. Reproductive phase. New Phytol 140: 637–654

    Article  CAS  Google Scholar 

  • Harrington CF, Roberts DJ, Nickless G (1996) The effect of cadmium, zinc and copper on the growth, tolerance index, metal uptake and production of malic acid in two strains of the grass Festuca rubra. Can J Bot 74: 1742–1752

    Article  CAS  Google Scholar 

  • Hickey CW, Blaise C, Costan G (1991) Microtesting appraisal of ATP and cell recovery toxicity end points after acute exposure of Selenastrum capricornutum to selected chemicals. Environ Toxicol Water Qual 6: 383–403

    Article  CAS  Google Scholar 

  • Homer JR, Cotton R, Evans EH (1980) Whole leaf fluorescence as a technique for measurement of tolerance of plants to heavy metals. Oecologia 45: 88–89

    Article  Google Scholar 

  • Homer FA, Morrison RS, Brooks RR, Clemens J, Reeves RD (1991) Comparative studies of nickel, cobalt, and copper uptake by some nickel hyperaccumulators of the genus Alyssum. Plant Soil 138: 195–205

    Article  CAS  Google Scholar 

  • Huggett RJ, Kimerle RA, Mehrle PM, Bergman JR (eds) (1992) Biochemical, physiological and histological markers of anthropogenic stress. Lewis Publ, Boca Raton

    Google Scholar 

  • Humphrey MO, Nicholls MK (1984) Relationships between tolerance to heavy metals in Agrostis capillaris L. (A. tenuis Sibth.). New Phytol 98: 177–190

    Article  Google Scholar 

  • Ibekwe AM, Angle IS, Chaney RL, Van Berkum P (1998) Zinc and cadmium effects on rhizobia and white clover using chelator-buffered nutrient solution. Soil Sci Soc Am J 62: 204–211

    Article  CAS  Google Scholar 

  • Johnson JP Jr, Carver BF, Baligar VC (1997a) Expression of aluminum tolerance transferred from atlas 66 to hard winter wheat. Crop Sci 37: 103–108

    Article  CAS  Google Scholar 

  • Johnson JP Jr, Carver BF, Baligar VC (1997b) Productivity in Great Plains acid soil of wheat genotypes selected for aluminium tolerance. Plant Soil 188: 101–106

    Article  CAS  Google Scholar 

  • Kahle H (1993) Response of roots of trees to heavy metals. Exp Environ Bot 33: 99–119

    Article  Google Scholar 

  • Keltjens WG, Vanbeusichem ML (1998) Phytochelatins as biomarkers for heavy metals stress in maize (Zea mays L.) and wheat (Triticum aestivum L.)—combined effects of copper and cadmium. Plant Soil 203: 119–129

    Article  CAS  Google Scholar 

  • Köhl K. (1996) Population-specific traits and their implication for the evolution of a drought-adapted ecotype in Armeria maritima. Bot Acta 109: 206–215

    Google Scholar 

  • Köhl KI (1997) Do Armeria maritima (Mill.)Willd. ecotypes from metalliferous soils and non-metalliferous soils differ in growth response under Zn stress? A comparison by a new artificial soil method. J Exp Bot 48: 1959–1967

    Google Scholar 

  • Köhl KI, Harper FA, Baker AJM, Smith JAC (1997) Defining a metal-hyperaccumulator plant: the relationship between metal uptake, allocation and tolerance. Plant Physiol 114 [Suppl]: 124

    Google Scholar 

  • Krämer U, Cotter-Howells JD, Charnock JM, Baker AJM, Smith JAC (1996) Free histidine as a metal chelator in plants that accumulate nickel. Nature 379: 635–638

    Article  Google Scholar 

  • Lagriffoul A, Mocquot B, Mench M, Vangronsveld J (1998) Cadmium toxicity effects on growth, minerals and chlorophyll contents and activities of stress related enzymes in young maize plants (Zea mays L.). Plant Soil 200: 241–250

    Article  CAS  Google Scholar 

  • Lefèbvre C (1975) Evolutionary problems in heavy metal tolerant Armeria maritima. International conference on heavy metals in the environment. Toronto, Ontario, pp 155–168

    Google Scholar 

  • Lewis S, May S, Donkin ME, Depledge MH (1998) The influence of copper and heatshock on the physiology and cellular stress response of Enteromorpha intestinalis. Mar Environ Res 46: 421–424

    Article  CAS  Google Scholar 

  • Lewis S, Handy RD, Cordi B, Billinghurst Z, Deplege MH (1999) Stress proteins (HSP’s): methods of detection and their use as an environmental biomarker. Ecotoxicology 8: 351–368

    Article  CAS  Google Scholar 

  • Liu H, Heckman JR, Murphy JA (1996) Screening fine fescues for aluminum tolerance. J Plant Nutr 19: 677–688

    Article  CAS  Google Scholar 

  • Lu CM, Chau CW, Zhang JH (2000) Acute toxicity of excess mercury on the photosynthetic performance of cyanobacterium, S. platensis—assessment by chlorophyll fluorescence analysis. Chemosphere 41: 191–196

    Article  PubMed  CAS  Google Scholar 

  • MacFarlane GR (2002) Leaf biochemical parameters in Avicennia marina (Forsk.) Vierh. as potential biomarkers of heavy metal stress in estuarine ecosystems. Mar Pollut Bull 44: 244–256

    Article  PubMed  CAS  Google Scholar 

  • Macnair MR (1983) The genetic control of copper tolerance in the yellow monkey flower Mimulus guttatus. Heredity 50: 283–293

    Article  CAS  Google Scholar 

  • Macnair MR (1990) The genetics of metal tolerance in natural populations. In: Shaw AJ (ed) Heavy metal tolerance in plants: evolutionary aspects. CRC Press, Boca Raton, pp 235–253

    Google Scholar 

  • Macnair MR (1993) Tansley review no 49. The genetics of metal tolerance in vascular plants. New Phytol 124: 541–559

    Article  CAS  Google Scholar 

  • Macnair MR (2002) Within and between population genetic variation for zinc accumulation in Arabidopsis halleri. New Phytol 155: 59–66

    Article  CAS  Google Scholar 

  • Macnair MR, Bert V, Huitson SB, Saumitou-Laprade P, Petit D (1999) Zinc tolerance and hyperaccumulation are genetically independent characters. Proc R Soc Lond Ser B Biol Sci 266: 2175–2179

    Article  CAS  Google Scholar 

  • Mathys W (1973) Vergleichende Untersuchungen der Zinkaufnahme von resistenten and sensitiven Populationen von Agrostis tenuis Sibth. Flora 162: 492–499

    CAS  Google Scholar 

  • McCallum CM, Cornai L, Greene EA, Henikoff S (2000) Targeted screening for induced mutations. Nat Biotechnol 18: 455–457

    Article  PubMed  CAS  Google Scholar 

  • McGrath SP, Shen ZG, Zhao FJ (1997) Heavy metal uptake and chemical changes in the rhizosphere of Thlaspi caerulescens and Thlaspi ochroleucum grown in contaminated soils. Plant Soil 188: 153–159

    Article  CAS  Google Scholar 

  • McGrath SP, Zhao FJ, Lombi E (2001) Plant and rhizosphere processes involved in phytoremediation of metal-contaminated soils. Plant Soil 232: 207–214

    Article  CAS  Google Scholar 

  • Mead R, Curnow RN, Hasted AM (1993) Statistical methods in agriculture and experimental biology, 2nd edn. Chapman and Hall, London

    Google Scholar 

  • Meerts P, van Isacker N (1997) Heavy metal tolerance and accumulation in the metallicolous and non-metallicolous populations of Thlaspi caerulescens from continental Europe. Plant Ecol 133: 121–131

    Article  Google Scholar 

  • Metwally AI, Mashhady AS, Falatah AM, Reda M (1993) Effect of pH on Zn adsorption and solubility in different clays and soils. Z Pflanzenernähr Bodenkd 156: 131–135

    Article  CAS  Google Scholar 

  • Murphy A, Taiz L (1995a) A new vertical mesh transfer technique for metal-tolerance studies in Arabidopsis. Plant Physiol 108: 29–38

    PubMed  CAS  Google Scholar 

  • Murphy A, Taiz L (1995b) Comparison of metallothionein gene expression and nonprotein thiols in ten Arabidopsis ecotypes. Plant Physiol 109: 945–954

    Article  PubMed  CAS  Google Scholar 

  • Nash TH III (1990) Metal tolerance in lichens. In: Shaw AJ (ed) Heavy metal tolerance in plants: evolutionary aspects. CRC Press, Boca Raton, pp 119–131

    Google Scholar 

  • Nicholls MK, McNeilly T (1979) Sensitivity of rooting and tolerance to copper in Agrostis tenuis Sibth. New Phytol 83: 653–664

    Article  CAS  Google Scholar 

  • Outridge PM, Hutchinson TC (1991) Induction of cadmium tolerance by acclimation transferred between ramets of the clonal fern Salvina minima Baker. New Phytol 117: 597–605

    Article  CAS  Google Scholar 

  • Ouzounidou G (1994) Copper-induced changes on growth, metal content and photosynthetic function of Alyssum montanum L. plants. Environ Exp Bot 34: 165–172

    Article  CAS  Google Scholar 

  • Parker DR (1995) Root growth analysis: an underutilised approach to understanding aluminium rhizotoxicity. Plant Soil 171: 151–157

    Article  CAS  Google Scholar 

  • Parker DR, Norvell WA, Chaney RL (1995) GEOCHEM-PC—a chemical speciation program for IBM and compatible personal computers. In: Loeppert RH, Schwab P, Goldberg S (eds) Chemical equilibrium and reaction models. SSSA special publication 42. SSA, Madison, WI

    Google Scholar 

  • Patra J, Lenka M, Panda BB (1994) Tolerance and co-tolerance of the grass Chloris barbata Sw to mercury, cadmium and zinc. New Phytol 128: 165–171

    Article  CAS  Google Scholar 

  • Pollard AJ, Baker AJM (1996) Quantitative genetics of zinc hyperaccumulation in Thlaspi caerulescens. New Phytol 132: 113–118

    Article  CAS  Google Scholar 

  • Raskin I, Ensley BD (2000) Phytoremediation of toxic metals. Using plants to clean up the environment. Wiley, New York

    Google Scholar 

  • Rivera-Becerril F, Calantzis C, Turnau K, Caussanel JP, Belimov AA, Gianinazzi S, Strasser RJ, Gianinazzi-Pearson V (2002) Cadmium accumulation and buffering of cadmium-induced stress by arbuscular mycorrhiza in three Pisum sativum L. genotypes. J Exp Bot 53: 1177–1185

    Article  PubMed  CAS  Google Scholar 

  • Repp G (1963) Die Kupferresistenz des Protoplasmas höherer Pflanzen der Kupfererzböden. Protoplasma 57: 643–659

    Article  CAS  Google Scholar 

  • Rorison LH, Robinson D (1986) Mineral nutrition. In: Moore PD (ed) Methods in plant ecology, 2nd edn. Blackwell, Oxford, pp 145–211

    Google Scholar 

  • Salsburg DS (1986) Statistics for toxicologists. Dekker, New York

    Google Scholar 

  • Schat H, Kalff MMA (1992) Are phytochelatins involved in differential metal tolerance or do they merely reflect metal-imposed strain? Plant Physiol 99: 1475–1480

    Article  PubMed  CAS  Google Scholar 

  • Schat H, Ten Bookum WM (1992a) Metal-specificity of metal tolerance syndromes in higher plants. In: Baker AJM, Proctor J, Reeves RD (eds) The vegetation of ultramafic (serpentine) soils. Intercept, Andover, pp 337–351

    Google Scholar 

  • Schat H, Ten Bookum WM (1992b) Genetic control of copper tolerance in Silene vulgaris. Heredity 68: 219–229

    Article  CAS  Google Scholar 

  • Schat H, Vooijs R (1997) Multiple tolerance and co-tolerance to heavy metals in Silene vulgaris: a co-segregation analysis. New Phytol 136: 489–496

    Article  CAS  Google Scholar 

  • Schat H, Vooijs R, Kuiper E (1996) Identical major gene loci for heavy metal tolerance that have independently evolved in different local populations and subspecies of Silene vulgaris. Evolution 50: 1888–1895

    Article  CAS  Google Scholar 

  • Scheirer SM (1993) MANOVA: multiple response variables and multispecies interactions. In: Scheirer SM, Gurevitch J (eds) Dosing and analysis of ecological experiments. Chapman and Hall, London, pp 94–112

    Google Scholar 

  • Searcy KB, Mulcahy DL (1985) Pollen selection and the gametophytic expression on metal tolerance in Silene dioica (Caryophyllaceae) and Mimulus guttatus (Scrophulariaceae). Am J Bot 72: 1700–1706

    Article  Google Scholar 

  • Simon E, Lefèbvre C (1977) Aspects de la tolerance aux metaux lourds chez Agrostis tenuis Sibth., Festuca ovina L. et Armeria maritima (Mill.)Willd. Oecol Plant 12: 95–110

    CAS  Google Scholar 

  • Sneller FEC, Noordover ECM, Ten Bookum WM, Schat H, Bedaux JJM, Verkleij JAC (1999a) Quantitative relationship between phytochelatin accumulation and growth inhibition during prolonged exposure to cadmium in Silene vulgaris. Ecotoxicology 8: 167–175

    Article  CAS  Google Scholar 

  • Sneller FEC, van Heerwaarden LM, Kraaijeveld-Smit FIL, Ten Bookum WM, Koevoets PLM, Schat H, Verkleij JAC (1999b) Toxicity of arsenate in Silene vulgaris, accumulation and degradation of arsenate-induced phytochelatins. New Phytol 1444: 223–232

    Article  Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry. The principles and practice of statistics in biological research, 3rd edn. Freeman, San Francisco

    Google Scholar 

  • Steffens JC (1990) The heavy-metal binding peptides of plants. Annu Rev Plant Physiol Plant Mol Biol 41: 553–575

    Article  CAS  Google Scholar 

  • Sunkar R, Kaplan B, Bouche N, Arazi T, Dolev D, Talke IN, Maathuis FJM, Sanders D, Bouchez D, Fromm H (2000) Expression of a truncated tobacco NtCBP4 channel in transgenic plants and disruption of the homologous Arabidopsis CNGC1 gene confer Pb2+ tolerance. Plant J 24: 533–542

    Article  PubMed  CAS  Google Scholar 

  • Szalontai B, Horvath LI, Debreczeny M, Droppa M, Horvath G (1999) Molecular rearrangements of thylakoids after heavy metal poisoning, as seen by Fourier transform infrared (FTIR) and electron spin resonance (ESR) spectroscopy. Photosynth Res 61: 241–252

    Article  CAS  Google Scholar 

  • Tilstone GH, Macnair MR (1997) Nickel tolerance and copper-nickel co-tolerance in Mimulus guttatus from copper mine and serpentine habitats. Plant Soil 191: 173–180

    Article  CAS  Google Scholar 

  • Van Frenckell-Insam BAK, Hutchinson TC (1993) Nickel and zinc tolerance and co-tolerance in populations of Deschampsia cespitosa (L.) Beauv. subject to artificial selection. New Phytol 125: 547–553

    Article  Google Scholar 

  • Van Hoof NALM, Hassinen VH, Hakvoort HWJ, Ballintijn KBF, Schat H, Verkleij JAC, Ernst WHO, Karenlampi SO, Tervahouta AI (2001) Enhanced copper tolerance in Silene vulgaris (Moench) Garcke populations from copper mines is associated with increased transcript levels of a 2b-type metallothionein gene. Plant Physiol 126: 1519–1526

    Article  PubMed  Google Scholar 

  • Verkleij JAC, Schat H (1990) Mechanisms of metal tolerance in higher plants. In: Shaw AJ (ed) Heavy metal tolerance in plants: evolutionary aspects. CRC Press, Boca Raton, pp 179–193

    Google Scholar 

  • Verdoni N, Mench M, Cassagne C, Bessoule JJ (2001) Fatty acid composition of tomato leaves as biomarkers of metal-contaminated soils. Environ Toxicol Chem 20: 382–388

    Article  PubMed  CAS  Google Scholar 

  • Walley KA, Khan MSI, Bradshaw AD (1974) The potential for evolution of heavy metal tolerance in plants. I. Copper and zinc tolerance in Agrostis tenuis. Heredity 32: 309–319

    Article  Google Scholar 

  • Wells IM, Brown DH (1995) Cadmium tolerance in a metal-contaminated population of the grassland moss Rhytidiadelphus squarrosus. Ann Bot 75: 21–29

    Article  PubMed  CAS  Google Scholar 

  • Westerbergh A (1994) Serpentine and non-serpentine Silene dioica plants do not differ in nickel tolerance. Plant Soil 167: 297–303

    Article  CAS  Google Scholar 

  • Whiting SN, Leake JR, McGrath S, Baker AJM (2000) Positive responses to Zn and Cd by roots of the Zn and Cd hyperaccumulator Thlaspi caerulescens. New Phytol 145: 199–210

    Article  CAS  Google Scholar 

  • Wilkins DA (1957) A technique for the measurement of lead tolerance in plants. Nature 4575: 37–38

    Article  Google Scholar 

  • Wilkins DA (1978) The measurement of tolerance to edaphic factors by means of root growth. New Phytol 80: 623–633

    Article  CAS  Google Scholar 

  • Woolhouse HW (1983) Toxicity and tolerance in the response of plants to metals. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Physiological plant ecology. II. Responses to the chemical and biological environment. Encyclopedia of plant physiology, new series vol 12C. Springer, Berlin Heidelberg New York, pp 245–300

    Google Scholar 

  • Wu L (1990) Colonization and establishment of plants in contaminated sites. In: Shaw AJ (ed) Heavy metal tolerance in plants: evolutionary aspects. CRC Press, Boca Raton, pp 269–285

    Google Scholar 

  • Wu L, Antonovics J (1975) Zinc and copper uptake by Agrostis stolonifera, tolerant to both zinc and copper. New Phytol 75: 231–237

    Article  CAS  Google Scholar 

  • Wu L, Antonovics J (1978) Zinc and copper tolerance of Agrostis stolonifera in tissue culture. Am J Bot 65: 268–271

    Article  CAS  Google Scholar 

  • Wundram M, Selmar D, Bahadir M (1996) The Chlamydomonas test: a new phytotoxicity test based on the inhibition of algal photosynthesis enables the assessment of hazardous leachates from waste disposals in salt mines. Chemosphere 32: 1623–1631

    Article  CAS  Google Scholar 

  • Zeid IM (2001) Responses of Phaseolus vulgaris to chromium and cobalt treatments. Biol Plant 44: 111–115

    Article  CAS  Google Scholar 

  • Zimmermann U, Steudle E (1998) Transport across young maize roots: effect of apoplastic barriers. Bulgarian J Plant Physiol Special Issue 207

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Köhl, K.I., Lösch, R. (2004). Experimental Characterisation of Metal Tolerance. In: Prasad, M.N.V. (eds) Heavy Metal Stress in Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-07743-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-07743-6_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07268-0

  • Online ISBN: 978-3-662-07743-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics