Phytoremediation of Metals and Radionuclides in the Environment: The Case for Natural Hyperaccumulators, Metal Transporters, Soil-Amending Chelators and Transgenic Plants

  • M. N. V. Prasad
Chapter

Abstract

All compartments of the environment, viz. air, water and soil, are polluted by a variety of metals including radionuclides that can interfere with biogeochemical cycles. Heavy metals and radionuclides are considered as major environmental pollutants and are considered to be cytotoxic, mutagenic and carcinogenic (Hadjiliads 1997). Phytoremediation has been accepted widely both in developed and developing nations for its potential to clean up polluted and contaminated sites (Figs 14.1–14.3).

Keywords

Sludge Selenate Pyrite Apatite Excavation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adler T (1996) Botanical cleanup crews. Sci News 150: 42–43CrossRefGoogle Scholar
  2. Albers PH, Camardese M (1993) Effects of acidification on metal accumulation by aquatic plants and invertebrates: wetlands, ponds, and small lakes. Environ Toxicol Chem 12: 969–976CrossRefGoogle Scholar
  3. Alcantara E, Barra R, Benlloch M, Ginhas A, Jorrin J, Lopez JA, Lora A, Ojeda MA, Pujadas A, Requejo R, Romera J, Sancho ED, Shiley S, Tena M (2000) Phytoremediation of a metal contaminated area in southern Spain. Intercost workshop, Sorrento, pp 121–123Google Scholar
  4. Anderson CWN, Brooks RR, Stewart RB, Simcock R (1998) Harvesting a crop of gold in plants. Nature 395: 553–554CrossRefGoogle Scholar
  5. Anderson TA, Guthrie EA, Walton BT (1993) Bioremediation in the rhizosphere, Environ Sci Technol 27: 2530–2626CrossRefGoogle Scholar
  6. Arazi T, Sunkar T, Kaplan B (1999) A tobacco plasma membrane calmodulin-binding transporter confers Nit+ tolerance and Pb2+ hypersensitivity in transgenic plants. Plant J 20: 171–182PubMedCrossRefGoogle Scholar
  7. Arisi ACM, Mocquot B, Lagriffoul A, Mench M, Foyer CH, Jouanin L (2000) Responses to cadmium in leaves of transformed poplars overexpressing y-glutamylcysteine synthetase. Physiol Plant 109: 143–149CrossRefGoogle Scholar
  8. Azadpour A, Matthews JE (1996) Remediation of metal-contaminated sites using plants. Remed Summer 6 (3): 1–19CrossRefGoogle Scholar
  9. Azaizeh HA, Gowthaman S, Terry N (1997) Microbial selenium volatilization in rhizosphere and bulk soils from a constructed wetland. J Environ Qual 26: 666–672CrossRefGoogle Scholar
  10. Bae W, Chen W, Mulchandani A, Mehra RK (2000) Enhanced bioaccumulation of heavy metals by bacterial cells displaying synthetic phytochelatins. Biotechnol Bioeng 70: 518–524PubMedCrossRefGoogle Scholar
  11. Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metal elements. A review of their distribution, ecology, and phytochemistry. Biorecovery 1: 81–126Google Scholar
  12. Baker AIM, Proctor J (1990) The influence of cadmium, copper, lead, and zinc on the distribution and evolution of metallophytes in the British Isles. Plant Syst Evol 173: 91–108CrossRefGoogle Scholar
  13. Baker AJM, Walker PL (1990) Ecophysiology of metal uptake by tolerant plants. In: Shaw AJ (ed) Heavy metal tolerance in plants: evolutionary aspects. CRC Press, Boca RatonGoogle Scholar
  14. Baker AIM, McGrath SP, Sidoli CMD, Reeves RD (1995) The potential for heavy metal decontamination. Mining Environ Manage 3 (3): 12–14Google Scholar
  15. Banuelos GS, Meek DW (1990) Accumulation of selenium in plants grown on selenium-treated soil. J Environ Qual 19 (4): 772–777CrossRefGoogle Scholar
  16. Banuelos GS, Ajwa HA, Zambrzuski S (1997a) Selenium-induced growth reduction in Brassica land races considered for phytoremediation. J Ecotoxicol Environ Saf 36 (3): 282CrossRefGoogle Scholar
  17. Banuelos GS, Ajwa HA, Mackey B, Wu LL, Cook C, Akohoue S, Zambrzuski S. (1997b) Evaluation of different plant species used for phytoremediation of high soil selenium. J Environ Qual 26: 639–646CrossRefGoogle Scholar
  18. Banuelos GS, Shannon MC, Ajwa H, Draper JH, Jordahl J, Licht L (1999) Phytoextraction and accumulation of boron and selenium by poplar (Populus) hybrid coles. Int J Phytochem 1: 81–96CrossRefGoogle Scholar
  19. Barcelo J, Poschenrieder C (2002) Fast root growth responses, root exudates, and internal detoxification as clues to the mechanisms of aluminium toxicity and resistance: a review. Environ Exp Bot 48: 75–92CrossRefGoogle Scholar
  20. Beath OA, Eppsom HF, Gilbert CS (1937) Selenium distribution in and seasonal variation of vegetation type occurring on seleniferous soils. J Am Pharm Assoc 26: 394–405Google Scholar
  21. Bell JNB, Minski MJ, Grogan HA (1988) Plant uptake of radionuclides. Soil Use Manage 4(3): 76–84 Berstein EM (1992) Scientists using plants to clean up metals in contaminated soil. NY Times 141: C4Google Scholar
  22. Bishop J (1997) Phytoremediation: a new technology gets ready to bloom. Environ Solutions 10 (4): 29Google Scholar
  23. Bizily SP, Rugh CL, Summers AO, Meagher RB (1999) Phytoremediation of methylmercury pollution: merB expression in Arabidopsis thaliana confers resistance to organimercurials. Proc Natl Acad Sci USA 96: 6808–6813PubMedCrossRefGoogle Scholar
  24. Blaylock MJ, Huang JW (1999) Phytoextraction of metals. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York, pp 53–70Google Scholar
  25. Blaylock MJ, Salt DE, Dushenkov S, Zakharova O, Gussman C, Kapulnik Y, Ensley BD, Raskin I (1997) Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environ Sci Technol 31: 860–865CrossRefGoogle Scholar
  26. Boyd RS, Martens SN (1994) Nickel hyperaccumulated by Thlaspi montanum var. montanum is acutely toxic to an insect herbivore. Oikos 70: 21–25CrossRefGoogle Scholar
  27. Boyd RS, Shaw JJ, Martens SN (1994) Nickel hyperaccumulation in S. Polygaloids ( Brassicaceae) as a defense against pathogens. Am J Bot 81: 294–300Google Scholar
  28. Brewer EP, Saunders JA, Angle JS, Chaney RL, McIntosh MS (1997) Somatic hybridization between heavy metal hyperaccumulating Thlaspi caerulescens and canola. Agron Abstr 1997: 154Google Scholar
  29. Briat JF, Lebrun M (1999) Plant responses to metal toxicity. CR Acad Sci Paris Life Sci 322: 43–54 Brooks RR (1977) Copper and cobalt uptake be Haumaniastrum species. Plant Soil 48: 541–544Google Scholar
  30. Brooks RR (1998) Plants that hyperaccumulate heavy metals. CAB International, Wallingford, UK Brown KS (1995) The green clean: the emerging field of phytoremediation takes root. Bio Sci 45: 579–582Google Scholar
  31. Brown SL, Chaney RL, Angle JS, Baker AJM (1994) Phytoremediation potential of Thlaspi caerulescens and bladder campion for zinc and cadmium contaminated soil. J Environ Qual 23: 1151–1157CrossRefGoogle Scholar
  32. Brown SL, Chaney RL, Angle JS, Baker AM (1995a) Zinc and cadmium uptake by hyperaccumulator Thlaspi caerulescens and metal tolerant Silene vulgaris grown on sludge amended soils. Environ Sci Technol 29: 1581–1585PubMedCrossRefGoogle Scholar
  33. Brown SL, Chaney RL, Angle JS, Baker AM (1995b) Zinc and cadmium uptake by hyperaccumulator Thlaspi caerulescens grown in nutrient solution. Soil Sci Am J 59: 125–133CrossRefGoogle Scholar
  34. Brown TA, Shrift A. (1982) Selenium: toxicity and tolerance in higher plants. Biol Rev Cambridge Philos Soc 57: 59–84CrossRefGoogle Scholar
  35. Cai XH, Bown C, Adhiya J, Traina SJ, Sayre RT (1999) Growth and heavy metal binding properties of transgenic Chlamydomonas expressing a foreign metallothionein. Int J Phytorem 1: 53–65CrossRefGoogle Scholar
  36. Carbonell AA, Aarabi MA, DeLaune RD, Gambrell RP, Patrick WH Jr (1998) Bioavailability and uptake of arsenic by wetland vegetation: effects on plant growth and nutrition. J Environ Sci Health A33: 45–66CrossRefGoogle Scholar
  37. Chaney RL, Malik M, Li YM, Brown SL, Brewer EP, Angle JS, Baker AJM (1997) Phytoremediation of soil metals. Curr Opin Biotechnol 8: 279PubMedCrossRefGoogle Scholar
  38. Chaney RL, Li YM, Angle JS, Baker AJM, Reeves RD, Brown SL, Homer FA, Malik M, Chin M (1999) Improving metal hyperaccumulator wild plants to develop commercial phytoextraction systems: approaches and progress. In: Terry N, Banuelos GS (eds) Phytoremediation of contaminated soil and water. CRC Press, Boca RatonGoogle Scholar
  39. Churchmann GJ, Slade PG, Rengasamy P, Peter P, Wright M, Naidu R (1999) Use of fine grained minerals to minimize the bioavaliability of metal contaminants. Environmental impacts of metals. Int Workshop, Tamil Nadu Agricultural University, Coimbatore, India, pp 49–52Google Scholar
  40. Clemens S (2001) Molecular mechanisms of plant metal tolerance and homeostasis. Planta 212: 475–486PubMedCrossRefGoogle Scholar
  41. Clemens S, Kim EJ, Neumann D, Schroeder JI (1999) Tolerance to toxic metals by a gene family of phytochelatin synthases from plants and yeast. EMBO J 18: 3325–3333Google Scholar
  42. Cobbet CS (2000a) Phytochelatins and their roles in heavy metal detoxification. Plant Physiol 123: 825–832CrossRefGoogle Scholar
  43. Cobbet CS (2000b) Phytochelatins biosynthesis and function in heavy-metal detoxification. Curr Opin Plant Biol 3: 211–216Google Scholar
  44. Cobbett CS, Goldsbrough PB (1999) Mechanisms of metal resistance: phytochelatins and metallothioneins. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York, pp 247–269Google Scholar
  45. Cole S (1998) The emergence of treatment wetlands. Environ Sci Technol 32 (9): 218A - 223APubMedCrossRefGoogle Scholar
  46. Comis D (1996) Green remediation: using plants to clean the soil. J Soil Water Consery 51: 184–187Google Scholar
  47. Crites RW, Dombeck GD, Williams CR (1997) Removal of metals and ammonia in constructed wetlands. Water Environ Res 69: 132CrossRefGoogle Scholar
  48. Cunningham SD, Ow DW (1996) Promises and prospects of phytoremediation. Plant Physiol 110: 715–719PubMedGoogle Scholar
  49. Cunningham SD, Berti WR, Huang JW (1995) Phytoremediation of contaminated soils. Trends Biotechnol 13: 393–397CrossRefGoogle Scholar
  50. Dodds-Smith ME, Payne CA, Gusek JJ (1995) Reedbeds at wheal jane. Mining Environ Manage 3 (3): 22–24Google Scholar
  51. Dushenkov V, Nanda Kumar, PBA, Motto H, Raskin I (1996) Rhizofiltration: the use of plants to remove heavy metals from aqueous streams. Environ Sci Technol 29: 1239–1245CrossRefGoogle Scholar
  52. Dushenkov S, Vasudev D, Kapulnik Y, Gleba D, Fleisher D, Ting KC, Ensley B (1997a) Removal of uranium from water using terrestrial plants. Environ Sci Technol 31: 3468–3474CrossRefGoogle Scholar
  53. Dushenkov S, Kapulnik Y, Blaylock M, Sorochisky B, Raskin I, Ensley B (1997b) Phytoremediation:a novel approach to an old problem. Stud Environ Sci 66: 563CrossRefGoogle Scholar
  54. Dushenkov S, Mikheev A, Prokhnevsky A, Ruchko M, Sorochinsky B (1998) Phytoremediation of radiocesium-contaminated soil in the vicinity of Chernobyl, Ukraine. Environ Sci Technol 33: 469–475Google Scholar
  55. Dushenkov S, Mikheev A, Prokhnevsky A, Ruchko M, Sorochinsky B (1999) Phytoremediation of radiocesium-contaminated soil in the vicinity of Chernobyl, Ukraine. Environ Sci Technol 33: 469–475Google Scholar
  56. Ebbs SD, Kochian LV (1997) Toxicity of zinc and copper to Brassica species: implications for phytoremediation. J Environ Qual 26: 776–781CrossRefGoogle Scholar
  57. Ebbs SD, Kochian LV (1998) Phytoextraction of zinc by oat (Avena sativa), barley (Hordeum vulgare), and Indian mustard (Brassica juncea). Environ Sci Technol 32: 802–806CrossRefGoogle Scholar
  58. Ebbs SD, Lasat MM, Brandy DJ, Cornish J, Gordon R, Kochian LV (1997) Heavy metals in the environment. Phytoextraction of cadmium and zinc from a contaminated soil. J Environ Qual 26: 1424–1430Google Scholar
  59. Ensley BD (2000) Rationale for use of phytoremediation. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley-Interscience, New York, chap 1Google Scholar
  60. Entry JA, Watrud LS, Reeves M (1999) Accumulation of 137Cs and 90Sr from contaminated soil by three grass species inoculated with mycorrhizal fungi. Environ Pollut 104: 449–457CrossRefGoogle Scholar
  61. Entry JA, Watrud LS, Manasse RS, Vance NC (1997) Phytoremediation and reclamation of soils contaminated with radionuclides. Phytoremediation of soil and water contaminants, chap 22. American Chemical Society, New YorkGoogle Scholar
  62. Frankenberger WR, Engberg RA (eds) (1998) Environmental chemistry of selenium. Dekker, New York, 736 ppGoogle Scholar
  63. Glass DJ (1999) US and international markets for phytoremediation, 1999–2000. DJ Glass Associates Inc, Needham, MA, USA, 266 ppGoogle Scholar
  64. Glass DJ (2000) Economic potential of phytoremediation. Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment, chap 2. Wiley-Interscience Publ, New YorkGoogle Scholar
  65. Greger M, Lindberg T (1999) Use of willow in phytoremediation. Int J Phytorem 1: 115–123 Guerinot ML, Salt DE (2001) Fortified foods and phytoremediation. Two sides of the same coin. Plant Physiol 125: 164–167Google Scholar
  66. Hadjiliads ND (ed) (1997) Cytotoxicity, mutagenic and carcinogenic potential of heavy metals related to human environment. NATO ASI series 2. Environment, vol 26. Kluwer, Dordrecht, pp 629Google Scholar
  67. Hansen D, Duda PJ, Zayed A, Terry N (1998) Selenium removal by constructed wetlands: role of biological volatilization. Environ Sci Technol 32: 591–597CrossRefGoogle Scholar
  68. Heaton ACP, Rugh CL, Wang N, Meagher RB (1998) Phytoremediation of mercury-and methylmercury-polluted soils using genetically engineered plants. J Soil Contam 7: 497–510CrossRefGoogle Scholar
  69. Homer FA, Reeves RD, Brooks RR, Baker AJM (1991) Characterization of the nickel-rich extract from the nickel hyperaccumulator Dichapetalum gelonioides. Phytochemistry 30: 2141–2145CrossRefGoogle Scholar
  70. Hossner LR, Loeppert, RH, Newton RJ, Szaniszlo PJ, Moses Attrep J (1998) Literature review: phytoaccumulation of chromium, uranium, and plutonium in plant systems. Amarillo National Resource Center for PlutoniumGoogle Scholar
  71. Huang JW, Cunningham SD (1996) Lead phytoextraction: species variation in lead uptake and translocation. New Phytol 134: 75CrossRefGoogle Scholar
  72. Huang JW, Chen J, Berti WR, Cunningham SD (1997) Phytoremediation of lead contaminated soil: role of synthetic chelates in lead phytoextraction. Environ Sci Technol 31: 800–805CrossRefGoogle Scholar
  73. Huang JW, Blaylock MJ, Kapulnik Y, Ensley BD (1998) Phytoremediation of uranium-contaminated soils: role of organic acids in triggering uranium hyperaccumulation in plants. Environ Sci Technol 32: 2004–2008CrossRefGoogle Scholar
  74. Jaffre T, Brooks RR, Lee J, Reeves RD (1976) Sebertia acuminata: a nickel-accumulating plant from New Caledonia. Science 193: 579–580Google Scholar
  75. Kabata-Pendias A (2001) Trace elements in the soil and plants. CRC Press, Boca Raton Kadlec RH, Knight RL ( 1996 ) Treatment wetlands. Lewis Publ, Boca RatonGoogle Scholar
  76. Kadlec RH, Knight RL, Vymazal J, Brix H, Cooper P, Habert R (2000) Constructed wetlands for pollution control. Control processes, performance, design and operation. IWA Publ, London Kägi JHR (1991) Overview of metallothioneins. Methods Enzymol 205: 613–623CrossRefGoogle Scholar
  77. Kaltsikes PJ (2000) Phytoremediation—state of the art in Europe, an international comparison. Agricultural University of Athens, COST action 837, first workshopGoogle Scholar
  78. Krämer U, Cotter-Howells JD, Charnock JM, Baker AJM, Smith JAC (1996) Free histidine as a metal chelator in plants that accumulate nickel. Nature 373: 635–638CrossRefGoogle Scholar
  79. Krämer U, Smith R, Wenzel WW, Raskin I, Salt DE (1997) The role of metal transport and tolerance in nickel hyperaccumulation by Thlaspi goesingense halacsy. Plant Physiol 115: 1641PubMedGoogle Scholar
  80. Laperche V, Logan TJ, Gaddam P, Traîna SJ (1997) Effect of apatite amendments on plant uptake of lead from contaminated soil. Environ Sci Technol 31: 2745–2753CrossRefGoogle Scholar
  81. Lasat MM, Baker AJM, Kochian LV (1996) Physiological characterization of root Zn2+ absorption and translocation to shoots in Zn hyperaccumulator and nonaccumulator speciesof Thlaspi. Plant Physiol 112: 1715–1722PubMedGoogle Scholar
  82. Lasat MM, Norvell WA, Kochian LV (1997) Potential for phytoextraction of 137Cs from a contaminated soil. Plant Soil 195: 99–106CrossRefGoogle Scholar
  83. Lasat MM, Baker AJM, Kochian LV (1998a) Altered Zn compartmentation in the root symplasm and stimulated Zn absorption into the leaf as mechanisms involved in Zn hyperaccumulation in Thlaspi caerulescens. Plant Physiol 118: 875–883PubMedCrossRefGoogle Scholar
  84. Lasat MM, Fuhrmann M, Ebbs SD, Cornish JE, Kochian LV (1998b) Phytoremediation of a radiocesium-contaminated soil: evaluation of cesium-137 bioaccumulation in the shoots of three plant species. J Environ Qual 27: 165–169CrossRefGoogle Scholar
  85. Lasat MM, Pence NS, Garvin DF, Ebbs SD, Kochian LV (2000) Molecular physiology of zinc transport in the Zn hyperaccumulator Thlaspi caerulescens. J Exp Bot 51: 71–79PubMedCrossRefGoogle Scholar
  86. Lefebvre DD, Miki DBL, Laliberte JF (1987) Mammalian metallothioneins functions in plants. Bio Technol 5: 1053–1056CrossRefGoogle Scholar
  87. Ma LQ, Komar KM, Tu C, Zhang W, Cai Y, Kennelley ED (2001) A fern that hyperaccumulates arsenic. Nature 409: 579PubMedCrossRefGoogle Scholar
  88. Macnair MR, Cumbes QJ, Meharg AA (1992) The genetics of arsenate tolerance in Yorkshire fog, Holcus lanatus L. Heredity 69: 325–335Google Scholar
  89. Maiti IB, Wagner GJ, Hunt AG (1991) Light inducible and tissue specific expression of a chimeric mouse metallothionein cDNA gene in tobacco. Plant Sci 76: 99–107CrossRefGoogle Scholar
  90. Matsumoto H (2002) Metabolism of organic acids and metal tolerance in plants exposed to aluminum In: Prasad MNV, Strzalka K (eds) Physiology and biochemistry of metal toxicity and tolerance in plants, Kluwer, Dordrecht, pp 95–109Google Scholar
  91. McBride MB (1994) Environmental chemistry of soils. Oxford University Press, New York, pp 336337Google Scholar
  92. McIntyre T, Lewis GM (1997) Advancement of phytoremediation as an innovative environmental technology for stabilization, remediation, or restoration of contaminated sites. J Soil Contam 6: 227CrossRefGoogle Scholar
  93. Meharg AA, Macnair MR (1991) Uptake, accumulation, and translocation of arsenate in arsenate-tolerant and non-tolerant Holcus lanatus L. New Phytol 117: 225–231CrossRefGoogle Scholar
  94. Misra S, Gedamu L (1989) Heavy metal tolerant transgenic Brassica napus L. and Nicotiana tabacum L. plants. Theor Appl Genet 78: 161–168CrossRefGoogle Scholar
  95. Moffat AS (1999) Engineering plants to cope with metals. Science 285: 369–370PubMedCrossRefGoogle Scholar
  96. Nandakumar PBA, Dushenkov S, Salt DE, Raskin I (1994) Crop Brassicas and phytoremediation—a novel environmental technology. Cruciferae Newslett 16: 18–19Google Scholar
  97. Nandakumar PBA, Dushenkov S, Motto H, Raskin I (1995) Phytoextraction: the use of plants to remove heavy metals from soils. Environ Sci Technol 29: 1232–1238CrossRefGoogle Scholar
  98. Negri CM, Hinchman RR (2000) The use of plants for the treatment of radionuclides. Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment, chap 8. Wiley-Interscience, New YorkGoogle Scholar
  99. Odum HT (2000) Heavy metals in the environment. Using wetlands for their removal. CRC Press, Boca Raton, p 401Google Scholar
  100. Ortiz DF, Ruscitti T, McCue KF, Ow DV (1995) Transport of metal-binding peptides by HMT1, a fission yeast ABC-type B vacuolar membrane protein. J Biol Chem 270: 4721–4728PubMedCrossRefGoogle Scholar
  101. Otte ML, Kearns CC, Doyle MO (1995) Accumulation of arsenic and zinc in the rhizosphere of wetland plants. Bull Environ Contam Toxicol 55: 154–161PubMedCrossRefGoogle Scholar
  102. Ow DW (1996) Heavy metal tolerance genes: prospective tools for bioremediations. Res Consery Recycl 18: 135–149CrossRefGoogle Scholar
  103. Palmer CE, Warwick S, Keller W (2001) Brassicaceae ( Cruciferae) family, plant biotechnology and phytoremediation. Int J Phytoremed 3: 245–287Google Scholar
  104. Pence NS, Larsen PB, Ebbs SD, Letham DL, Lasat MM, Garvin DF, Eide D, Kochian LV (2000) The molecular physiology of heavy metal transport in the Zn Cd hyperaccumulator Thlaspi caerulescens. Proc Natl Acad Sci USA 97: 4956–4960PubMedCrossRefGoogle Scholar
  105. Peterson PJ (1983) Adaptation to toxic metals. In: Robb DA, Pierpoint WS (eds) Metals and micro-nutrients: uptake andutilization by plants. Academic Press, London, pp 51–69Google Scholar
  106. Pilon-Smits E, Pilon M (2000) Breeding mercury-breathing plants for environmental cleanup. Trends Plant Sci 5: 235–236PubMedCrossRefGoogle Scholar
  107. Pilon-Smits EAH, Hwang S, Lytle CM, ZhuYL, Tay JC, Bravo RC, Chen Y, Leustek T, Terry N (1999) Overexpression of ATP sulfurylase in Indian mustard leads to increased selenate uptake, reduction, and tolerance. Plant Physiol 119: 123–132Google Scholar
  108. Pollard JA, Baker AJM (1997) Deterence of herbivory by zinc hyperaccumulation in Thlaspi caerulescens (Brassicacea). New Phytol 135: 655–658CrossRefGoogle Scholar
  109. Prasad MNV (1999) Metallothioneins and metal binding complexes in plants. In: Prasad MNV, Hagemeyer J (eds) Heavy metal stress in plants: from molecules to ecosystems. Springer, Berlin Heidelberg New York, pp 51–72CrossRefGoogle Scholar
  110. Prasad MNV (2001a) Metals in the environment—analysis by biodiversity. Dekker, New YorkGoogle Scholar
  111. Prasad MNV (2001b) Bioremediation potential of Amaranthaceae. In: Leeson A, Foote EA, Banks MK, Magar VS (eds) Phytoremediation, wetlands, and sediments. Proceedings of the 6th international in situ and on-site bioremediation symposium, vol 6(5). Battelle Press, Columbus, OH, pp 165–172Google Scholar
  112. Prasad MNV, Freitas H (1999) Feasible biotechnological and bioremediation strategies for serpentine soils and mine spoils. Electr J Biotechnol 2: 35–50. Website: http: ejb.ucv.cl orGoogle Scholar
  113. Prasad MNV, Hagemeyer J (1999) Heavy metal stress in plants—from molecules to ecosystems. Springer, Berlin Heidelberg New YorkCrossRefGoogle Scholar
  114. Prasad MNV, Strzalka K (eds) (2002) Physiology and biochemistry of metal toxicity and tolerance in plants. Kluwer, Dordrecht, 460 ppGoogle Scholar
  115. Raskin I (1996) Plant genetic engineering may help with environmnetal cleanup. Proc Natl Acad Sci USA 93: 3164–3166PubMedCrossRefGoogle Scholar
  116. Raskin I, Ensley BP (2000) Phytoremediation of toxic metals—using plants to clean up the environment. Wiley, New YorkGoogle Scholar
  117. Raskin I, Nanda Kumar PBA, Dushenkov S, Salt DE (1994) Bioconcentration of heavy metals by plants. Curr Opin Biotechnol 5: 285–290CrossRefGoogle Scholar
  118. Raskin I, Smith RD, Salt DE (1997) Phytoremediation of metals: using plants to remove pollutants from the environment. Curr Opin Biotechnol 8: 221–226PubMedCrossRefGoogle Scholar
  119. Rauser WE (1999) Structure and functions of metal chelators produced by plants: the case for organic acids, amino acids, phytin, and metallothioneins. Cell Biochem Biophys 31: 19–46PubMedCrossRefGoogle Scholar
  120. Rauser WE (2000) The role of thiols in plants under metal stress, In: Brunold C, Rennenberg H, De Kok LJ (eds) Sulfur nutrition and sulfur assimilation in higher plants. Haupt, Bern, pp 169–183Google Scholar
  121. Reeves RD, Baker AJM (1999). Metal-accumulating plants. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York, pp 193–229Google Scholar
  122. Reeves RD, Brooks RR (1983) European species of Thlaspi L. ( Cruciferae) as indicators of nickel and zinc. J Geochem Explor 18: 275–283Google Scholar
  123. Robinson BH, Chiarucci A, Brooks RR, Petit D, Kirkman JH, Gregg PEH, de Dominicis V (1997a) The nickel hyperaccumulator plant Alyssum bertolonii as a potential agent for phytoremediation and phytomining of nickel. J Geochem Explor 59 (2): 75CrossRefGoogle Scholar
  124. Robinson BH, Brooks RR, Howes AW, Kirkman JH, Gregg PEH (1997b) The potential of the high-biomass nickel hyperaccumulator Berkheya coddii for phytoremediation and phytomining. J Geochem Explor 60 (2): 115–126CrossRefGoogle Scholar
  125. Rugh CL, Wilde HD, Stack NM, Thompson DM, Summers AO, Meagher RB (1996) Mercuric ion reduction and resistance in transgeneic Arabidopsis thaliana plants expressing a modified bacterial merA gene. Proc Natl Acad Sci USA 93: 3182–3187PubMedCrossRefGoogle Scholar
  126. Rugh CL, Gragson GM, Meagher RB (1998) Toxic mercury reduction and remediation using transgenic plants with modified bacterial genes. HortScience 33: 618–621Google Scholar
  127. Saier MH JR (2000) A functional-phylogenetic classification system for transmembrane solute transporters. Microbiol Mol Biol Rev 64: 354–411PubMedCrossRefGoogle Scholar
  128. Salt DE, Thurman DA, Sewell AK (1989) Copper phytochelatin of Mimulus guttatus. Proc R Soc Lond B 236: 79–89CrossRefGoogle Scholar
  129. Salt DE, Blaylock M, Nanda Kumar PBA, Dushenkov S, Ensley BD, Chet I, Raskin I (1995) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Biotechnology 13: 468–474PubMedCrossRefGoogle Scholar
  130. Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Annu Rev Plant Physiol Plant Mol Biol 49: 643–668PubMedCrossRefGoogle Scholar
  131. Salt DE, Prince RC, Baker AJM, Raskin I, Pickering IJ (1999) Zinc ligands in the metal hyperaccumulator Thlaspi caerulescens as determined using X-ray absorption spectroscopy. Environ Sci Technol 33: 713–717CrossRefGoogle Scholar
  132. Samecka-Cymerman A, Kempers AJ (1996) Bioaccumulation of heavy metals by aquatic macrophytes around Wroclaw, Poland. Ecotoxicol Environ Saf 35: 242Google Scholar
  133. Sanità di Toppi L, Prasad MNV, Ottonello S (2002) Metal chelating peptides and proteins in plants. In: Prasad MNV, Strzalka K (eds) Physiology and biochemistry of metal toxicity and tolerance in plants. Kluwer, Dortrecht, pp 59–93Google Scholar
  134. Saxena PK, KrishnaRaj S, Dan T, Perras MR, Vettakkorumakankav NN (1999) Phytoremediation of metal contaminated and polluted soils. In: Prasad MNV, Hagemeyer J (eds) Heavy metal stress in plants: from molecules to ecosystems. Springer, Berlin Heidelberg New York, pp 305–329CrossRefGoogle Scholar
  135. Schäfer HJ, Haag-Kerwer A, Rausch T (1998) cDNA cloning and expression analysis of genes encoding GSH synthesis in roots of the heavy-metal accumulator Brassica juncea L.: evidence for Cd-induction of a putative mitochondrial ‘y-glutamylcysteine synthetase isoform. Plant Mol Biol 37: 87–97Google Scholar
  136. Schmöger MEV, Oven M, Grill E (2000) Detoxification of arsenic by phytochelatins in plants. Plant Physiol 122: 793–801PubMedCrossRefGoogle Scholar
  137. Stomp AM, Han KH, Wilbert S, Gordon MP, Cunningham SD (1994) Genetic strategies for enhancing phytoremediation. Ann NY Acad Sci 721: 481–491PubMedCrossRefGoogle Scholar
  138. Terry N, Banuelos G (2000) Phytoremediation of contaminated soil and water. Lewis Publ, Boca RatonGoogle Scholar
  139. Terry N, Zayed AM (1998) Phytoremediation of selenium. In: Frankenberger WT, Engberg RA (eds) Environmental chemistry of selenium. Dekker, New YorkGoogle Scholar
  140. Tessier A, Campbell PGC, Bisson M (1979) Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem 51: 844–850CrossRefGoogle Scholar
  141. Tomsett AB, Sewell AK, Jones SJ, de Miranda J, Thurman DA (1992). Metal-binding proteins and metal-regulated gene expression in higher plants. In: Wray JL (ed) Society for experimental biology seminar series 49: inducible plant proteins, Cambridge University Press, Cambridge, pp 1–24Google Scholar
  142. Trampczynska A, Gawronski SW, Kutrys S (2001) Canna x generalis as a plant for phytoextraction of heavy metals in urbanized area. Zeszyty Naukowe Politechniki Slaskiej 45 (1487): 71–74Google Scholar
  143. Vangronsveld J, Cunningham SD (1998) Metal-contaminated soils: in-situ inactivation and phytorestoration. Springer, Berlin Heidelberg New YorkGoogle Scholar
  144. Varennes A, de Torres MO, Coutinho JF, Rocha MMGS, Neto MMPM, De-Varennes A (1996) Effects of heavy metals on the growth and mineral composition of a nickel hyperaccumulator. J Plant Nutr 19: 669–676CrossRefGoogle Scholar
  145. Vassil A, Kapulnik Y, Raskin I, Salt DE (1998) The role of EDTA in lead transport and accumulation by Indian mustard. Plant Physiol 117: 447–453PubMedCrossRefGoogle Scholar
  146. Vazquez MD, Barcelo J, Poschenrieder C, Madico J, Hatton P, Baker AJM, Cope GH (1992) Localization of zinc and cadmium in Thlaspi caerulescens ( Brassicaceae), a metallophyte that can hyperaccumulate both metals. J Plant Physiol 140: 350–355Google Scholar
  147. Vazquez MD, Poschenreider C, Barcelo J, Baker AJM, Hatton P, Cope GH (1994) Compartmentalization of zinc in roots and leaves of the zinc hyperaccumulator Thlaspi caerulescens J. C. Presl. Bot Acta 107: 243–250Google Scholar
  148. Vymazal J (1996) Constructed wetlands for wastewater treatment in the Czech Republic: the first 5 years experience. Water Sci Technol 34 (11): 159–165CrossRefGoogle Scholar
  149. Watanabe ME (1997) Phytoremediation on the brink of commercialization. Environ Sci Technol 31: 182–186CrossRefGoogle Scholar
  150. Wenzel WW, Adriano DC, Alloway B, Doner HE, Keller C, Lepp NW, Mench M, Naidu R, Pierzynski GM (eds) (1999) Proceedings of the extended abstracts of the 5th international conference on biogeochemistry of trace elements, Vienna, vols 1 and 2, pp 1191Google Scholar
  151. Wise, DL, Trantolo DJ, Cichon, EJ, Inyang HI, Stottmeister U (2000) Bioremediation of contaminated soils. Dekker, New YorkGoogle Scholar
  152. Zhu YL, Pilon-Smits EAH, Tarun AS, Weber SU, Jouanin L, Terry N (1999b) Cadmium tolerance and accumulation in Indian mustard is enhanced by overexpressing glutamylcysteine synthase. Plant Physiol 121: 1169–1177PubMedCrossRefGoogle Scholar
  153. Zhu YL, Pilon-Smits EAH, Jouanin L, Terry N (1999a) Overexpression of glutathione synthetase in Indian mustard enhances cadmium accumulation and tolerance. Plant Physiol 119: 73–79CrossRefGoogle Scholar
  154. Zorpas AA, Constantinides T, Vlyssides AG, Aralambous I, Loizidou.M (1999) Heavy metal uptake by natural zeolite and metals partitioning in sewage sludge compost. Bioresource Technol 71: 113–119Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • M. N. V. Prasad
    • 1
  1. 1.Department of Plant SciencesUniversity of HyderabadHyderabad APIndia

Personalised recommendations