Skip to main content

Phytoremediation of Metals and Radionuclides in the Environment: The Case for Natural Hyperaccumulators, Metal Transporters, Soil-Amending Chelators and Transgenic Plants

  • Chapter
Heavy Metal Stress in Plants

Abstract

All compartments of the environment, viz. air, water and soil, are polluted by a variety of metals including radionuclides that can interfere with biogeochemical cycles. Heavy metals and radionuclides are considered as major environmental pollutants and are considered to be cytotoxic, mutagenic and carcinogenic (Hadjiliads 1997). Phytoremediation has been accepted widely both in developed and developing nations for its potential to clean up polluted and contaminated sites (Figs 14.1–14.3).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adler T (1996) Botanical cleanup crews. Sci News 150: 42–43

    Article  Google Scholar 

  • Albers PH, Camardese M (1993) Effects of acidification on metal accumulation by aquatic plants and invertebrates: wetlands, ponds, and small lakes. Environ Toxicol Chem 12: 969–976

    Article  CAS  Google Scholar 

  • Alcantara E, Barra R, Benlloch M, Ginhas A, Jorrin J, Lopez JA, Lora A, Ojeda MA, Pujadas A, Requejo R, Romera J, Sancho ED, Shiley S, Tena M (2000) Phytoremediation of a metal contaminated area in southern Spain. Intercost workshop, Sorrento, pp 121–123

    Google Scholar 

  • Anderson CWN, Brooks RR, Stewart RB, Simcock R (1998) Harvesting a crop of gold in plants. Nature 395: 553–554

    Article  CAS  Google Scholar 

  • Anderson TA, Guthrie EA, Walton BT (1993) Bioremediation in the rhizosphere, Environ Sci Technol 27: 2530–2626

    Article  Google Scholar 

  • Arazi T, Sunkar T, Kaplan B (1999) A tobacco plasma membrane calmodulin-binding transporter confers Nit+ tolerance and Pb2+ hypersensitivity in transgenic plants. Plant J 20: 171–182

    Article  PubMed  CAS  Google Scholar 

  • Arisi ACM, Mocquot B, Lagriffoul A, Mench M, Foyer CH, Jouanin L (2000) Responses to cadmium in leaves of transformed poplars overexpressing y-glutamylcysteine synthetase. Physiol Plant 109: 143–149

    Article  CAS  Google Scholar 

  • Azadpour A, Matthews JE (1996) Remediation of metal-contaminated sites using plants. Remed Summer 6 (3): 1–19

    Article  Google Scholar 

  • Azaizeh HA, Gowthaman S, Terry N (1997) Microbial selenium volatilization in rhizosphere and bulk soils from a constructed wetland. J Environ Qual 26: 666–672

    Article  CAS  Google Scholar 

  • Bae W, Chen W, Mulchandani A, Mehra RK (2000) Enhanced bioaccumulation of heavy metals by bacterial cells displaying synthetic phytochelatins. Biotechnol Bioeng 70: 518–524

    Article  PubMed  CAS  Google Scholar 

  • Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metal elements. A review of their distribution, ecology, and phytochemistry. Biorecovery 1: 81–126

    Google Scholar 

  • Baker AIM, Proctor J (1990) The influence of cadmium, copper, lead, and zinc on the distribution and evolution of metallophytes in the British Isles. Plant Syst Evol 173: 91–108

    Article  CAS  Google Scholar 

  • Baker AJM, Walker PL (1990) Ecophysiology of metal uptake by tolerant plants. In: Shaw AJ (ed) Heavy metal tolerance in plants: evolutionary aspects. CRC Press, Boca Raton

    Google Scholar 

  • Baker AIM, McGrath SP, Sidoli CMD, Reeves RD (1995) The potential for heavy metal decontamination. Mining Environ Manage 3 (3): 12–14

    Google Scholar 

  • Banuelos GS, Meek DW (1990) Accumulation of selenium in plants grown on selenium-treated soil. J Environ Qual 19 (4): 772–777

    Article  CAS  Google Scholar 

  • Banuelos GS, Ajwa HA, Zambrzuski S (1997a) Selenium-induced growth reduction in Brassica land races considered for phytoremediation. J Ecotoxicol Environ Saf 36 (3): 282

    Article  CAS  Google Scholar 

  • Banuelos GS, Ajwa HA, Mackey B, Wu LL, Cook C, Akohoue S, Zambrzuski S. (1997b) Evaluation of different plant species used for phytoremediation of high soil selenium. J Environ Qual 26: 639–646

    Article  CAS  Google Scholar 

  • Banuelos GS, Shannon MC, Ajwa H, Draper JH, Jordahl J, Licht L (1999) Phytoextraction and accumulation of boron and selenium by poplar (Populus) hybrid coles. Int J Phytochem 1: 81–96

    Article  CAS  Google Scholar 

  • Barcelo J, Poschenrieder C (2002) Fast root growth responses, root exudates, and internal detoxification as clues to the mechanisms of aluminium toxicity and resistance: a review. Environ Exp Bot 48: 75–92

    Article  CAS  Google Scholar 

  • Beath OA, Eppsom HF, Gilbert CS (1937) Selenium distribution in and seasonal variation of vegetation type occurring on seleniferous soils. J Am Pharm Assoc 26: 394–405

    CAS  Google Scholar 

  • Bell JNB, Minski MJ, Grogan HA (1988) Plant uptake of radionuclides. Soil Use Manage 4(3): 76–84 Berstein EM (1992) Scientists using plants to clean up metals in contaminated soil. NY Times 141: C4

    Google Scholar 

  • Bishop J (1997) Phytoremediation: a new technology gets ready to bloom. Environ Solutions 10 (4): 29

    Google Scholar 

  • Bizily SP, Rugh CL, Summers AO, Meagher RB (1999) Phytoremediation of methylmercury pollution: merB expression in Arabidopsis thaliana confers resistance to organimercurials. Proc Natl Acad Sci USA 96: 6808–6813

    Article  PubMed  CAS  Google Scholar 

  • Blaylock MJ, Huang JW (1999) Phytoextraction of metals. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York, pp 53–70

    Google Scholar 

  • Blaylock MJ, Salt DE, Dushenkov S, Zakharova O, Gussman C, Kapulnik Y, Ensley BD, Raskin I (1997) Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environ Sci Technol 31: 860–865

    Article  Google Scholar 

  • Boyd RS, Martens SN (1994) Nickel hyperaccumulated by Thlaspi montanum var. montanum is acutely toxic to an insect herbivore. Oikos 70: 21–25

    Article  CAS  Google Scholar 

  • Boyd RS, Shaw JJ, Martens SN (1994) Nickel hyperaccumulation in S. Polygaloids ( Brassicaceae) as a defense against pathogens. Am J Bot 81: 294–300

    Google Scholar 

  • Brewer EP, Saunders JA, Angle JS, Chaney RL, McIntosh MS (1997) Somatic hybridization between heavy metal hyperaccumulating Thlaspi caerulescens and canola. Agron Abstr 1997: 154

    Google Scholar 

  • Briat JF, Lebrun M (1999) Plant responses to metal toxicity. CR Acad Sci Paris Life Sci 322: 43–54 Brooks RR (1977) Copper and cobalt uptake be Haumaniastrum species. Plant Soil 48: 541–544

    Google Scholar 

  • Brooks RR (1998) Plants that hyperaccumulate heavy metals. CAB International, Wallingford, UK Brown KS (1995) The green clean: the emerging field of phytoremediation takes root. Bio Sci 45: 579–582

    Google Scholar 

  • Brown SL, Chaney RL, Angle JS, Baker AJM (1994) Phytoremediation potential of Thlaspi caerulescens and bladder campion for zinc and cadmium contaminated soil. J Environ Qual 23: 1151–1157

    Article  CAS  Google Scholar 

  • Brown SL, Chaney RL, Angle JS, Baker AM (1995a) Zinc and cadmium uptake by hyperaccumulator Thlaspi caerulescens and metal tolerant Silene vulgaris grown on sludge amended soils. Environ Sci Technol 29: 1581–1585

    Article  PubMed  CAS  Google Scholar 

  • Brown SL, Chaney RL, Angle JS, Baker AM (1995b) Zinc and cadmium uptake by hyperaccumulator Thlaspi caerulescens grown in nutrient solution. Soil Sci Am J 59: 125–133

    Article  CAS  Google Scholar 

  • Brown TA, Shrift A. (1982) Selenium: toxicity and tolerance in higher plants. Biol Rev Cambridge Philos Soc 57: 59–84

    Article  CAS  Google Scholar 

  • Cai XH, Bown C, Adhiya J, Traina SJ, Sayre RT (1999) Growth and heavy metal binding properties of transgenic Chlamydomonas expressing a foreign metallothionein. Int J Phytorem 1: 53–65

    Article  CAS  Google Scholar 

  • Carbonell AA, Aarabi MA, DeLaune RD, Gambrell RP, Patrick WH Jr (1998) Bioavailability and uptake of arsenic by wetland vegetation: effects on plant growth and nutrition. J Environ Sci Health A33: 45–66

    Article  Google Scholar 

  • Chaney RL, Malik M, Li YM, Brown SL, Brewer EP, Angle JS, Baker AJM (1997) Phytoremediation of soil metals. Curr Opin Biotechnol 8: 279

    Article  PubMed  CAS  Google Scholar 

  • Chaney RL, Li YM, Angle JS, Baker AJM, Reeves RD, Brown SL, Homer FA, Malik M, Chin M (1999) Improving metal hyperaccumulator wild plants to develop commercial phytoextraction systems: approaches and progress. In: Terry N, Banuelos GS (eds) Phytoremediation of contaminated soil and water. CRC Press, Boca Raton

    Google Scholar 

  • Churchmann GJ, Slade PG, Rengasamy P, Peter P, Wright M, Naidu R (1999) Use of fine grained minerals to minimize the bioavaliability of metal contaminants. Environmental impacts of metals. Int Workshop, Tamil Nadu Agricultural University, Coimbatore, India, pp 49–52

    Google Scholar 

  • Clemens S (2001) Molecular mechanisms of plant metal tolerance and homeostasis. Planta 212: 475–486

    Article  PubMed  CAS  Google Scholar 

  • Clemens S, Kim EJ, Neumann D, Schroeder JI (1999) Tolerance to toxic metals by a gene family of phytochelatin synthases from plants and yeast. EMBO J 18: 3325–3333

    Google Scholar 

  • Cobbet CS (2000a) Phytochelatins and their roles in heavy metal detoxification. Plant Physiol 123: 825–832

    Article  Google Scholar 

  • Cobbet CS (2000b) Phytochelatins biosynthesis and function in heavy-metal detoxification. Curr Opin Plant Biol 3: 211–216

    Google Scholar 

  • Cobbett CS, Goldsbrough PB (1999) Mechanisms of metal resistance: phytochelatins and metallothioneins. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York, pp 247–269

    Google Scholar 

  • Cole S (1998) The emergence of treatment wetlands. Environ Sci Technol 32 (9): 218A - 223A

    Article  PubMed  CAS  Google Scholar 

  • Comis D (1996) Green remediation: using plants to clean the soil. J Soil Water Consery 51: 184–187

    Google Scholar 

  • Crites RW, Dombeck GD, Williams CR (1997) Removal of metals and ammonia in constructed wetlands. Water Environ Res 69: 132

    Article  CAS  Google Scholar 

  • Cunningham SD, Ow DW (1996) Promises and prospects of phytoremediation. Plant Physiol 110: 715–719

    PubMed  CAS  Google Scholar 

  • Cunningham SD, Berti WR, Huang JW (1995) Phytoremediation of contaminated soils. Trends Biotechnol 13: 393–397

    Article  CAS  Google Scholar 

  • Dodds-Smith ME, Payne CA, Gusek JJ (1995) Reedbeds at wheal jane. Mining Environ Manage 3 (3): 22–24

    Google Scholar 

  • Dushenkov V, Nanda Kumar, PBA, Motto H, Raskin I (1996) Rhizofiltration: the use of plants to remove heavy metals from aqueous streams. Environ Sci Technol 29: 1239–1245

    Article  Google Scholar 

  • Dushenkov S, Vasudev D, Kapulnik Y, Gleba D, Fleisher D, Ting KC, Ensley B (1997a) Removal of uranium from water using terrestrial plants. Environ Sci Technol 31: 3468–3474

    Article  CAS  Google Scholar 

  • Dushenkov S, Kapulnik Y, Blaylock M, Sorochisky B, Raskin I, Ensley B (1997b) Phytoremediation:a novel approach to an old problem. Stud Environ Sci 66: 563

    Article  CAS  Google Scholar 

  • Dushenkov S, Mikheev A, Prokhnevsky A, Ruchko M, Sorochinsky B (1998) Phytoremediation of radiocesium-contaminated soil in the vicinity of Chernobyl, Ukraine. Environ Sci Technol 33: 469–475

    Google Scholar 

  • Dushenkov S, Mikheev A, Prokhnevsky A, Ruchko M, Sorochinsky B (1999) Phytoremediation of radiocesium-contaminated soil in the vicinity of Chernobyl, Ukraine. Environ Sci Technol 33: 469–475

    Google Scholar 

  • Ebbs SD, Kochian LV (1997) Toxicity of zinc and copper to Brassica species: implications for phytoremediation. J Environ Qual 26: 776–781

    Article  CAS  Google Scholar 

  • Ebbs SD, Kochian LV (1998) Phytoextraction of zinc by oat (Avena sativa), barley (Hordeum vulgare), and Indian mustard (Brassica juncea). Environ Sci Technol 32: 802–806

    Article  CAS  Google Scholar 

  • Ebbs SD, Lasat MM, Brandy DJ, Cornish J, Gordon R, Kochian LV (1997) Heavy metals in the environment. Phytoextraction of cadmium and zinc from a contaminated soil. J Environ Qual 26: 1424–1430

    Google Scholar 

  • Ensley BD (2000) Rationale for use of phytoremediation. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley-Interscience, New York, chap 1

    Google Scholar 

  • Entry JA, Watrud LS, Reeves M (1999) Accumulation of 137Cs and 90Sr from contaminated soil by three grass species inoculated with mycorrhizal fungi. Environ Pollut 104: 449–457

    Article  CAS  Google Scholar 

  • Entry JA, Watrud LS, Manasse RS, Vance NC (1997) Phytoremediation and reclamation of soils contaminated with radionuclides. Phytoremediation of soil and water contaminants, chap 22. American Chemical Society, New York

    Google Scholar 

  • Frankenberger WR, Engberg RA (eds) (1998) Environmental chemistry of selenium. Dekker, New York, 736 pp

    Google Scholar 

  • Glass DJ (1999) US and international markets for phytoremediation, 1999–2000. DJ Glass Associates Inc, Needham, MA, USA, 266 pp

    Google Scholar 

  • Glass DJ (2000) Economic potential of phytoremediation. Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment, chap 2. Wiley-Interscience Publ, New York

    Google Scholar 

  • Greger M, Lindberg T (1999) Use of willow in phytoremediation. Int J Phytorem 1: 115–123 Guerinot ML, Salt DE (2001) Fortified foods and phytoremediation. Two sides of the same coin. Plant Physiol 125: 164–167

    Google Scholar 

  • Hadjiliads ND (ed) (1997) Cytotoxicity, mutagenic and carcinogenic potential of heavy metals related to human environment. NATO ASI series 2. Environment, vol 26. Kluwer, Dordrecht, pp 629

    Google Scholar 

  • Hansen D, Duda PJ, Zayed A, Terry N (1998) Selenium removal by constructed wetlands: role of biological volatilization. Environ Sci Technol 32: 591–597

    Article  CAS  Google Scholar 

  • Heaton ACP, Rugh CL, Wang N, Meagher RB (1998) Phytoremediation of mercury-and methylmercury-polluted soils using genetically engineered plants. J Soil Contam 7: 497–510

    Article  CAS  Google Scholar 

  • Homer FA, Reeves RD, Brooks RR, Baker AJM (1991) Characterization of the nickel-rich extract from the nickel hyperaccumulator Dichapetalum gelonioides. Phytochemistry 30: 2141–2145

    Article  CAS  Google Scholar 

  • Hossner LR, Loeppert, RH, Newton RJ, Szaniszlo PJ, Moses Attrep J (1998) Literature review: phytoaccumulation of chromium, uranium, and plutonium in plant systems. Amarillo National Resource Center for Plutonium

    Google Scholar 

  • Huang JW, Cunningham SD (1996) Lead phytoextraction: species variation in lead uptake and translocation. New Phytol 134: 75

    Article  CAS  Google Scholar 

  • Huang JW, Chen J, Berti WR, Cunningham SD (1997) Phytoremediation of lead contaminated soil: role of synthetic chelates in lead phytoextraction. Environ Sci Technol 31: 800–805

    Article  CAS  Google Scholar 

  • Huang JW, Blaylock MJ, Kapulnik Y, Ensley BD (1998) Phytoremediation of uranium-contaminated soils: role of organic acids in triggering uranium hyperaccumulation in plants. Environ Sci Technol 32: 2004–2008

    Article  CAS  Google Scholar 

  • Jaffre T, Brooks RR, Lee J, Reeves RD (1976) Sebertia acuminata: a nickel-accumulating plant from New Caledonia. Science 193: 579–580

    Google Scholar 

  • Kabata-Pendias A (2001) Trace elements in the soil and plants. CRC Press, Boca Raton Kadlec RH, Knight RL ( 1996 ) Treatment wetlands. Lewis Publ, Boca Raton

    Google Scholar 

  • Kadlec RH, Knight RL, Vymazal J, Brix H, Cooper P, Habert R (2000) Constructed wetlands for pollution control. Control processes, performance, design and operation. IWA Publ, London Kägi JHR (1991) Overview of metallothioneins. Methods Enzymol 205: 613–623

    Article  Google Scholar 

  • Kaltsikes PJ (2000) Phytoremediation—state of the art in Europe, an international comparison. Agricultural University of Athens, COST action 837, first workshop

    Google Scholar 

  • Krämer U, Cotter-Howells JD, Charnock JM, Baker AJM, Smith JAC (1996) Free histidine as a metal chelator in plants that accumulate nickel. Nature 373: 635–638

    Article  Google Scholar 

  • Krämer U, Smith R, Wenzel WW, Raskin I, Salt DE (1997) The role of metal transport and tolerance in nickel hyperaccumulation by Thlaspi goesingense halacsy. Plant Physiol 115: 1641

    PubMed  Google Scholar 

  • Laperche V, Logan TJ, Gaddam P, Traîna SJ (1997) Effect of apatite amendments on plant uptake of lead from contaminated soil. Environ Sci Technol 31: 2745–2753

    Article  CAS  Google Scholar 

  • Lasat MM, Baker AJM, Kochian LV (1996) Physiological characterization of root Zn2+ absorption and translocation to shoots in Zn hyperaccumulator and nonaccumulator speciesof Thlaspi. Plant Physiol 112: 1715–1722

    PubMed  CAS  Google Scholar 

  • Lasat MM, Norvell WA, Kochian LV (1997) Potential for phytoextraction of 137Cs from a contaminated soil. Plant Soil 195: 99–106

    Article  CAS  Google Scholar 

  • Lasat MM, Baker AJM, Kochian LV (1998a) Altered Zn compartmentation in the root symplasm and stimulated Zn absorption into the leaf as mechanisms involved in Zn hyperaccumulation in Thlaspi caerulescens. Plant Physiol 118: 875–883

    Article  PubMed  CAS  Google Scholar 

  • Lasat MM, Fuhrmann M, Ebbs SD, Cornish JE, Kochian LV (1998b) Phytoremediation of a radiocesium-contaminated soil: evaluation of cesium-137 bioaccumulation in the shoots of three plant species. J Environ Qual 27: 165–169

    Article  CAS  Google Scholar 

  • Lasat MM, Pence NS, Garvin DF, Ebbs SD, Kochian LV (2000) Molecular physiology of zinc transport in the Zn hyperaccumulator Thlaspi caerulescens. J Exp Bot 51: 71–79

    Article  PubMed  CAS  Google Scholar 

  • Lefebvre DD, Miki DBL, Laliberte JF (1987) Mammalian metallothioneins functions in plants. Bio Technol 5: 1053–1056

    Article  CAS  Google Scholar 

  • Ma LQ, Komar KM, Tu C, Zhang W, Cai Y, Kennelley ED (2001) A fern that hyperaccumulates arsenic. Nature 409: 579

    Article  PubMed  CAS  Google Scholar 

  • Macnair MR, Cumbes QJ, Meharg AA (1992) The genetics of arsenate tolerance in Yorkshire fog, Holcus lanatus L. Heredity 69: 325–335

    Google Scholar 

  • Maiti IB, Wagner GJ, Hunt AG (1991) Light inducible and tissue specific expression of a chimeric mouse metallothionein cDNA gene in tobacco. Plant Sci 76: 99–107

    Article  CAS  Google Scholar 

  • Matsumoto H (2002) Metabolism of organic acids and metal tolerance in plants exposed to aluminum In: Prasad MNV, Strzalka K (eds) Physiology and biochemistry of metal toxicity and tolerance in plants, Kluwer, Dordrecht, pp 95–109

    Google Scholar 

  • McBride MB (1994) Environmental chemistry of soils. Oxford University Press, New York, pp 336337

    Google Scholar 

  • McIntyre T, Lewis GM (1997) Advancement of phytoremediation as an innovative environmental technology for stabilization, remediation, or restoration of contaminated sites. J Soil Contam 6: 227

    Article  CAS  Google Scholar 

  • Meharg AA, Macnair MR (1991) Uptake, accumulation, and translocation of arsenate in arsenate-tolerant and non-tolerant Holcus lanatus L. New Phytol 117: 225–231

    Article  CAS  Google Scholar 

  • Misra S, Gedamu L (1989) Heavy metal tolerant transgenic Brassica napus L. and Nicotiana tabacum L. plants. Theor Appl Genet 78: 161–168

    Article  CAS  Google Scholar 

  • Moffat AS (1999) Engineering plants to cope with metals. Science 285: 369–370

    Article  PubMed  CAS  Google Scholar 

  • Nandakumar PBA, Dushenkov S, Salt DE, Raskin I (1994) Crop Brassicas and phytoremediation—a novel environmental technology. Cruciferae Newslett 16: 18–19

    Google Scholar 

  • Nandakumar PBA, Dushenkov S, Motto H, Raskin I (1995) Phytoextraction: the use of plants to remove heavy metals from soils. Environ Sci Technol 29: 1232–1238

    Article  Google Scholar 

  • Negri CM, Hinchman RR (2000) The use of plants for the treatment of radionuclides. Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment, chap 8. Wiley-Interscience, New York

    Google Scholar 

  • Odum HT (2000) Heavy metals in the environment. Using wetlands for their removal. CRC Press, Boca Raton, p 401

    Google Scholar 

  • Ortiz DF, Ruscitti T, McCue KF, Ow DV (1995) Transport of metal-binding peptides by HMT1, a fission yeast ABC-type B vacuolar membrane protein. J Biol Chem 270: 4721–4728

    Article  PubMed  CAS  Google Scholar 

  • Otte ML, Kearns CC, Doyle MO (1995) Accumulation of arsenic and zinc in the rhizosphere of wetland plants. Bull Environ Contam Toxicol 55: 154–161

    Article  PubMed  CAS  Google Scholar 

  • Ow DW (1996) Heavy metal tolerance genes: prospective tools for bioremediations. Res Consery Recycl 18: 135–149

    Article  Google Scholar 

  • Palmer CE, Warwick S, Keller W (2001) Brassicaceae ( Cruciferae) family, plant biotechnology and phytoremediation. Int J Phytoremed 3: 245–287

    Google Scholar 

  • Pence NS, Larsen PB, Ebbs SD, Letham DL, Lasat MM, Garvin DF, Eide D, Kochian LV (2000) The molecular physiology of heavy metal transport in the Zn Cd hyperaccumulator Thlaspi caerulescens. Proc Natl Acad Sci USA 97: 4956–4960

    Article  PubMed  CAS  Google Scholar 

  • Peterson PJ (1983) Adaptation to toxic metals. In: Robb DA, Pierpoint WS (eds) Metals and micro-nutrients: uptake andutilization by plants. Academic Press, London, pp 51–69

    Google Scholar 

  • Pilon-Smits E, Pilon M (2000) Breeding mercury-breathing plants for environmental cleanup. Trends Plant Sci 5: 235–236

    Article  PubMed  CAS  Google Scholar 

  • Pilon-Smits EAH, Hwang S, Lytle CM, ZhuYL, Tay JC, Bravo RC, Chen Y, Leustek T, Terry N (1999) Overexpression of ATP sulfurylase in Indian mustard leads to increased selenate uptake, reduction, and tolerance. Plant Physiol 119: 123–132

    Google Scholar 

  • Pollard JA, Baker AJM (1997) Deterence of herbivory by zinc hyperaccumulation in Thlaspi caerulescens (Brassicacea). New Phytol 135: 655–658

    Article  CAS  Google Scholar 

  • Prasad MNV (1999) Metallothioneins and metal binding complexes in plants. In: Prasad MNV, Hagemeyer J (eds) Heavy metal stress in plants: from molecules to ecosystems. Springer, Berlin Heidelberg New York, pp 51–72

    Chapter  Google Scholar 

  • Prasad MNV (2001a) Metals in the environment—analysis by biodiversity. Dekker, New York

    Google Scholar 

  • Prasad MNV (2001b) Bioremediation potential of Amaranthaceae. In: Leeson A, Foote EA, Banks MK, Magar VS (eds) Phytoremediation, wetlands, and sediments. Proceedings of the 6th international in situ and on-site bioremediation symposium, vol 6(5). Battelle Press, Columbus, OH, pp 165–172

    Google Scholar 

  • Prasad MNV, Freitas H (1999) Feasible biotechnological and bioremediation strategies for serpentine soils and mine spoils. Electr J Biotechnol 2: 35–50. Website: http: ejb.ucv.cl or

    Google Scholar 

  • Prasad MNV, Hagemeyer J (1999) Heavy metal stress in plants—from molecules to ecosystems. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  • Prasad MNV, Strzalka K (eds) (2002) Physiology and biochemistry of metal toxicity and tolerance in plants. Kluwer, Dordrecht, 460 pp

    Google Scholar 

  • Raskin I (1996) Plant genetic engineering may help with environmnetal cleanup. Proc Natl Acad Sci USA 93: 3164–3166

    Article  PubMed  CAS  Google Scholar 

  • Raskin I, Ensley BP (2000) Phytoremediation of toxic metals—using plants to clean up the environment. Wiley, New York

    Google Scholar 

  • Raskin I, Nanda Kumar PBA, Dushenkov S, Salt DE (1994) Bioconcentration of heavy metals by plants. Curr Opin Biotechnol 5: 285–290

    Article  CAS  Google Scholar 

  • Raskin I, Smith RD, Salt DE (1997) Phytoremediation of metals: using plants to remove pollutants from the environment. Curr Opin Biotechnol 8: 221–226

    Article  PubMed  CAS  Google Scholar 

  • Rauser WE (1999) Structure and functions of metal chelators produced by plants: the case for organic acids, amino acids, phytin, and metallothioneins. Cell Biochem Biophys 31: 19–46

    Article  PubMed  CAS  Google Scholar 

  • Rauser WE (2000) The role of thiols in plants under metal stress, In: Brunold C, Rennenberg H, De Kok LJ (eds) Sulfur nutrition and sulfur assimilation in higher plants. Haupt, Bern, pp 169–183

    Google Scholar 

  • Reeves RD, Baker AJM (1999). Metal-accumulating plants. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York, pp 193–229

    Google Scholar 

  • Reeves RD, Brooks RR (1983) European species of Thlaspi L. ( Cruciferae) as indicators of nickel and zinc. J Geochem Explor 18: 275–283

    Google Scholar 

  • Robinson BH, Chiarucci A, Brooks RR, Petit D, Kirkman JH, Gregg PEH, de Dominicis V (1997a) The nickel hyperaccumulator plant Alyssum bertolonii as a potential agent for phytoremediation and phytomining of nickel. J Geochem Explor 59 (2): 75

    Article  CAS  Google Scholar 

  • Robinson BH, Brooks RR, Howes AW, Kirkman JH, Gregg PEH (1997b) The potential of the high-biomass nickel hyperaccumulator Berkheya coddii for phytoremediation and phytomining. J Geochem Explor 60 (2): 115–126

    Article  CAS  Google Scholar 

  • Rugh CL, Wilde HD, Stack NM, Thompson DM, Summers AO, Meagher RB (1996) Mercuric ion reduction and resistance in transgeneic Arabidopsis thaliana plants expressing a modified bacterial merA gene. Proc Natl Acad Sci USA 93: 3182–3187

    Article  PubMed  CAS  Google Scholar 

  • Rugh CL, Gragson GM, Meagher RB (1998) Toxic mercury reduction and remediation using transgenic plants with modified bacterial genes. HortScience 33: 618–621

    Google Scholar 

  • Saier MH JR (2000) A functional-phylogenetic classification system for transmembrane solute transporters. Microbiol Mol Biol Rev 64: 354–411

    Article  PubMed  CAS  Google Scholar 

  • Salt DE, Thurman DA, Sewell AK (1989) Copper phytochelatin of Mimulus guttatus. Proc R Soc Lond B 236: 79–89

    Article  CAS  Google Scholar 

  • Salt DE, Blaylock M, Nanda Kumar PBA, Dushenkov S, Ensley BD, Chet I, Raskin I (1995) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Biotechnology 13: 468–474

    Article  PubMed  CAS  Google Scholar 

  • Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Annu Rev Plant Physiol Plant Mol Biol 49: 643–668

    Article  PubMed  CAS  Google Scholar 

  • Salt DE, Prince RC, Baker AJM, Raskin I, Pickering IJ (1999) Zinc ligands in the metal hyperaccumulator Thlaspi caerulescens as determined using X-ray absorption spectroscopy. Environ Sci Technol 33: 713–717

    Article  CAS  Google Scholar 

  • Samecka-Cymerman A, Kempers AJ (1996) Bioaccumulation of heavy metals by aquatic macrophytes around Wroclaw, Poland. Ecotoxicol Environ Saf 35: 242

    Google Scholar 

  • Sanità di Toppi L, Prasad MNV, Ottonello S (2002) Metal chelating peptides and proteins in plants. In: Prasad MNV, Strzalka K (eds) Physiology and biochemistry of metal toxicity and tolerance in plants. Kluwer, Dortrecht, pp 59–93

    Google Scholar 

  • Saxena PK, KrishnaRaj S, Dan T, Perras MR, Vettakkorumakankav NN (1999) Phytoremediation of metal contaminated and polluted soils. In: Prasad MNV, Hagemeyer J (eds) Heavy metal stress in plants: from molecules to ecosystems. Springer, Berlin Heidelberg New York, pp 305–329

    Chapter  Google Scholar 

  • Schäfer HJ, Haag-Kerwer A, Rausch T (1998) cDNA cloning and expression analysis of genes encoding GSH synthesis in roots of the heavy-metal accumulator Brassica juncea L.: evidence for Cd-induction of a putative mitochondrial ‘y-glutamylcysteine synthetase isoform. Plant Mol Biol 37: 87–97

    Google Scholar 

  • Schmöger MEV, Oven M, Grill E (2000) Detoxification of arsenic by phytochelatins in plants. Plant Physiol 122: 793–801

    Article  PubMed  Google Scholar 

  • Stomp AM, Han KH, Wilbert S, Gordon MP, Cunningham SD (1994) Genetic strategies for enhancing phytoremediation. Ann NY Acad Sci 721: 481–491

    Article  PubMed  CAS  Google Scholar 

  • Terry N, Banuelos G (2000) Phytoremediation of contaminated soil and water. Lewis Publ, Boca Raton

    Google Scholar 

  • Terry N, Zayed AM (1998) Phytoremediation of selenium. In: Frankenberger WT, Engberg RA (eds) Environmental chemistry of selenium. Dekker, New York

    Google Scholar 

  • Tessier A, Campbell PGC, Bisson M (1979) Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem 51: 844–850

    Article  CAS  Google Scholar 

  • Tomsett AB, Sewell AK, Jones SJ, de Miranda J, Thurman DA (1992). Metal-binding proteins and metal-regulated gene expression in higher plants. In: Wray JL (ed) Society for experimental biology seminar series 49: inducible plant proteins, Cambridge University Press, Cambridge, pp 1–24

    Google Scholar 

  • Trampczynska A, Gawronski SW, Kutrys S (2001) Canna x generalis as a plant for phytoextraction of heavy metals in urbanized area. Zeszyty Naukowe Politechniki Slaskiej 45 (1487): 71–74

    Google Scholar 

  • Vangronsveld J, Cunningham SD (1998) Metal-contaminated soils: in-situ inactivation and phytorestoration. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Varennes A, de Torres MO, Coutinho JF, Rocha MMGS, Neto MMPM, De-Varennes A (1996) Effects of heavy metals on the growth and mineral composition of a nickel hyperaccumulator. J Plant Nutr 19: 669–676

    Article  Google Scholar 

  • Vassil A, Kapulnik Y, Raskin I, Salt DE (1998) The role of EDTA in lead transport and accumulation by Indian mustard. Plant Physiol 117: 447–453

    Article  PubMed  CAS  Google Scholar 

  • Vazquez MD, Barcelo J, Poschenrieder C, Madico J, Hatton P, Baker AJM, Cope GH (1992) Localization of zinc and cadmium in Thlaspi caerulescens ( Brassicaceae), a metallophyte that can hyperaccumulate both metals. J Plant Physiol 140: 350–355

    Google Scholar 

  • Vazquez MD, Poschenreider C, Barcelo J, Baker AJM, Hatton P, Cope GH (1994) Compartmentalization of zinc in roots and leaves of the zinc hyperaccumulator Thlaspi caerulescens J. C. Presl. Bot Acta 107: 243–250

    Google Scholar 

  • Vymazal J (1996) Constructed wetlands for wastewater treatment in the Czech Republic: the first 5 years experience. Water Sci Technol 34 (11): 159–165

    Article  CAS  Google Scholar 

  • Watanabe ME (1997) Phytoremediation on the brink of commercialization. Environ Sci Technol 31: 182–186

    Article  Google Scholar 

  • Wenzel WW, Adriano DC, Alloway B, Doner HE, Keller C, Lepp NW, Mench M, Naidu R, Pierzynski GM (eds) (1999) Proceedings of the extended abstracts of the 5th international conference on biogeochemistry of trace elements, Vienna, vols 1 and 2, pp 1191

    Google Scholar 

  • Wise, DL, Trantolo DJ, Cichon, EJ, Inyang HI, Stottmeister U (2000) Bioremediation of contaminated soils. Dekker, New York

    Google Scholar 

  • Zhu YL, Pilon-Smits EAH, Tarun AS, Weber SU, Jouanin L, Terry N (1999b) Cadmium tolerance and accumulation in Indian mustard is enhanced by overexpressing glutamylcysteine synthase. Plant Physiol 121: 1169–1177

    Article  PubMed  CAS  Google Scholar 

  • Zhu YL, Pilon-Smits EAH, Jouanin L, Terry N (1999a) Overexpression of glutathione synthetase in Indian mustard enhances cadmium accumulation and tolerance. Plant Physiol 119: 73–79

    Article  CAS  Google Scholar 

  • Zorpas AA, Constantinides T, Vlyssides AG, Aralambous I, Loizidou.M (1999) Heavy metal uptake by natural zeolite and metals partitioning in sewage sludge compost. Bioresource Technol 71: 113–119

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Prasad, M.N.V. (2004). Phytoremediation of Metals and Radionuclides in the Environment: The Case for Natural Hyperaccumulators, Metal Transporters, Soil-Amending Chelators and Transgenic Plants. In: Prasad, M.N.V. (eds) Heavy Metal Stress in Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-07743-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-07743-6_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07268-0

  • Online ISBN: 978-3-662-07743-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics