Skip to main content

Metal Availability, Uptake, Transport and Accumulation in Plants

  • Chapter
Heavy Metal Stress in Plants

Abstract

Heavy metals are natural elements that are found at various high background levels (Table 1.1) at different places throughout the world, due to various concentrations in the bedrock. Thus, for example, Ni, Cr and Co are abundant in serpentine soils, whereas Zn, Pb and Cd are high in calamine soils. Heavy metals are persistent and cannot be deleted from the environment. Thus, a problem arises when their availability is high due to high background levels or to human activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arduini I, Godbold DL, Onnis A (1996) Cadmium and copper uptake and distribution in Mediterranean tree seedlings. Phys Plant 97: 111–117

    Article  CAS  Google Scholar 

  • Arazi T, Sunkar R, Kaplan B, Fromm H (1999) A tobacco plasma membrane calmodulin-binding transporter confers Nie+ tolerance and Pb2+ hypersensitivity in transgenic plants. Plant J Cell Mol Biol 20: 171–182

    Article  CAS  Google Scholar 

  • Baker AJM (1981) Accumulators and excluders–strategies in the response of plants to heavy metals. J Plant Nutr 3: 643–654

    Article  CAS  Google Scholar 

  • Baker AJM, McGrath SP, Reeves RD, Smith JAC (1998) Metal hyperaccumulator plants: a review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils. In: Terry N, Banuelos GS (eds) Phytoremediation. Ann Arbor Press, Ann Arbor, MI

    Google Scholar 

  • Beauford W, Barber J, Barringer AR (1977) Uptake and distribution of mercury within higher plants. Physiol Plant 39: 261–265

    Article  CAS  Google Scholar 

  • Beckett RP, Brown DH (1984) The control of cadmium uptake in the lichen genus Peltigra. J Exp Bot 35: 1071–1082

    Article  CAS  Google Scholar 

  • Blinda A, Koch B, Ramanjulu S, Dietz K-J (1997) De novo synthesis and accumulation of apoplastic proteins in leaves of heavy metal-exposed barley seedlings. Plant Cell Environ 20: 969–981

    Article  CAS  Google Scholar 

  • Bowen JE (1987) Physiology of genotyping differences in zinc and copper uptake in rice and tomato. Plant Soil 99: 115–125

    Article  CAS  Google Scholar 

  • Brix H (1993) Macrophyte-mediated oxygen transfer in wetlands: Transport mechanisms and rates. In: Moshire GA (ed) Contructed wetland for water quality improvement. Lewis Publ, Boca Raton, pp 391–398

    Google Scholar 

  • Brooks RR, Morrison RS, Reeves RD, Malaisse F (1978) Copper and cobalt in African species of Aeolanthus Mart. ( Plectranthinae, Labiatae). Plant Soil 50: 503–507

    Google Scholar 

  • Brooks RR, Morrison RS, Reeves RD, Dudley TR, Akman Y (1979) Hyperaccumulation of nickel by Alyssum Linnaeus ( Cruciferae ). Proc R Soc Lond B Biol Sci 203: 387–403

    Google Scholar 

  • Brooks RR, Thow JM, Veillon J, Jaffre T (1981) Studies on manganese-accumulating Alyxia from New Caledonia. Taxon 30: 420–423

    Article  Google Scholar 

  • Brown PH, Dunemann L, Schulz R, Marschner H (1989) Influence of redox potential and plant species on the uptake of nickel and cadmium from soil. Z Pflanzenernaehr Bodenkd 152: 85–91

    Article  CAS  Google Scholar 

  • Buffle J (1988) Complexation reactions in aquatic systems, an analytical approach. John Wiley, Chichester

    Google Scholar 

  • Cataldo DA, Garland TR, Wildung RE (1978) Nickel in plants. II. Distribution and chemical form in soybean plants. Plant Physiol 62: 566–570

    Google Scholar 

  • Cataldo DA, Garland TR, Wildung RE (1983) Cadmium uptake kinetics in intact soybean plants. Plant Physiol 73: 844–848

    Article  PubMed  CAS  Google Scholar 

  • Cavallini A, Natali L, Durante M, Maserti B (1999) Mercury uptake, distribution and DNA affinity in durum wheat (Triticum durum Desf.) plants. Sci Tot Environ 243 /244: 119–127

    Google Scholar 

  • Chang AC, Page AL, Warneke JE (1987) Long-term sludge application on cadmium and zinc accumulation in Swiss chard and radish. J Environ Qual 16: 217–221

    Article  CAS  Google Scholar 

  • Chardonnens AN, Koevoets PLM, van Zanten A, Schat H, Verkleij JAC (1999a) Properties of enhanced tonoplast zinc transport in naturally selected zinc-tolerant Silene vulgaris. Plant Phys 120: 779–785

    Article  CAS  Google Scholar 

  • Chardonnens AN, Ten Bookum WM, Vellinga S, Schat H, Verkleij JAC, Ernst WHO (1999b) Allocation patterns of zinc and cadmium in heavy metal tolerant and sensitive Silene vulgaris. J Plant Phys 155: 778–787

    Article  CAS  Google Scholar 

  • Chawla G, Singh J, Viswanathan PN (1991) Effect of pH and temperature on the uptake of cadmium by Lemna minor L. Bull Environ Contam Toxicol 47: 84–90

    Article  PubMed  CAS  Google Scholar 

  • Clarkson DT (1966) Effect of aluminum and some other trivalent metal cations on cell division in the root apices of Allium cepa. Ann Bot NS 29: 309–315

    Google Scholar 

  • Cohen CK, Fox TC, Garvin DF, Kochian LV (1998) The role of iron-deficiency stress responses in stimulating heavy-metal transport in plants. Plant Physiol 116: 1063–1072

    Article  PubMed  CAS  Google Scholar 

  • Costa G, Morel JL (1994) Water relations, gas exchange and amino acid content in Cd-treated lettuce. Plant Physiol Biochem 32: 561–570

    CAS  Google Scholar 

  • Cutler JM, Rains DW (1974) Characterization of cadmium uptake by plant tissue. Plant Physiol 54: 67–71

    Article  PubMed  CAS  Google Scholar 

  • Dahmani-Muller H, van Oort F, Gélie B, Balabane M (2000) Strategies of heavy metal uptake by three plant species growing near a metal smelter. Environ Pollut 109: 231–2380

    Article  PubMed  CAS  Google Scholar 

  • Dean JG, Bosqui FL, Lanouette VH (1972) Removing heavy metals from waste water. Environ Sci Technol 6: 518–522

    Article  CAS  Google Scholar 

  • DeKock PC, Mitchell RL (1957) Uptake of chelated metals by plants. Soil Sci 84: 55–62

    Article  Google Scholar 

  • Du ShH, Fang ShC (1982) Uptake of elemental mercury vapour by C3 and C4 species. Environ Exp Bot 22: 437–443

    Article  CAS  Google Scholar 

  • Ekvall L, Greger M (2003) Effects of environmental biomass-producing factors on Cd uptake in two Swedish ecotypes of Pinus sylvestris ( L. ). Environ Qual 121: 401–411

    Google Scholar 

  • Fan TWM, Lane AN, Shenker M, Bartley JP, Crowley D, Higashi RM (2001) Comprehensive chemical profiling of gramineous plant root exudates using high-resolution NMR and MS. Phytochemistry 57: 209–221

    Article  PubMed  CAS  Google Scholar 

  • Förstner U (1979) Metal transfer between solid and aqueous phases. In: Förstner U, Wittmann GTW (eds) Metal pollution in the aquatic environment. Springer, Berlin Heidelberg New York, pp 197–270

    Chapter  Google Scholar 

  • Förstner U, Wittmann GTW (eds) (1979) Metal pollution in the aquatic environment. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Fortin C, Campbell PGC (2001) Thiosulphate enhances silver uptake by a green alga: role of anion transporters in metal uptake. Adv Sci Technol 35: 2214–2218

    Article  CAS  Google Scholar 

  • Franke W (1967) Mechanism of foliar penetration of solutions. Annu Rev Plant Physiol 18:281-,;00 Galli U, Schüepp H, Brunold C (1994) Heavy metal binding by mycorrhizal fungi. Physiol Plant 92: 364–368

    Google Scholar 

  • Gobran GR, Clegg S, Courchesne F (1999) The rhixosphere and trace element acquisition. In: Selim HM, Iskander A (eds) Fate and transport of heavy metals in the vadouse zone. CRC Press, Boca Raton, pp 225–250

    Google Scholar 

  • Greger M (1997) Willow as phytoremediator of heavy metal contaminated soil. Proceedings of the 2nd international conference on element cycling in the environment, Warsaw, pp 167–172

    Google Scholar 

  • Greger M, Bertell G (1992) Effects of Cat+ and Cd2+ on the carbohydrate metabolism in sugar beet (Beta vulgaris). J Exp Bot 43: 167–173

    Article  CAS  Google Scholar 

  • Greger M, Johansson M (1992) Cadmium effects on leaf transpiration of sugar beet (Beta vulgaris). Physiol Plant 86: 465–473

    Article  CAS  Google Scholar 

  • Greger M, Kautsky L (1993) Use of macrophytes for mapping bioavailable heavy metals in shallow coastal areas, Stockholm, Sweden. Appl Geochem Suppl 2: 37–43

    Google Scholar 

  • Greger M, Landberg T (1995) Cadmium accumulation in Salix in relation to cadmium concentration in the soil. Report from Vattenfall Utveckling AB 1995 /9 (in Swedish)

    Google Scholar 

  • Greger M, Landberg T (1999) Use of willow in phytoextraction. Int J Phytorem 1: 115–124

    Article  CAS  Google Scholar 

  • Greger M, Landberg T (2001) Investigations on the relation between biomass production and uptake of Cd, Cu and Zn in Salix viminalis. In: Greger M, Landberg T, Berg B (eds) Salix clones with different properties to accumulate heavy metals for production of biomass. Academitryck AB, Edsbruk, ISBN 91–631–1493–3, pp 19 – 27

    Google Scholar 

  • Greger M, Lindberg S (1986) Effects of Cdz+ and EDTA on young sugar beets (Beta vulgaris). I. Cdz+ uptake and sugar accumulation. Physiol Plant 66: 69–74

    Article  CAS  Google Scholar 

  • Greger M, Brammer E, Lindberg S, Larsson G, Idestam-Almquist J (1991) Uptake and physiological effects of cadmium in sugar beet (Beta vulgaris) related to mineral provision. J Exp Bot 42: 729737

    Google Scholar 

  • Greger M, Tillberg J-E, Johansson M (1992) Aluminum effects on Scenedesmus obtusiusculus with different phosphorus status. I. Mineral uptake. Physiol Plant 84: 193–201

    Google Scholar 

  • Greger M, Johansson M, Stihl A, Hamza K (1993) Foliar uptake of Cd by pea (Pisum sativum) and sugar beet (Beta vulgaris). Physiol Plant 88: 563–570

    Article  CAS  Google Scholar 

  • Greger M, Kautsky L, Sandberg T (1995) A tentative model of Cd uptake in Potamogeton pectinatus in relation to salinity. Environ Exp Bot 35: 215–225

    Article  CAS  Google Scholar 

  • Hagemeyer J, Lohrie K (1995) Distribution of Cd and Zn in annual xylem rings of young spruce trees (Picea abies (L.) Karst.) grown in contaminated soi 1. Trees 9: 195–199

    Google Scholar 

  • Haghiri FE (1974) Plant uptake of cadmium as influenced by cation exchange capacity, organic matter, zinc, and soil temperature. J Environ Qual 3: 180–182

    Article  CAS  Google Scholar 

  • Hardiman RT, Jacoby B (1984) Absorption and translocation of Cd in bush beans (Phaseolus vulgaris). Physiol Plant 61: 670–674

    Article  CAS  Google Scholar 

  • Hardiman RT, Jacoby B, Banin A (1984) Factors affecting the distribution of cadmium, copper and lead and their effect upon yield and zinc content in bush beans (Phaseolus vulgaris L.). Plant Soil 81: 17–27

    Article  CAS  Google Scholar 

  • Harmens H, Koevoets PLM, Verkleij JAC, Ernst WHO (1994) The role of low molecular weight organic acids in mechanisms of increased zinc tolerance in Silene vulgaris ( Moench) Garcke. New Phytol 126: 615–621

    Google Scholar 

  • Hemphill DD, Rule J (1978) Foliar uptake and translocation of 210Pb and 109Cd. Int Conf Heavy Metals Environ, Symp. Proc. II(I), Toronto, Ontario, 1975, pp 77–86

    Google Scholar 

  • Herren T, Feller U (1994) Transfer of zinc from xylem to phloem in the penduncle of wheat. J Plant Nutr 17: 1587–1598

    Article  CAS  Google Scholar 

  • Herren T, Feller U (1996) Effect of locally increased zinc contents on zinc transport from the flag leaf lamina to the maturing grains of wheat. J Plant Nutr 19: 379–387

    Article  CAS  Google Scholar 

  • Holloway PJ (1982) Structure and histochemistry of plant cuticular membranes: an overview. In:

    Google Scholar 

  • Cutler DF, Alvin KL, Price CE (eds) The plant cuticle. Academic Press, London, pp 1–32 Hooda PS, Alloway BJ (1993) Effects of time and temperature on the bioavailability of Cd and Pb from sludge-amended soils. J Soil Sci 44: 97–110

    Article  Google Scholar 

  • Hu S, Tang CH, Wu M (1996) Cadmium accumulation by several seaweeds. Sci Total Environ 187: 65–71

    Article  CAS  Google Scholar 

  • Huang JW, Chen J, Berti, WR, Cunningham SD (1997) Phytoremediation of lead-contaminated soils: role of synthetic chelates in lead phytoextraction. Environ Sci Technol 31: 800–805

    Article  CAS  Google Scholar 

  • Hunt GM, Baker EA (1982) Developmental and environmental variations in plant epicuticular vaxes: some effects on the penetration of naphthylacetic acid. In: Cutler DF, Alvin KL, Price CE (eds) The plant cuticle. Academic Press, London, pp 279–292

    Google Scholar 

  • Jackson PJ, Unkefer PJ, Delhaize E, Robinson NJ (1990) Mechanisms of trace metal tolerance in plants. In: Katterman F (ed) Environmental injury to plants. Academic Press, San Diego, pp 231–258

    Google Scholar 

  • Jarvis SC, Jones LHP, Hopper MJ (1976) Cadmium uptake from solution by plants and its transport from roots to shoots. Plant Soil 44: 179–191

    Article  CAS  Google Scholar 

  • Johansson L-A (1985) Chromatographic analysis of epicuticular plant waxes. Sv UtsädesförenTidskr 95: 129–136

    Google Scholar 

  • Joner EJ, Leyval C (2001) Time-course of heavy metal uptake in maize and clover as affected by root density and different mycorrhizal inoculuation regimes. Biol Fertil Soils 33: 351–357

    Article  CAS  Google Scholar 

  • Kabata-Pendias A, Pendias H (1992) Trace elements in soils and plants, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  • Keller P, Deuel H (1957) Kationenaustauschkapazität and Pektingehalt von Pflanzenwurzeln. Z Pflansenerngehr Dueng Bodenkd 79: 119–131

    Article  CAS  Google Scholar 

  • King LD (1988) Effect of selected soil properties on cadmium content in tobacco. J Environ Qual 17: 251–255

    Article  CAS  Google Scholar 

  • Knauer K, Behra R, Sigg L (1997) Adsorption and uptake of copper by the green alga Scenedesmus subspicatus ( Chlorophyta ). J Phycol 33: 596–601

    Google Scholar 

  • Kocjan G, Samardakiewicz S, Wozny A (1996) Regions of lead uptake in Lemna minor plants and localization of the metal within selected parts of the root. Biol Plant 38: 107–117

    Article  CAS  Google Scholar 

  • König N, Baccini P, Ulrich B (1986) The influence of natural organic matter on the transport of metals in soils and soil solutions in an acidic forest soil (in German). Z Pflanzenemaehr Bodenkd 149: 68–82

    Article  Google Scholar 

  • Kozuchowski J, Johnson DL (1978) Gaseous emissions of mercury from an aquatic vascular plant. Nature 274: 468–469

    Article  CAS  Google Scholar 

  • Krämer U, Cotter-Howells JD, Charnock JM, Baker AJM, Smith JAC (1996) Free histidine as a metal chelator in plants that accumulate nickel. Nature 379: 635–639

    Article  Google Scholar 

  • Lagerwerff JV (1971) Uptake of cadmium, lead and zinc by radish from soil and air. Soil Sci 111: 129–133

    Article  CAS  Google Scholar 

  • Lagerwerff JV (1972) Pb, Hg, and Cd as contaminants. In: Mortvedt JJ, Giordano PM, Lindsay WL (eds) Micronutrients in agriculture. Soil Sci Soc Am, Madison, pp 593–636

    Google Scholar 

  • Landberg T, Greger M (1994a) Influence of selenium on uptake and toxicity of copper and cadmium in pea (Pisum sativum) and wheat (Triticum aestivum). Physiol Plant 90: 637–644

    Article  CAS  Google Scholar 

  • Landberg T, Greger M (1994b) Can heavy metal tolerant clones of Salix be used as vegetation filters on heavy metal contaminated land? In: Aronsson P, Perttu K (eds) Willow vegetation filters for municipal wastewaters and sludges. A biological purification system. Swed Univ Agric Sci, Report 50. SLU Info/Repro, Uppsala, pp 145–152

    Google Scholar 

  • Landberg T, Greger M (1996) Differences in uptake and tolerance to heavy metals in Salix from unpolluted and polluted areas. Appl Geochem 11: 175–180

    Article  CAS  Google Scholar 

  • Lasat MM, Pence NS, Garvin DF, Ebbs SD, Kochian LV (2000) Molecular physiology of zinc transport in the Zn hyperaccumulator Thlaspi caerulescens. J Exp Bot 51: 71–79

    Article  PubMed  CAS  Google Scholar 

  • Lindberg SE, Meyers TP, Taylor GE Jr, Turner RR, Schroeder WH (1992) Atmosphere-surface exchange of mercury in a forest: results of modeling and gradient approaches. J Geophys Res 97: 2519–2528

    Article  CAS  Google Scholar 

  • Little P (1973) A study of heavy metal contamination of leaf surfaces. Environ Pollut 5: 159–172

    Article  CAS  Google Scholar 

  • Little P, Martin MH (1972) A survey of zinc, lead and cadmium in soil and natural vegetation around a smelting complex. Environ Pollut 3: 241–254

    Article  CAS  Google Scholar 

  • Lodenius M, Kuusi T, Laaksovirta K, Liukkonen-Lilja H, Piepponen S (1981) Lead, cadmium and mercury contents of fungi in Mikkeli, SE Finland. Ann Bot Fenn 18: 183–186

    Google Scholar 

  • Logan TJ, Chaney RL (1983) Metals. In: Page AL (ed) Utilization of municipal wastewater and sludge on land. University of California, Riverside, CA, pp 235–326

    Google Scholar 

  • Ma JF, Ryan PR, Delhaize E (2001a) Aluminium tolerance in plants and the complexing role of organic acids. Trends Plant Sci 6: 273–278

    Article  PubMed  CAS  Google Scholar 

  • Ma LQ, Komar KM, Tu C, Zhang W, Cai Y, Kennelley ED (2001b) A fern that hyperaccumulates arsenic. Nature 409: 579

    Article  PubMed  CAS  Google Scholar 

  • Macek T, Kotrba P, Suchova M, Skacel F, Demnerova K, Ruml T (1994) Accumulation of cadmium by hairy-root cultures of Solanum nigrum. Biotechnol Lett 16: 621–624

    Article  CAS  Google Scholar 

  • Maier-Maercker U (1979) “Peristomatal transpiration” and stomatal movements: a controversial view. I. Additional proof of peristomatal transpiration by photography and a comprehensive discussion in the light of recent results. Z Pflanzenphysiol 91:25–43

    Google Scholar 

  • Markert B (1994) Plants as biomonitors–potential advantages and problems. In: Adriano DC, Chen ZS, Yang SS (eds) Biogeochemistry of trace elements. Science and Technology Letters, Northwood, NY, pp 601–613

    Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic Press, Cambridge

    Google Scholar 

  • Martin HW, Kaplan DI (1998) Temporal changes in cadmium, thallium, and vanadium mobility in soil and phytoavailability under field conditions. Water Air Soil Pollut 101: 399–410

    Article  CAS  Google Scholar 

  • Martin TJ, Juniper EB (1970) The cuticles of plants. Arnold, Edinburgh

    Google Scholar 

  • Mathys W (1977) The role of malate, oxalate and mustard oil glucosides in the evolution of zinc-resistance in herbage plants. Physiol Plant 40: 130–136

    Article  CAS  Google Scholar 

  • Mautsoe PJ, Beckett RP (1996) A preliminary study of the factors affecting the kinetics of cadmium uptake by the liverwort Dumortiera hirsuta. S Afr J Bot 62: 332–336

    CAS  Google Scholar 

  • McGrath SP, Sanders JR, Shalaby MH (1988) The effect of soil organic matter levels on soil solution concentrations and extractabilities of manganese, zinc and copper. Geoderma 42: 177–188

    Article  CAS  Google Scholar 

  • Meharg AA (1994) Integrated tolerance mechanisms: constitutive and adaptive plant responses to elevated metal concentrations in the environment. Plant Cell Environ 17: 989–939

    Article  CAS  Google Scholar 

  • Mench M, Martin E (1991) Mobilization of cadmium and other metals from two soild by root exudates of Zea mays L., Nicotiana tabacum L. and Nicotiana rustica L. Plant Soil 132: 187–196

    CAS  Google Scholar 

  • Mench M, Morel JL, Guckert A (1987) Metal binding properties of high molecular weight soluble exudates from maize (Zea mays L.) roots. Biol Fertil Soils 3: 165–169

    Article  CAS  Google Scholar 

  • Mench M, Morel JL, Cuckert A, Guillet B (1988) Metal binding with root exudates of low molecular weight. J Soil Sci 33: 521–527

    Google Scholar 

  • Mengel K, Kirkby EA (1982) Principles of plant nutrition. International Potash Institute Bern, Switzerland

    Google Scholar 

  • Mérida T, Schönherr J, Schmidt HW (1981) Fine structure of plant cuticles in relation to water permeability: the fine structure of the cuticle of Clivia miniata Reg. leaves. Planta 152: 259–267

    Article  Google Scholar 

  • Momoshima N, Bondietti EA (1990) Cation binding in wood: applications to understanding historical changes in divalent cation availability to red spruce. Can J For Res 20: 1840–1849

    Article  Google Scholar 

  • Morel F, McDuff RE, Morgan JJ (1973) Interactions and chemostasis in aquatic chemical systems: role of pH, pE, solubility, and complexation. In: Singer PC (ed) Trace metals and metal-organic interactions in natural waters. Ann Arbor Press, Ann Arbor, MI, pp 157–200

    Google Scholar 

  • Morel JL, Mench M, Guckert A (1986) Measurement of Pb2+, Cu2+ and Cd2+ binding with mucilage exudates from maize (Zea mays L.) roots. Biol Fertil Soils 2: 29–34

    Article  Google Scholar 

  • Munda IM, Hudnik V (1988) The effects of Zn, Mn and Co accumulation on growth and chemical composition of Fucus vesiculosus L. under different temperature and salinity conditions. Mar Ecol 9: 213–225

    Article  CAS  Google Scholar 

  • Muranyi A, Seeling B, Ladewig E, Jungk A (1994) Acidification in the rhizosphere of rape seedlings and in bulk soil by nitrification and ammonium uptake. Z Pflanzenernähr Bodenkd 157: 61–65

    Article  CAS  Google Scholar 

  • Nieboer E, Richardson DHS (1980) The replacement of the nondescript term “heavy metals” by biologically and chemically significant classification of metal ions. Environ Pollut (Ser B) 1: 2–26

    Article  Google Scholar 

  • OsterAs AH, Ekvall L, Greger M (200) Sensitivity to, and accumulation of, cadmium in Betula pendula, Picea abies, and Pinus sylvestris seedlings from different regions in Sweden. Can J Bot 78: 1440–1449

    Google Scholar 

  • Pearson R (1968) Hard and soft acids and bases. HSAB, part I. Fundamental principles. J Chem Educ 45: 581–587

    Article  CAS  Google Scholar 

  • Puthotâ V, Cruz-Ortega R, Johnson J, Ownby J (1991) An ultrastructural study of the inhibition of mucilage reaction in the wheat root cap by aluminium. In: Wright RJ, Baligar VC, Murrmann RP (eds) Plant-soil interactions at low pH. Kluwer, Dordrecht, pp 779–787

    Chapter  Google Scholar 

  • Ray TC, Callow JA, Kennedy JF (1988) Composition of root-mucilage polysaccharides from Lepidium sativum. J Exp Bot 39: 1249–1261

    Article  CAS  Google Scholar 

  • Reeves RD, Baker AJM (1998) Metal-accumulating plants. In: Ensley BD, Raskin I (eds) Phytoremediation of toxic metals: using plants to clean the environment. Wiley, New York, pp 193–230

    Google Scholar 

  • Reeves RD, Brooks RR (1983) Hyperaccumulation of lead and zinc by two metallophytes from mining areas of central Europe. Environ Pollut 31: 277–285

    Article  CAS  Google Scholar 

  • Ribeyre F, Boudou A (1994) Experimental study of inorganic and methylmercury bioaccumulation by four species of freshwater rooted macrophytes from water and sediment contamination sources. Ecotox Environ Safety 28: 270–286

    Article  CAS  Google Scholar 

  • Riddell-Black D (1994) Heavy metal uptake by fast growing willow species. In: Aronsson P, Perttu K (eds) Willow vegetation filters for municipal wastewaters and sludges. A biological purification system. Swed Univ Agric Aci, Report 50. SLU Info/Repro, Uppsala, pp 145–152

    Google Scholar 

  • Römheld V (1991) The role of phytosiderophores in acquisition of iron and other micronutrients in graminaceous species: an ecological approach. Plant Soil 130: 127–134

    Article  Google Scholar 

  • Ross S (1994) Retention, transformation and mobility of toxic metals in soils. In: Ross S (ed) Toxic metals in soil-plant systems. Wiley, Chichester

    Google Scholar 

  • Rugh CL, Bizily SP, Meagher RB (2000) Phytoreduction of environmental mercury pollution. In: Ensley BD, Raskin I (eds) Phytoremediation of toxic metals: using plants to clean the environment. Wiley, New York, pp 151–169

    Google Scholar 

  • Salim R, Al-Subu MM, Douleh A, Khalaf S (1992) Effects on growth and uptake of broad beans (Vicia fabae L) by root and foliar treatments of plants with lead and cadmium. J Environ Sci Health A 27: 1619–1642

    Google Scholar 

  • Salomons W, Förstner U (1984) Metals in the hydrocycle. Springer, Berlin Heidelberg New York Santa-Maria GE, Cogliatti D (1998) The regulation of zinc in wheat plants. Plant Sci 137:1–12 Sauvé S, Cook N, Hendershot WH, McBride MB (1996) Linking plant tissue concentrations and soil

    Google Scholar 

  • copper pools in urban contaminated soils. Environ Pollut 94:153–157

    Google Scholar 

  • Schönherr H, Bukovac MI (1970) Preferential polar pathways in the cuticle and their relationship to ectodesmata. Planta 92: 189–201

    Article  Google Scholar 

  • Siegel AM, Puerner NJ, Speitel TW (1974) Release of volatile mercury from vascular plants. Physiol Plant 32: 174–176

    Article  CAS  Google Scholar 

  • Sposito G (1989) The chemistry of soils. Oxford University Press, Oxford

    Google Scholar 

  • Steffens JC (1990) The heavy metal-binding peptides of plants. Annu Rev Plant Physiol Plant Mol Biol 41: 553–575

    Article  CAS  Google Scholar 

  • Stephan UW, Scholz G (1993) Nicotinamine: mediator of transport of iron and heavy metals in phloem? Physiol Plant 88: 522–529

    Article  CAS  Google Scholar 

  • Stoltz E, Greger M (2002a) Accumulation properties of As, Cd, Cu, Pb and Zn by four wetland plant species growing on submerged mine tailings. Environ Exp Bot 47: 271–280

    Google Scholar 

  • Stoltz E, Greger M (2002b) Cottongrass effects on trace elements in submersed mine tailings. J Environ Qual 31: 1477–1483

    Article  PubMed  CAS  Google Scholar 

  • Svenningsson M, Liljenberg C (1986) Changes in cuticular transpiration rate and cuticular lipids of oat (Avena sativa) seedlings induced by water stress. Physiol Plant 66: 9–14

    Article  CAS  Google Scholar 

  • Temmerman LO, Hoenig M, Scokart PO (1984) Determination of “normal” levels and upper limit values of trace elements in soils. Z Pflanzen Bodenkd 147: 687–694

    Article  Google Scholar 

  • Thursby GB (1984) Root-exudated oxygen in the aquatic angiosperm Ruppia maritima. Mar Ecol Prog Ser 16: 303–305

    Article  Google Scholar 

  • Van de Geijn SC, Petit CM (1979) Transport of divalent cations. Cation exchange capacity of intact xylem vessels. Plant Physiol 64: 954–958

    Google Scholar 

  • Van Hoof NALM, Koevoets PLM, Hakvoont HWJ, Ten Bookum WM, Schat H, Verkleij JAC, Ernst WHO (2001) Enhanced ATP-dependent copper efflux across the root cell plasma membrane in copper-tolerant Silene vulgaris. Physiol Plant 113: 225–232

    Article  PubMed  Google Scholar 

  • Metal Availability, Uptake, Transport and Accumulation in Plants Verloo M, Eeckhout M (1990) Metal species transformations in soil: an analytical approach. Int J Environ Anal Chem 39: 179–186

    Article  Google Scholar 

  • Vesely J, Majer V (1994) The effect of pH and atmospheric deposition on concentrations of trace elements in acidified freshwaters: a statistical approach. Water Air Soil Pollut 88: 227–246

    Article  Google Scholar 

  • White MC, Decker AM, Chaney RL (1981a) Metal complexation in xylem fluid; I: Chemical composition of tomato and soyabean stem exudate. Plant Physiol 67: 292–300

    Google Scholar 

  • White MC, Baker FD, Chaney RL, Decker AM (1981b) Metal complexation in xylem fluid; II: Theoretical equilibrium model and computational computer program. Plant Physiol 67: 301–310

    Google Scholar 

  • Williams DE, Vlamis J, Purkite AH, Corey JE (1980) Trace element accumulation movement, and distribution in the soil profile from massive applications of sewage sludge. Soil Sci 1292: 119132

    Google Scholar 

  • Wierzbicka M (1998) Lead in the apoplast of Allium cepa L. root tips–ultrastructural studies. Plant Sci 133: 105–119

    Article  CAS  Google Scholar 

  • Wolterbeek HT (1987) Cation exchange in isolated xylem cell walls of tomato. I. Cd2+ and Rb2+ exchange in adsorption experiments. Plant Cell Environ 10: 30–44

    Google Scholar 

  • Wood T, Bormann FH (1975) Increases in foliar leaching caused by acidification of an artificial mist. Ambio 4: 169–171

    CAS  Google Scholar 

  • Wright D, Otte ML (1999) Wetland plant effects on the biogeochemistry of metals beyond the rhizosphere. Biology and environment. Proc Royal Irish Acad 99B: 3–10

    Google Scholar 

  • Yamada Y, Bukovac MJ, Wittwer SH (1964) Ion binding by surfaces of isolated cuticular membranes. Plant Physiol 39: 978–982

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Greger, M. (2004). Metal Availability, Uptake, Transport and Accumulation in Plants. In: Prasad, M.N.V. (eds) Heavy Metal Stress in Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-07743-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-07743-6_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07268-0

  • Online ISBN: 978-3-662-07743-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics