Advertisement

Die mikrobiologische Gefährdung von Lebensmitteln und ihre Vermeidung

  • Rudolf Heiss
  • Karl Eichner
Chapter
  • 197 Downloads

Zusammenfassung

Durch Mikroorganismen verderben vor allem Frischlebensmittel. Der Zweck der Haltbarmachungsverfahren besteht bevorzugt darin, Mikroorganismen entweder abzutöten oder sie in einen solchen Zustand zu versetzen, daß sie sich nicht oder nicht über das zulässige Maß hinaus vermehren können. Lebensmittelvergiftungen durch Mikroorganismen muß durch Hygienemaßnahmen vorgebeugt werden.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Alimenta 2 (1974) 1Google Scholar
  2. 2.
    Lee A (1978) What constitutes an infective dose of a food poisening organism. Food Technol Australia 30: 332–335Google Scholar
  3. 3.
    Mossel DAA, Microbiology of Foods, Utrecht; Faculty of Veterinary Medicine 1977 (mit über 2000 Literaturstellen)Google Scholar
  4. 4.
    WHO Expert Commitee Microbiological Aspects of Food Hygiene. Techn Rep, Series 598, Geneva: World Health Organisation 1976Google Scholar
  5. 5.
    Sinell H-J, Einführung in die Lebensmittelhygiene. 2. Aufl. Berlin u. Hamburg: P. Parey 1985Google Scholar
  6. 6.
    Krämer J, Lebensmittel-Mikrobiologie. Stuttgart: Ulmer 1987Google Scholar
  7. 7.
    Kunz B, Grundriß der Lebensmittelmikrobiologie. Hamburg: Behr 1988Google Scholar
  8. 8.
    FAO/WHO (1976) Techn Rep 598, GenfGoogle Scholar
  9. 9.
    Concon JM (1988) Toxicology. Part B. New York: Marcel Dekker Inc: 677–1001Google Scholar
  10. 10.
    Reiß J, Mykotoxine in Lebensmitteln. Stuttgart-New York: Fischer 1981Google Scholar
  11. 11.
    Taniwiki MH et al. (1992) Migration of patulin in apples. J Food Prot 55: 902–904Google Scholar
  12. 12.
    Schindler PRG (1984) Fäkale Verunreinigung von Trinkwasser. Bundesgesundheitsblatt 27: 302–305Google Scholar
  13. 13.
    Cann DC et al. (1988) The control of the botulism hazard in hot smoked trout and mackerel. Zitiert nach Hackney CR and A Dicharry: Seefood-borne bacterial pathogenes of maritim origin. Food Technol 42: 4, 188Google Scholar
  14. 14.
    Faber JM, Brown BC (1990) Effect of prior heat shock on heat resistance of Listeria monocytogenes. Meat Appl and Environment Microbiol 56: 1584–1587Google Scholar
  15. 15.
    McLean et al. (1986) J Bacteriol 95: 1207Google Scholar
  16. 16.
    Petran RL, Zottola EA (1989) A study of factors affecting growth and recovery of Listeria monocytogenes Scott A. J Food Sci 54: 458–460CrossRefGoogle Scholar
  17. 17.
    Sperber WH (1983) Influence of water activity on foodborne bacteria — A Review. J Food Protection 46: 142Google Scholar
  18. 18.
    Bullerman LB et al. (1984) Formation and control of mycotoxins in food. J Food Protect 47: 637–644Google Scholar
  19. Bullerman LB (1985) Interactive effects of temperature and pH on mycotoxin production. Lebensm-Wissensch + Technol 18: 197–200Google Scholar
  20. 19.
    Ismaiel A, Pierson MD (1990) Inhibition of growth and germination of Cl. Botulinum 33A, 40B and 1623E by essential oil of spices. J Food Sci 55: 1676–1678CrossRefGoogle Scholar
  21. 20.
    Faber JM (1993) Current research on Listeria monocytogenes on food: An overview. J Food Prot 56: 640–643Google Scholar
  22. 21.
    Heffnawy YA et al. (1993) Sensitivity of L. monocytogenes to selected spices. J Food Prot 56: 876–878Google Scholar
  23. 22.
    Harder u Veldkamp (1971) aus Ingram et al.: Inhibition and Inactivation of Vegetative Microbes. London: Academic Press 1976, p 130Google Scholar
  24. 23.
    Greene VW, Jezeskri JJ (1954) Appl Microbiol 2: 110Google Scholar
  25. 24.
    Buske FF (1983) Bacterial spore resistance to acid. Food Technol 37: 89–99Google Scholar
  26. 25.
    Genigeneorges CA (1989) Present state of knowledge on Staphylococcal intoxication. Int J Food Microbiol 9: 327–360CrossRefGoogle Scholar
  27. 26.
    Sand EMJ (1970) Brauwelt 110: 225Google Scholar
  28. 27.
    Microbial Ecology of Foods (1980) New York: Academic Press 1: 101Google Scholar
  29. 28.
    Christian JHB u. nach Scott WJ (1965) Austr J Biol Sci 6:565–573; (1955)Google Scholar
  30. Christian JHB u. nach Scott WJ (1965) Austr J Biol Sci 8: 490–497Google Scholar
  31. Christian JHB u. nach Scott WJ Adv Food Res (1957) 7:83–127Google Scholar
  32. 29.
    Kaplow M (1970) Commercial development of intermediate moisture foods. Food Technol 24: 889–893Google Scholar
  33. Troller JA (1979) Food spoilage by microorganisms tolerating low aw environments. Food Technol 33: 72–76Google Scholar
  34. Troller JA, Christian JHB, Water Activity and Food. New York, San Francisco, London: Academic Press 1978, Appendix A and B, pp 214–216Google Scholar
  35. 30.
    Microbial Ecology of Foods (1980) New York: Academic Press 1: 79–80Google Scholar
  36. 31.
    Northolt et al. (1982) Prevention of mold growth and toxin production through control of environmental conditions. J Food Protect 45: 520Google Scholar
  37. 32.
    Monsch MH et al. (1987) Equations for sorption curves of some humectants. Lebensm Wiss u Technol 20: 320–322Google Scholar
  38. 33.
    Robinson RA, Stokes RH, Electrolytic Solutions. New York: Academic Press 1959Google Scholar
  39. 34.
    Bean PG, Roberts TA, The effect of pH, NaC1 and NaNO2 on heat resistance of staphylococcus aureus and growth of damaged cell in laboratory media. Proc IV Int Congr Food Sci and Technol Vol III, S 93–102Google Scholar
  40. 35.
    Roberts TA, Ingram M (1973) Inhibition of growth of Cl. Botul. at different pH-values by sodium chloride and sodium nitrite. J Food Technol 8: 467–475Google Scholar
  41. Ingram M (1977) Probleme bei der Verwendung von Nitrit. Fleischwirtschaft 31: 212–217Google Scholar
  42. 36.
    OVERVIEW on botulism. Food Technol (1982) 36: 87–118Google Scholar
  43. 37.
    Perigo JA, Roberts TA (1968) Inhibition of clostridia by nitrite. J Food Technol 3: 91–94CrossRefGoogle Scholar
  44. 38.
    Buchanan RL et al. (1989) Effects and interactions of temperature, pH-value, atmosphere, sodium chloride and sodium nitrite on the growth of Listeria monocytogenes. J Food Prot 52: 849Google Scholar
  45. 39.
    Zaika LL et al. (1991) Effect of sodium nitrite on growth of shigella flexeri. J Food Prot 54: 424–428Google Scholar
  46. 40.
    Uzelac G, Stille B (1977) Die Überlebensfähigkeit von Bakterien fäkalen Ursprungs in Abhängigkeit von der Wasseraktivität. Deutsche Lebensm Rdsch 73: 325–329Google Scholar
  47. 41.
    Scott VN (1989) Interaction of factors to control microbial spoilage of refrigerated food. J Food Prot 53: 431–493Google Scholar
  48. 42.
    Microbial Ecology of Foods (1980) New York: Academic Press 1: 219Google Scholar
  49. 43.
    Sperber WH (1983) Influence of water activity on foodborne bacteria — a review. J of Food Protect 46: 142–150Google Scholar
  50. 44.
    Alzamora SM, Chirife J (1983) The water activity of canned foods. J Food Sci. 48: 1385–1387CrossRefGoogle Scholar
  51. 45.
    Leistner L, Rödel W, The significance of water activity for microorganisms in meat. In: Water Relations of Foods. New York: Academic Press 1975Google Scholar
  52. 46.
    Scott VN (1989) Interaction of factors to control microbial spoilage of refrigerated foods. J Food Protect 52: 431–435Google Scholar
  53. 47.
    Pierson MD et al. (1970) Microbiological, sensory and pigment changes of aerobically and anaerobically packaged beef. Food Technol 24: 129–132Google Scholar
  54. 48.
    Styles MF et al. (1991) Response of Listeria monocytogenes and Vibrio parahaemolyticus to high hydrostatic pressure. J Food Sci 56: 1404–1407CrossRefGoogle Scholar
  55. 49.
    Jahnke H (1993) Labor-Hochdruckmaschine zum schonenden Kaltsterilisieren. ZFL 44: 8183Google Scholar
  56. 50.
    Seyderhelm I, Knorr D (1992) Reduction of bacillus stearothermophilus spores by combined high pressure and temperature treatments. ZFL 43: 17–20Google Scholar
  57. 51.
    Buchheim W u Prokopek D (1992) Die Hochdruckbehandlung. Deutsche Milchwirtschaft 43: 1374–1378Google Scholar
  58. 52.
    Takahashi Y et al. (1993) Microbicidal effect of hydrostatic pressure on satsuma mandarin juice. Int J Food Sci and Technol 28: 95–102CrossRefGoogle Scholar
  59. 53.
    Ogava H (1990) Pressure inactivation of yeasts, molds and pectinase-esterase in satsuma mandarin juice. Agr Biol Chem 54: 1219–1225CrossRefGoogle Scholar
  60. 54.
    Mertens B (1993) Developments in high pressure food processing. I u II ZFL 44:100–104, 182–187Google Scholar
  61. 55.
    Farr D (1990) High pressure technology in the food industry. Trends in Food Science Technol 14–16Google Scholar
  62. 56.
    Hayanawa I (1994) Application of high pressure for spore inactivation and protein denaturation J Food Sci. 59: 159Google Scholar
  63. 57.
    Die biologische Konservierung von Lebensmitteln. Bericht des Instituts für Sozialmedizin und Epidemiologie des Bundesgesundheitsamtes, Berlin, 4 (1992)Google Scholar
  64. 58.
    Hennlich W, Cerny G (1990) Minderung des Hygienerisikos bei Feinkostsalaten durch Schutzkulturen. ZFL I 41: 806–814Google Scholar
  65. 59.
    Hennlich W, Cerny G (1991) Minderung des Hygienerisikos bei Feinkostsalaten durch Schutzkulturen. ZFL II 42: 6–12Google Scholar
  66. 60.
    Hennlich W, Cerny G (1992) Minderung des Hygienerisikos bei Feinkostsalaten durch Schutzkulturen. ZFL III 43: 329–332Google Scholar
  67. 61.
    Okereke A et al. (1991) Bacteriocin inhibition of Clostridium botulinum spores by lactic acid bacteria. J Food Prot 54: 349–356Google Scholar

Überblicksliteratur

  1. Perigo JA (1966) Inst of Pack J 12: 10, 18, 34Google Scholar
  2. Schmidt-Lorenz W, Behaviour of microorganisms at low temperatures. Bull de l’Inst internat du Froid. No 1 und 2, 1967Google Scholar
  3. Schmidt-Lorenz W, Gutschmidt J (1968) Mikrobiologische und sensorische Veränderungen gefrorener Lebensmittel. Lebensm Wissensch u Technol 1: 26–43Google Scholar
  4. Mossel AA (1969) Nahrungsmittel als Umwelt für Mikroorganismen, die Lebensmittel gesundheitsschädlich machen. Alimenta 8: 8Google Scholar
  5. Bensink JC, Cleaning and sanitation working parties CSIRO 1970/71, p 3–14Google Scholar
  6. Corlett DA (1974) Setting microbiological limits in the food industry. Food Technol 28: 37Google Scholar
  7. Frazier WC, Westhoff DC, Food Microbiology. New York: McGraw-Hill 1978Google Scholar
  8. Frank H, In: Berg, Diehl, Frank (Hrsg) Rückstände und Verunreinigungen in Lebensmitteln. Darmstadt: Steinkopff 1978Google Scholar
  9. Schmidt-Lorenz W (1979) Mikrobiologisch-hygienische Anforderungen an die küchentechnischen Erhitzungs-und Kühlverfahren. Swiss Food 1: 27–41Google Scholar
  10. Ayres JC, Mundt JO, Sandine WE, Microbiology of Foods. San Francisco: Freeman 1980Google Scholar
  11. Internat Commission on Microbiol Spec for Foods: Factors Affecting Life and Death ofGoogle Scholar
  12. Microorganisms. New York-London-Toronto-Sydney-San Francisco: Academic Press 1980Google Scholar
  13. OVERVIEW (1993) Use of hydrostatic pressure in food processing. Food Technology 47 No 6: 149–172Google Scholar
  14. Carlez A et al. (1994) Bacterial growth during chilled storage of pressure treatet minced meat. Lebensm-Wins u Technol 27 No 1: 48–54Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Rudolf Heiss
    • 1
  • Karl Eichner
    • 2
  1. 1.Instituts für Lebensmitteltechnologie und Verpackung e. V., Institut der Fraunhofer-GesellschaftTechnischen Universität MünchenMünchenDeutschland
  2. 2.Institut für LebensmittelchemieUniversität MünsterMünsterDeutschland

Personalised recommendations