Physiological and Molecular Responses of Bacillus subtilis to Hypertonicity: Utilization of Evolutionarily Conserved Adaptation Strategies

  • Gudrun Holtmann
  • Clara D. Boiangiu
  • Jeanette Brill
  • Tamara Hoffmann
  • Anne U. Kuhlmann
  • Susanne Moses
  • Gabriele Nau-Wagner
  • Nathalie Pica
  • Erhard Bremer


Variations in the supply of water and the concomitant changes in salinity and osmolality are among the most significant environmental parameters affecting the survival and growth of microorganisms (Galinski and Trüper 1994; Csonka and Epstein 1996; Wood 1999; Bremer and Krämer 2000). Microorganisms can colonize a wide variety of ecological niches with a considerable spectrum of salinitiFs and osmotic conditions that range from concentrated salt brines to fresh water sources (Ventosa et al.1998). Furthermore, within a single bacterial habitat, there also can be drastic fluctuations from the prevalent osmotic milieu.


Bacillus Subtilis Compatible Solute Glycine Betaine Osmotic Condition Mechanosensitive Channel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alcayaga C, Venegas R, Carrasco A, Wolff D (1992) Ion channels from the Bacillus subtilis plasma membrane incorporated into planar lipid bilayers. FEBS Lett 311: 246–250PubMedCrossRefGoogle Scholar
  2. Alice A, Sanchez-Rivas C (1997) DNA supercoiling and osmoresistance in Bacillus subtilis 168. Curr Microbiol 35: 309–315PubMedCrossRefGoogle Scholar
  3. Arakawa T, Timasheff SN (1985) The stabilization of proteins by osmolytes. Biochem J 47: 411–414Google Scholar
  4. Belitsky BR, Brill J, Bremer E, Sonenshein AL (2001) Multiple genes for the last step of proline biosynthesis in Bacillus subtilis. J Bacteriol 183: 4389–4392PubMedCrossRefGoogle Scholar
  5. Blount P, Moe PC (1999) Bacterial mechanosensitive channels: integrating physiology, structure and function. Trends Microbiol 7: 420–424PubMedCrossRefGoogle Scholar
  6. Boch J, Kempf B, Bremer E (1994) Osmoregulation in Bacillus subtilis: synthesis of the osmoprotectant glycine betaine from exogenously provided choline. J Bacteriol 176: 5364–5371PubMedGoogle Scholar
  7. Boch J, Kempf B, Schmid R, Bremer E (1996) Synthesis of the osmoprotectant glycine betaine in Bacillus subtilis: characterization of the gbsAB genes. J Bacteriol 178:5121– 5129Google Scholar
  8. Boch J, Nau-Wagner G, Kneip S, Bremer E (1997) Glycine betaine aldehyde dehydrogenase from Bacillus subtilis: characterization of an enzyme required for the synthesis of the osmoprotectant glycine betaine. Arch Microbiol 168: 282–289PubMedCrossRefGoogle Scholar
  9. Bolen DW, Baskakov IV (2001) The osmophobic effect: natural selection of a thermodynamic force in protein folding. J Mol Biol 310: 955–963PubMedCrossRefGoogle Scholar
  10. Booth IR, Louis P (1999) Managing hypoosmotic stress: aquaporins and mechanosensitive channels in Escherichia coli. Curr Opin Microbiol 2: 166–169PubMedCrossRefGoogle Scholar
  11. Bourot S, Sire O, Trautwetter A, Touze T, Wu F, Blanco C, Bernard T (2000) Glycine betaine-assisted protein folding in a lysA mutant of Escherichia coli. J Biol Chem 275: 1050–1056PubMedCrossRefGoogle Scholar
  12. Bremer E, Krämer R (2000) Coping with osmotic challenges: osmoregulation through accumulation and release of compatible solutes in bacteria. In: Storz G, Hengge-Aronis R (eds) Bacterial stress responses. ASM, Washington, DC, pp 79–97Google Scholar
  13. Brown AD (1976) Microbial water stress. Bacteriol Rev 40: 803–846PubMedGoogle Scholar
  14. Burg M, Kwon E, Kültz D (1997) Regulation of gene expression by hypertonicity. Annu Rev Physiol 59: 437–455PubMedCrossRefGoogle Scholar
  15. Calamita G (2000) The Escherichia coli aquaporin-Z water channel. Mol Microbiol 37: 254–262PubMedCrossRefGoogle Scholar
  16. Calamita G, Bishai WR, Preston GM, Guggino WB, Agre P (1995) Molecular cloning and characterization of AqpZ, a water channel from Escherichia coli. J Biol Chem 270: 29063–29066PubMedCrossRefGoogle Scholar
  17. Caldas T, Demont-Caulet N, Ghazi A, Richarme G (1999) Thermoprotection by glycine betaine and choline. Microbiology 145: 2543–2548PubMedGoogle Scholar
  18. Canovas D, Vargas C, Calderon MI, Ventosa A, Nieto JJ (1998) Characterization of the genes for the biosynthesis of the compatible solute ectoine in the moderately halophilic bacterium Halomonas elongata DSM 3043. Syst Appl Microbiol 21: 487–497PubMedCrossRefGoogle Scholar
  19. Canovas D, Borges N, Vargas C, Ventosa A, Nieto JJ, Santos H (1999) Role of N-y-acetyldiaminobutyrate as an enzyme stabilizer and an intermediate in the biosynthesis of hydroxyectoine. Appl Environ Microbiol 65: 3774–3779PubMedGoogle Scholar
  20. Canovas D, Fletcher SA, Hayashi M, Csonka LN (2001) Role of trehalose in growth at high temperature of Salmonella enterica serovar typhimurium. J Bacteriol 183: 3365–3371PubMedCrossRefGoogle Scholar
  21. Csonka LN, Epstein W (1996) Osmoregulation. In: Neidhard FC, Curtiss R III, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, Umbarger HE (eds) Escherichia coli and Salmonella. Cellular and molecular biology. ASM, Washington, DC, pp 1210–1223Google Scholar
  22. Da Costa MS, Santos H, Galinski EA (1998) An overview of the role and diversity of compatible solutes in Bacteria and Archaea. Adv Biochem Eng Biotechnol 61: 117–153PubMedGoogle Scholar
  23. Dartois V, Débarbouillé M, Kunst F, Rapoport G (1998) Characterization of a novel member of the DegS/DegU regulon affected by salt stress in Bacillus subtilis. J Bacteriol 180: 1855–1861Google Scholar
  24. Delamarche C, Thomas D, Rollander J-P, Froger A, Gouranton J, Svelto M, Agre P, Calamita C (1999) Visualization of AqpZ-mediated water permeability in Escherichia coli by cryoelectron microscopy. J Bacteriol 181: 4193–4197PubMedGoogle Scholar
  25. Delaunay AJ, Verma DPS (1993) Proline biosynthesis and osmoregulation in plants. Plant J 4: 215–223CrossRefGoogle Scholar
  26. Dennis PP, Shimmin LC (1997) Evolutionary divergence and salinity-mediated selection in halophilic archaea. Microbiol Mol Biol Rev 61: 90–104PubMedGoogle Scholar
  27. Deuerling E, Paeslack B, Schumann W (1995) The ftsH gene of Bacillus subtilis is transiently induced after osmotic and temperature upshift. J Bacteriol 177: 4105–4112PubMedGoogle Scholar
  28. Durell SR, Guy HR (1999) Structural models of the KtrB, TrkH, and Trk1,2 symporters based on the structure of the KcsA K+ channel. Biophys J 77: 789–807CrossRefGoogle Scholar
  29. Durell SR, Hao Y, Nakamura T, Bakker EP, Guy HR (1999) Evolutionary relationship between K+ channels and symporters. Biophys J 77: 775–788PubMedCrossRefGoogle Scholar
  30. Galinski EA, Trüper HG (1994) Microbial behaviour in salt-stressed ecosystems. FEMS Microbiol Rev 15: 95–108CrossRefGoogle Scholar
  31. Göller K, Ofer A, Galinski EA (1998) Construction and characterization of an NaCl-sensitive mutant of Halomonas elongata impaired in ectoine biosynthesis. FEMS Microbiol Lett 161: 293–300PubMedCrossRefGoogle Scholar
  32. Hecker M, Völker U (2001) General stress response of Bacillus subtilis and other bacteria. Adv Microbial Physiol 44: 35–91CrossRefGoogle Scholar
  33. Hoffmann T, Schutz A, Brosius M, Völker A, Völker U, Bremer E (2002) High-salinityinduced iron limitation in Bacillus subtilis. J Bacteriol 184: 718–727PubMedCrossRefGoogle Scholar
  34. Hohmann S (1997) Shaping up: the response of yeast to osmotic stress. In: Hohmann S, Mager WH (eds) Yeast stress responses. Springer, Berlin Heidelberg New York, pp 101–145Google Scholar
  35. Holtmann G, Bakker EP, Uozumi N, Bremer E (2003) KtrAB and KtrCD: two K+ uptake systems in Bacillus subtilis and their role in adaptation to hypertonicity. J Bacteriol 185: 1289–1298PubMedCrossRefGoogle Scholar
  36. Höltje JV (1998) Growth of the stress-bearing and shape-maintaining murein sacculus of Escherichia coli. Microbiol Mol Biol Rev 62: 181–203PubMedGoogle Scholar
  37. Horsburgh MJ, Moir A (1999) an ECF RNA polymerase sigma factor of Bacillus subtilis 168, is essential for growth and survival in high concentrations of salt. Mol Microbiol 32: 41–50Google Scholar
  38. Jebbar M, von Blohn C, Bremer E (1997) Ectoine functions as an osmoprotectant in Bacillus subtilis and is accumulated via the ABC-transport system OpuC. FEMS Microbiol Lett 154: 325–330CrossRefGoogle Scholar
  39. Kappes R, Bremer E (1998) Response of Bacillus subtilis to high osmolarity: uptake of carnitine, crotonobetaine and y-butyrobetaine via the ABC transport system OpuC. Microbiology 144: 83–90CrossRefGoogle Scholar
  40. Kappes RM, Kempf B, Bremer E (1996) Three transport systems for the osmoprotectant glycine betaine operate in Bacillus subtilis: characterization of OpuD. J Bacteriol 178: 5071–5079PubMedGoogle Scholar
  41. Kappes RM, Kempf B, Kneip S, Boch J, Gade J, Meier-Wagner J, Bremer E (1999) Two evolutionarily closely related ABC-transporters mediate the uptake of choline for synthesis of the osmoprotectant glycine betaine in Bacillus subtilis. Mol Microbiol 32: 203–216PubMedCrossRefGoogle Scholar
  42. Kempf B, Bremer E (1995) OpuA, an osmotically regulated binding protein-dependent transport system for the osmoprotectant glycine betaine in Bacillus subtilis. J Biol Chem 270: 16701–16713PubMedCrossRefGoogle Scholar
  43. Kempf B, Bremer E (1998) Uptake and synthesis of compatible solutes as microbial stress responses to high osmolality environments. Arch Microbiol 170: 319–330PubMedCrossRefGoogle Scholar
  44. Kempf B, Gade J, Bremer E (1997) Lipoprotein from the osmoregulated ABC transport system OpuA of Bacillus subtilis: purification of the glycine betaine binding protein and characterization of a functional lipidless mutant. J Bacteriol 179: 6213–6220PubMedGoogle Scholar
  45. Krispin O, Allmansberger R (1995) Changes in DNA supertwist as a response of Bacillus subtilis towards different kinds of stress. FEMS Microbiol Lett 134: 129–135PubMedCrossRefGoogle Scholar
  46. Kuhlmann AU, Bremer E (2002) Osmotically regulated synthesis of the compatible solute ectoine in Bacillus pasteurii and related Bacillus spp. Appl Environ Microbiol 68: 772–783PubMedCrossRefGoogle Scholar
  47. Kunst F, Rapoport G (1995) Salt stress is an environmental signal affecting degradative enzyme synthesis in Bacillus subtilis. J Bacteriol 177: 2403–2407PubMedGoogle Scholar
  48. Le Rudulier D, Strøm AR, Dandekar AM, Smith LT, Valentine RC (1984) Molecular biology of osmoregulation. Science 224: 1064–1068PubMedCrossRefGoogle Scholar
  49. Levina N, Totemeyer S, Stokes NR, Louis P, Jones MA, Booth IR (1999) Protection of Escherichia coli cells against extreme turgor by activation of MscS and MscL mechanosensitive channels: identification of genes required for MscS activity. EMBO J 18: 1730–1737CrossRefGoogle Scholar
  50. Lippert K, Galinski AA (1992) Enzyme stabilization by ectoine-type compatible solutes: protection against heating, freezing and drying. Appl Microbiol Biotechnol 37: 61–65CrossRefGoogle Scholar
  51. Lopez CS, Heras H, Ruzal SM, Sanchez-Rivas C, Rivas EA (1998) Variations of the envelope composition of Bacillus subtilis during growth in hyperosmotic medium. Curr Microbiol 36: 55–61PubMedCrossRefGoogle Scholar
  52. Lopez CS, Heras H, Garda H, Ruzal S, Sanchez-Rivas C, Rivas E (2000) Biochemical and biophysical studies of Bacillus subtilis envelopes under hyperosmotic stress. Int J Food Microbiol 55: 137–142PubMedCrossRefGoogle Scholar
  53. Louis P, Galinski EA (1997) Characterization of genes for the biosynthesis of the compatible solute ectoine from Marinococcus halophilus and osmoregulated expression in Escherichia coli. Microbiology 143: 1141–1149PubMedCrossRefGoogle Scholar
  54. Martin DD, Ciulla RA, Roberts MF (1999) Osmoadaptation in archaea. Appl Environ Microbiol 65: 1815–1825PubMedGoogle Scholar
  55. Martins L, Huber R, Huber H, Stetter K, Da Costa M, Santos H (1997) Organic solutes in hyperthermophilic Archaea. Appl Environ Microbiol 63: 896–902PubMedGoogle Scholar
  56. McNeil SD, Nuccio ML, Hanson AD (1999) Betaines and related osmoprotectants. Targets for metabolic engineering of stress resistance. Plant Physiol 120: 945–950Google Scholar
  57. Measures JC (1975) Role of amino acids in osmoregulation of non-halophilic bacteria.Google Scholar
  58. Nature 257:398–400Google Scholar
  59. Mendum ML, Smith LT (2002) Characterization of glycine betaine porter I from Listeria monocytogenes and its roles in salt and chill tolerance. Appl Environ Microbiol 68: 813–819PubMedCrossRefGoogle Scholar
  60. Miller KJ, Wood JM (1996) Osmoadaptation by rhizosphere bacteria. Annu Rev Microbiol 50: 101–136PubMedCrossRefGoogle Scholar
  61. Moe PC, Blount P, Kung C (1998) Functional and structural conservation in the mechanosensitive channel MscL implicates elements crucial for mechanosensation. Mol Microbiol 28: 583–592PubMedCrossRefGoogle Scholar
  62. Nakamura T, Yuda R, Unemoto T, Bakker EP (1998) KtrAB, a new type of bacterial K(+)- uptake system from Vibrio alginolyticus. J Bacteriol 180: 3491–3494PubMedGoogle Scholar
  63. Nau-Wagner G, Boch J, Le Good JA, Bremer E (1999) High-affinity transport of cholineO-sulfate and its use as a compatible solute in Bacillus subtilis. Appl Environ Microbiol 65: 560–568PubMedGoogle Scholar
  64. Nyyssola A, Kerovuo J, Kaukinen P, von Weymarn N, Reinikainen T (2000) Extreme halophiles synthesize betaine from glycine by methylation. J Biol Chem 275:22196– 22201Google Scholar
  65. Ono H, Sawada, K, Khunjakr N, Tao T, Yamamoto M, Hiramoto M, Shinmyo A, Takano M, Murooka Y (1999) Characterization of biosynthetic enzymes for ectoine as a compatible solute in a moderately halophilic eubacterium, Halomonas elongata. J Bacteriol 181: 91–99PubMedGoogle Scholar
  66. Peters P, Galinski EA, Trüper HG (1990) The biosynthesis of ectoine. FEMS Microbiol Lett 71: 157–162CrossRefGoogle Scholar
  67. Petersohn A, Brigulla M, Haas S, Hoheisel JD, Völker U, Hecker M (2001) Global analysis of the general stress response of Bacillus subtilis. J Bacteriol 183: 5617–5631PubMedCrossRefGoogle Scholar
  68. Price CW (2000) Protective function and regulation of the general stress response in Bacillus subtilis and related Gram-positive bacteria. In: Storz G, Hengge-Aronis R (eds) Bacterial stress responses. ASM, Washington, DC, pp 179–197Google Scholar
  69. Roberts MF (2000) Osmoadaptation and osmoregulation in archaea. Front Biosci 5: 796–812CrossRefGoogle Scholar
  70. Roosild TP, Miller S, Booth IR, Choe S (2002) A mechanism of regulating transmembrane potassium flux through a ligand-mediated informational switch. Cell 109:781– 791Google Scholar
  71. Rübenhagen R, Morbach S, Kramer R (2001) The osmoreactive betaine carrier BetP from Corynebacterium glutamicum is a sensor for cytoplasmic K+. EMBO J 20: 5412–5420CrossRefGoogle Scholar
  72. Ruzal SM, López C, Rivas E, Sánchez-Rivas C (1998) Osmotic strength blocks sporulation at stage II by impeding activation of early sigma factors in Bacillus subtilis. Curr Microbiol 36: 75–79PubMedCrossRefGoogle Scholar
  73. Spiegelhalter F, Bremer E (1998) Osmoregulation of the opuE proline transport gene from Bacillus subtilis: contributions of the sigma A- and sigma B-dependent stress responsive promoters. Mol Microbiol 29: 285–296PubMedCrossRefGoogle Scholar
  74. Szabo I, Petronilli V, Zoratti M (1992) A patch-clamp study of Bacillus subtilis. Biochim Biophys Acta 1112: 29–38PubMedCrossRefGoogle Scholar
  75. Tholema N, Bakker EP, Suzuki A, Nakamura T (1999) Change to alanine of one out of four selectivity filter glycines in KtrB causes a two orders of magnitude decrease in the affinities for both K+ and Na+ of the Na+ dependent K+ uptake system KtrAB from Vibrio alginolyticus. FEBS Lett 450: 217–220PubMedCrossRefGoogle Scholar
  76. Ventosa A, Nieto JJ, Oren A (1998) Biology of moderately halophilic aerobic bacteria. Microbiol Mol Biol Rev 62: 504–544PubMedGoogle Scholar
  77. Völker U, Maul B, Hecker M (1999) Expression of the oB-dependent general stress regu- lon confers multiple stress resistance in Bacillus subtilis. J Bacteriol 181: 3942–3948PubMedGoogle Scholar
  78. Von Blohn C, Kempf B, Kappes RM, Bremer E (1997) Osmostress response in Bacillus subtilis: characterization of a proline uptake system ( OpuE) regulated by high osmolarity and the alternative transcription factor sigma B. Mol Microbiol 25: 175–187Google Scholar
  79. Welsh DT (2000) Ecological significance of compatible solute accumulation by microorganisms: from single cells to global climate. FEMS Microbiol Rev 24: 263–290PubMedCrossRefGoogle Scholar
  80. Whatmore AM, Reed RH (1990) Determination of turgor pressure in Bacillus subtilis: a possible role for K+ in turgor regulation. J Gen Microbiol 136: 2521–2526PubMedCrossRefGoogle Scholar
  81. Whatmore AM, Chudek JA, Reed RH (1990) The effects of osmotic upshock on the intracellular solute pools of Bacillus subtilis. J Gen Microbiol 136: 2527–2535PubMedCrossRefGoogle Scholar
  82. Wong LS, Johnson MS, Sandberg LB, Taylor BL (1995) Amino acid efflux in response to chemotactic and osmotic signals in Bacillus subtilis. J Bacteriol 177: 4342–4349PubMedGoogle Scholar
  83. Wood JM (1999) Osmosensing by bacteria: signals and membrane-based sensors. Microbiol Mol Biol Rev 63: 230–262PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Gudrun Holtmann
  • Clara D. Boiangiu
  • Jeanette Brill
  • Tamara Hoffmann
  • Anne U. Kuhlmann
  • Susanne Moses
  • Gabriele Nau-Wagner
  • Nathalie Pica
  • Erhard Bremer

There are no affiliations available

Personalised recommendations