Skip to main content

Physiological and Molecular Responses of Bacillus subtilis to Hypertonicity: Utilization of Evolutionarily Conserved Adaptation Strategies

  • Chapter
Halophilic Microorganisms

Abstract

Variations in the supply of water and the concomitant changes in salinity and osmolality are among the most significant environmental parameters affecting the survival and growth of microorganisms (Galinski and Trüper 1994; Csonka and Epstein 1996; Wood 1999; Bremer and Krämer 2000). Microorganisms can colonize a wide variety of ecological niches with a considerable spectrum of salinitiFs and osmotic conditions that range from concentrated salt brines to fresh water sources (Ventosa et al.1998). Furthermore, within a single bacterial habitat, there also can be drastic fluctuations from the prevalent osmotic milieu.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alcayaga C, Venegas R, Carrasco A, Wolff D (1992) Ion channels from the Bacillus subtilis plasma membrane incorporated into planar lipid bilayers. FEBS Lett 311: 246–250

    Article  PubMed  CAS  Google Scholar 

  • Alice A, Sanchez-Rivas C (1997) DNA supercoiling and osmoresistance in Bacillus subtilis 168. Curr Microbiol 35: 309–315

    Article  PubMed  CAS  Google Scholar 

  • Arakawa T, Timasheff SN (1985) The stabilization of proteins by osmolytes. Biochem J 47: 411–414

    CAS  Google Scholar 

  • Belitsky BR, Brill J, Bremer E, Sonenshein AL (2001) Multiple genes for the last step of proline biosynthesis in Bacillus subtilis. J Bacteriol 183: 4389–4392

    Article  PubMed  CAS  Google Scholar 

  • Blount P, Moe PC (1999) Bacterial mechanosensitive channels: integrating physiology, structure and function. Trends Microbiol 7: 420–424

    Article  PubMed  CAS  Google Scholar 

  • Boch J, Kempf B, Bremer E (1994) Osmoregulation in Bacillus subtilis: synthesis of the osmoprotectant glycine betaine from exogenously provided choline. J Bacteriol 176: 5364–5371

    PubMed  CAS  Google Scholar 

  • Boch J, Kempf B, Schmid R, Bremer E (1996) Synthesis of the osmoprotectant glycine betaine in Bacillus subtilis: characterization of the gbsAB genes. J Bacteriol 178:5121– 5129

    Google Scholar 

  • Boch J, Nau-Wagner G, Kneip S, Bremer E (1997) Glycine betaine aldehyde dehydrogenase from Bacillus subtilis: characterization of an enzyme required for the synthesis of the osmoprotectant glycine betaine. Arch Microbiol 168: 282–289

    Article  PubMed  CAS  Google Scholar 

  • Bolen DW, Baskakov IV (2001) The osmophobic effect: natural selection of a thermodynamic force in protein folding. J Mol Biol 310: 955–963

    Article  PubMed  CAS  Google Scholar 

  • Booth IR, Louis P (1999) Managing hypoosmotic stress: aquaporins and mechanosensitive channels in Escherichia coli. Curr Opin Microbiol 2: 166–169

    Article  PubMed  CAS  Google Scholar 

  • Bourot S, Sire O, Trautwetter A, Touze T, Wu F, Blanco C, Bernard T (2000) Glycine betaine-assisted protein folding in a lysA mutant of Escherichia coli. J Biol Chem 275: 1050–1056

    Article  PubMed  CAS  Google Scholar 

  • Bremer E, Krämer R (2000) Coping with osmotic challenges: osmoregulation through accumulation and release of compatible solutes in bacteria. In: Storz G, Hengge-Aronis R (eds) Bacterial stress responses. ASM, Washington, DC, pp 79–97

    Google Scholar 

  • Brown AD (1976) Microbial water stress. Bacteriol Rev 40: 803–846

    PubMed  CAS  Google Scholar 

  • Burg M, Kwon E, Kültz D (1997) Regulation of gene expression by hypertonicity. Annu Rev Physiol 59: 437–455

    Article  PubMed  CAS  Google Scholar 

  • Calamita G (2000) The Escherichia coli aquaporin-Z water channel. Mol Microbiol 37: 254–262

    Article  PubMed  CAS  Google Scholar 

  • Calamita G, Bishai WR, Preston GM, Guggino WB, Agre P (1995) Molecular cloning and characterization of AqpZ, a water channel from Escherichia coli. J Biol Chem 270: 29063–29066

    Article  PubMed  CAS  Google Scholar 

  • Caldas T, Demont-Caulet N, Ghazi A, Richarme G (1999) Thermoprotection by glycine betaine and choline. Microbiology 145: 2543–2548

    PubMed  CAS  Google Scholar 

  • Canovas D, Vargas C, Calderon MI, Ventosa A, Nieto JJ (1998) Characterization of the genes for the biosynthesis of the compatible solute ectoine in the moderately halophilic bacterium Halomonas elongata DSM 3043. Syst Appl Microbiol 21: 487–497

    Article  PubMed  CAS  Google Scholar 

  • Canovas D, Borges N, Vargas C, Ventosa A, Nieto JJ, Santos H (1999) Role of N-y-acetyldiaminobutyrate as an enzyme stabilizer and an intermediate in the biosynthesis of hydroxyectoine. Appl Environ Microbiol 65: 3774–3779

    PubMed  CAS  Google Scholar 

  • Canovas D, Fletcher SA, Hayashi M, Csonka LN (2001) Role of trehalose in growth at high temperature of Salmonella enterica serovar typhimurium. J Bacteriol 183: 3365–3371

    Article  PubMed  CAS  Google Scholar 

  • Csonka LN, Epstein W (1996) Osmoregulation. In: Neidhard FC, Curtiss R III, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, Umbarger HE (eds) Escherichia coli and Salmonella. Cellular and molecular biology. ASM, Washington, DC, pp 1210–1223

    Google Scholar 

  • Da Costa MS, Santos H, Galinski EA (1998) An overview of the role and diversity of compatible solutes in Bacteria and Archaea. Adv Biochem Eng Biotechnol 61: 117–153

    PubMed  Google Scholar 

  • Dartois V, Débarbouillé M, Kunst F, Rapoport G (1998) Characterization of a novel member of the DegS/DegU regulon affected by salt stress in Bacillus subtilis. J Bacteriol 180: 1855–1861

    Google Scholar 

  • Delamarche C, Thomas D, Rollander J-P, Froger A, Gouranton J, Svelto M, Agre P, Calamita C (1999) Visualization of AqpZ-mediated water permeability in Escherichia coli by cryoelectron microscopy. J Bacteriol 181: 4193–4197

    PubMed  CAS  Google Scholar 

  • Delaunay AJ, Verma DPS (1993) Proline biosynthesis and osmoregulation in plants. Plant J 4: 215–223

    Article  Google Scholar 

  • Dennis PP, Shimmin LC (1997) Evolutionary divergence and salinity-mediated selection in halophilic archaea. Microbiol Mol Biol Rev 61: 90–104

    PubMed  CAS  Google Scholar 

  • Deuerling E, Paeslack B, Schumann W (1995) The ftsH gene of Bacillus subtilis is transiently induced after osmotic and temperature upshift. J Bacteriol 177: 4105–4112

    PubMed  CAS  Google Scholar 

  • Durell SR, Guy HR (1999) Structural models of the KtrB, TrkH, and Trk1,2 symporters based on the structure of the KcsA K+ channel. Biophys J 77: 789–807

    Article  Google Scholar 

  • Durell SR, Hao Y, Nakamura T, Bakker EP, Guy HR (1999) Evolutionary relationship between K+ channels and symporters. Biophys J 77: 775–788

    Article  PubMed  CAS  Google Scholar 

  • Galinski EA, Trüper HG (1994) Microbial behaviour in salt-stressed ecosystems. FEMS Microbiol Rev 15: 95–108

    Article  CAS  Google Scholar 

  • Göller K, Ofer A, Galinski EA (1998) Construction and characterization of an NaCl-sensitive mutant of Halomonas elongata impaired in ectoine biosynthesis. FEMS Microbiol Lett 161: 293–300

    Article  PubMed  Google Scholar 

  • Hecker M, Völker U (2001) General stress response of Bacillus subtilis and other bacteria. Adv Microbial Physiol 44: 35–91

    Article  CAS  Google Scholar 

  • Hoffmann T, Schutz A, Brosius M, Völker A, Völker U, Bremer E (2002) High-salinityinduced iron limitation in Bacillus subtilis. J Bacteriol 184: 718–727

    Article  PubMed  CAS  Google Scholar 

  • Hohmann S (1997) Shaping up: the response of yeast to osmotic stress. In: Hohmann S, Mager WH (eds) Yeast stress responses. Springer, Berlin Heidelberg New York, pp 101–145

    Google Scholar 

  • Holtmann G, Bakker EP, Uozumi N, Bremer E (2003) KtrAB and KtrCD: two K+ uptake systems in Bacillus subtilis and their role in adaptation to hypertonicity. J Bacteriol 185: 1289–1298

    Article  PubMed  CAS  Google Scholar 

  • Höltje JV (1998) Growth of the stress-bearing and shape-maintaining murein sacculus of Escherichia coli. Microbiol Mol Biol Rev 62: 181–203

    PubMed  Google Scholar 

  • Horsburgh MJ, Moir A (1999) an ECF RNA polymerase sigma factor of Bacillus subtilis 168, is essential for growth and survival in high concentrations of salt. Mol Microbiol 32: 41–50

    Google Scholar 

  • Jebbar M, von Blohn C, Bremer E (1997) Ectoine functions as an osmoprotectant in Bacillus subtilis and is accumulated via the ABC-transport system OpuC. FEMS Microbiol Lett 154: 325–330

    Article  CAS  Google Scholar 

  • Kappes R, Bremer E (1998) Response of Bacillus subtilis to high osmolarity: uptake of carnitine, crotonobetaine and y-butyrobetaine via the ABC transport system OpuC. Microbiology 144: 83–90

    Article  CAS  Google Scholar 

  • Kappes RM, Kempf B, Bremer E (1996) Three transport systems for the osmoprotectant glycine betaine operate in Bacillus subtilis: characterization of OpuD. J Bacteriol 178: 5071–5079

    PubMed  CAS  Google Scholar 

  • Kappes RM, Kempf B, Kneip S, Boch J, Gade J, Meier-Wagner J, Bremer E (1999) Two evolutionarily closely related ABC-transporters mediate the uptake of choline for synthesis of the osmoprotectant glycine betaine in Bacillus subtilis. Mol Microbiol 32: 203–216

    Article  PubMed  CAS  Google Scholar 

  • Kempf B, Bremer E (1995) OpuA, an osmotically regulated binding protein-dependent transport system for the osmoprotectant glycine betaine in Bacillus subtilis. J Biol Chem 270: 16701–16713

    Article  PubMed  CAS  Google Scholar 

  • Kempf B, Bremer E (1998) Uptake and synthesis of compatible solutes as microbial stress responses to high osmolality environments. Arch Microbiol 170: 319–330

    Article  PubMed  CAS  Google Scholar 

  • Kempf B, Gade J, Bremer E (1997) Lipoprotein from the osmoregulated ABC transport system OpuA of Bacillus subtilis: purification of the glycine betaine binding protein and characterization of a functional lipidless mutant. J Bacteriol 179: 6213–6220

    PubMed  CAS  Google Scholar 

  • Krispin O, Allmansberger R (1995) Changes in DNA supertwist as a response of Bacillus subtilis towards different kinds of stress. FEMS Microbiol Lett 134: 129–135

    Article  PubMed  CAS  Google Scholar 

  • Kuhlmann AU, Bremer E (2002) Osmotically regulated synthesis of the compatible solute ectoine in Bacillus pasteurii and related Bacillus spp. Appl Environ Microbiol 68: 772–783

    Article  PubMed  CAS  Google Scholar 

  • Kunst F, Rapoport G (1995) Salt stress is an environmental signal affecting degradative enzyme synthesis in Bacillus subtilis. J Bacteriol 177: 2403–2407

    PubMed  CAS  Google Scholar 

  • Le Rudulier D, Strøm AR, Dandekar AM, Smith LT, Valentine RC (1984) Molecular biology of osmoregulation. Science 224: 1064–1068

    Article  PubMed  Google Scholar 

  • Levina N, Totemeyer S, Stokes NR, Louis P, Jones MA, Booth IR (1999) Protection of Escherichia coli cells against extreme turgor by activation of MscS and MscL mechanosensitive channels: identification of genes required for MscS activity. EMBO J 18: 1730–1737

    Article  CAS  Google Scholar 

  • Lippert K, Galinski AA (1992) Enzyme stabilization by ectoine-type compatible solutes: protection against heating, freezing and drying. Appl Microbiol Biotechnol 37: 61–65

    Article  CAS  Google Scholar 

  • Lopez CS, Heras H, Ruzal SM, Sanchez-Rivas C, Rivas EA (1998) Variations of the envelope composition of Bacillus subtilis during growth in hyperosmotic medium. Curr Microbiol 36: 55–61

    Article  PubMed  CAS  Google Scholar 

  • Lopez CS, Heras H, Garda H, Ruzal S, Sanchez-Rivas C, Rivas E (2000) Biochemical and biophysical studies of Bacillus subtilis envelopes under hyperosmotic stress. Int J Food Microbiol 55: 137–142

    Article  PubMed  CAS  Google Scholar 

  • Louis P, Galinski EA (1997) Characterization of genes for the biosynthesis of the compatible solute ectoine from Marinococcus halophilus and osmoregulated expression in Escherichia coli. Microbiology 143: 1141–1149

    Article  PubMed  CAS  Google Scholar 

  • Martin DD, Ciulla RA, Roberts MF (1999) Osmoadaptation in archaea. Appl Environ Microbiol 65: 1815–1825

    PubMed  CAS  Google Scholar 

  • Martins L, Huber R, Huber H, Stetter K, Da Costa M, Santos H (1997) Organic solutes in hyperthermophilic Archaea. Appl Environ Microbiol 63: 896–902

    PubMed  CAS  Google Scholar 

  • McNeil SD, Nuccio ML, Hanson AD (1999) Betaines and related osmoprotectants. Targets for metabolic engineering of stress resistance. Plant Physiol 120: 945–950

    Google Scholar 

  • Measures JC (1975) Role of amino acids in osmoregulation of non-halophilic bacteria.

    Google Scholar 

  • Nature 257:398–400

    Google Scholar 

  • Mendum ML, Smith LT (2002) Characterization of glycine betaine porter I from Listeria monocytogenes and its roles in salt and chill tolerance. Appl Environ Microbiol 68: 813–819

    Article  PubMed  CAS  Google Scholar 

  • Miller KJ, Wood JM (1996) Osmoadaptation by rhizosphere bacteria. Annu Rev Microbiol 50: 101–136

    Article  PubMed  CAS  Google Scholar 

  • Moe PC, Blount P, Kung C (1998) Functional and structural conservation in the mechanosensitive channel MscL implicates elements crucial for mechanosensation. Mol Microbiol 28: 583–592

    Article  PubMed  CAS  Google Scholar 

  • Nakamura T, Yuda R, Unemoto T, Bakker EP (1998) KtrAB, a new type of bacterial K(+)- uptake system from Vibrio alginolyticus. J Bacteriol 180: 3491–3494

    PubMed  CAS  Google Scholar 

  • Nau-Wagner G, Boch J, Le Good JA, Bremer E (1999) High-affinity transport of cholineO-sulfate and its use as a compatible solute in Bacillus subtilis. Appl Environ Microbiol 65: 560–568

    PubMed  CAS  Google Scholar 

  • Nyyssola A, Kerovuo J, Kaukinen P, von Weymarn N, Reinikainen T (2000) Extreme halophiles synthesize betaine from glycine by methylation. J Biol Chem 275:22196– 22201

    Google Scholar 

  • Ono H, Sawada, K, Khunjakr N, Tao T, Yamamoto M, Hiramoto M, Shinmyo A, Takano M, Murooka Y (1999) Characterization of biosynthetic enzymes for ectoine as a compatible solute in a moderately halophilic eubacterium, Halomonas elongata. J Bacteriol 181: 91–99

    PubMed  CAS  Google Scholar 

  • Peters P, Galinski EA, Trüper HG (1990) The biosynthesis of ectoine. FEMS Microbiol Lett 71: 157–162

    Article  CAS  Google Scholar 

  • Petersohn A, Brigulla M, Haas S, Hoheisel JD, Völker U, Hecker M (2001) Global analysis of the general stress response of Bacillus subtilis. J Bacteriol 183: 5617–5631

    Article  PubMed  CAS  Google Scholar 

  • Price CW (2000) Protective function and regulation of the general stress response in Bacillus subtilis and related Gram-positive bacteria. In: Storz G, Hengge-Aronis R (eds) Bacterial stress responses. ASM, Washington, DC, pp 179–197

    Google Scholar 

  • Roberts MF (2000) Osmoadaptation and osmoregulation in archaea. Front Biosci 5: 796–812

    Article  Google Scholar 

  • Roosild TP, Miller S, Booth IR, Choe S (2002) A mechanism of regulating transmembrane potassium flux through a ligand-mediated informational switch. Cell 109:781– 791

    Google Scholar 

  • Rübenhagen R, Morbach S, Kramer R (2001) The osmoreactive betaine carrier BetP from Corynebacterium glutamicum is a sensor for cytoplasmic K+. EMBO J 20: 5412–5420

    Article  Google Scholar 

  • Ruzal SM, López C, Rivas E, Sánchez-Rivas C (1998) Osmotic strength blocks sporulation at stage II by impeding activation of early sigma factors in Bacillus subtilis. Curr Microbiol 36: 75–79

    Article  PubMed  CAS  Google Scholar 

  • Spiegelhalter F, Bremer E (1998) Osmoregulation of the opuE proline transport gene from Bacillus subtilis: contributions of the sigma A- and sigma B-dependent stress responsive promoters. Mol Microbiol 29: 285–296

    Article  PubMed  CAS  Google Scholar 

  • Szabo I, Petronilli V, Zoratti M (1992) A patch-clamp study of Bacillus subtilis. Biochim Biophys Acta 1112: 29–38

    Article  PubMed  CAS  Google Scholar 

  • Tholema N, Bakker EP, Suzuki A, Nakamura T (1999) Change to alanine of one out of four selectivity filter glycines in KtrB causes a two orders of magnitude decrease in the affinities for both K+ and Na+ of the Na+ dependent K+ uptake system KtrAB from Vibrio alginolyticus. FEBS Lett 450: 217–220

    Article  PubMed  CAS  Google Scholar 

  • Ventosa A, Nieto JJ, Oren A (1998) Biology of moderately halophilic aerobic bacteria. Microbiol Mol Biol Rev 62: 504–544

    PubMed  CAS  Google Scholar 

  • Völker U, Maul B, Hecker M (1999) Expression of the oB-dependent general stress regu- lon confers multiple stress resistance in Bacillus subtilis. J Bacteriol 181: 3942–3948

    PubMed  Google Scholar 

  • Von Blohn C, Kempf B, Kappes RM, Bremer E (1997) Osmostress response in Bacillus subtilis: characterization of a proline uptake system ( OpuE) regulated by high osmolarity and the alternative transcription factor sigma B. Mol Microbiol 25: 175–187

    Google Scholar 

  • Welsh DT (2000) Ecological significance of compatible solute accumulation by microorganisms: from single cells to global climate. FEMS Microbiol Rev 24: 263–290

    Article  PubMed  CAS  Google Scholar 

  • Whatmore AM, Reed RH (1990) Determination of turgor pressure in Bacillus subtilis: a possible role for K+ in turgor regulation. J Gen Microbiol 136: 2521–2526

    Article  PubMed  CAS  Google Scholar 

  • Whatmore AM, Chudek JA, Reed RH (1990) The effects of osmotic upshock on the intracellular solute pools of Bacillus subtilis. J Gen Microbiol 136: 2527–2535

    Article  PubMed  CAS  Google Scholar 

  • Wong LS, Johnson MS, Sandberg LB, Taylor BL (1995) Amino acid efflux in response to chemotactic and osmotic signals in Bacillus subtilis. J Bacteriol 177: 4342–4349

    PubMed  CAS  Google Scholar 

  • Wood JM (1999) Osmosensing by bacteria: signals and membrane-based sensors. Microbiol Mol Biol Rev 63: 230–262

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Holtmann, G. et al. (2004). Physiological and Molecular Responses of Bacillus subtilis to Hypertonicity: Utilization of Evolutionarily Conserved Adaptation Strategies. In: Ventosa, A. (eds) Halophilic Microorganisms. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-07656-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-07656-9_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05664-2

  • Online ISBN: 978-3-662-07656-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics