Extracellular Hydrolytic Enzymes Produced by Moderately Halophilic Bacteria

  • E. Mellado
  • C. Sánchez-Porro
  • S. Martín
  • A. Ventosa


High salinity is the main characteristic of hypersaline habitats, in which the salt concentration is generally higher than that of seawater. Among the beststudied hypersaline environments are the saline lakes (Dead Sea, Great Salt Lake), salterns used for the production of salt and some saline soils. Except for a few eukaryotic organisms such as the brine shrimp (Artemia salina) or the photosynthetic flagellate Dunaliella, most organisms adapted to live in these hypersaline environments are prokaryotic microorganisms belonging to the groups of archaea and bacteria (Rodríguez-Valera 1993). The salt requirements divide these populations of prokaryotic halophilic microorganisms into two predominant physiological groups: extreme halophiles, which grow optimally in media containing 15–30% NaCl, and moderate halophiles, which are able to grow optimally in media containing between 3 and 15% NaCl. Highly saline environments are dominated by extremely halophilic archaea, mostly halobacteria. However, in the intermediate salinities, the most abundant microorganisms are the moderate halophiles, a heterogeneous group which includes very different Gram-negative and Gram-positive bacterial species, as well as some archaea (Ventosa et al.1998).


Glycosyl Hydrolase Halophilic Bacterium Great Salt Lake Hypersaline Environment Halophilic Archaea 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detec- tion of individual microbial cells without cultivation. Microbiol Rev 59: 143–169PubMedGoogle Scholar
  2. Coronado MJ, Vargas C, Hofemeister J, Ventosa A, Nieto JJ (2000a) Production and biochemical characterization of an a-amylase from the moderate halophile Halomonas meridiana. FEMS Microbiol Lett 183: 67–71PubMedGoogle Scholar
  3. Coronado MJ, Vargas C, Mellado E, Tegos G, Drainas C, Nieto JJ, Ventosa A (2000b) The a-amylase gene amyH of the moderate halophile Halomonas meridiana: cloning and molecular characterization. Microbiology 146: 861–868PubMedGoogle Scholar
  4. Da Costa MS, Santos H, Galinski EA (1997) An overview of the role and diversity of compatible solutes in bacteria and archaea. In: Scheper TH (ed) Advances in biochemical engineering/biotechnology, vol 61. Springer, Berlin Heidelberg New York, pp 117–153Google Scholar
  5. Frillingos S, Linden A, Niehaus F, Vargas C, Nieto JJ, Ventosa A, Antranikian G, Drainas C (2000) Cloning and expression of a-amylase from the hyperthermophilic archaeon Pyrococcus woesei in the moderately halophilic bacterium Halomonas elongata. J Appl Microbiol 88: 495–503PubMedCrossRefGoogle Scholar
  6. Henrissat B (1991) A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 280: 309–316PubMedGoogle Scholar
  7. Henrissat B, Bairoch A (1993) New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 293: 781–788PubMedGoogle Scholar
  8. Kamekura M (1986) Production and function of enzymes of eubacterial halophiles. FEMS Microbiol Rev 39: 145–150CrossRefGoogle Scholar
  9. Kamekura M, Onishi H (1978) Properties of the halophilic nuclease of a moderate halophile, Micrococcus varians subsp. halophilus. J Bacteriol 133: 59–65PubMedGoogle Scholar
  10. Kamekura M, Onishi H (1983) Inactivation of nuclease H of the moderate halophile Micrococcus varians subsp. halophilus during cultivation in the presence of salting-in type salts. Can J Microbiol 29: 46–51CrossRefGoogle Scholar
  11. Kamekura M, Hamakawa T, Onishi H (1982) Application of halophilic nuclease H of Micrococcus varians subsp. halophilus to commercial production of flavoring agent 5¢-GMP. Appl Environ Microbiol 44: 994–995PubMedGoogle Scholar
  12. Khire JM (1994) Production of moderately halophilic amylase by newly isolated Micro-coccus sp. 4 from a salt pan. Lett Appl Microbiol 19: 210–212CrossRefGoogle Scholar
  13. Kobayashi T, Kamekura M, Kanlayakrit W, Onishi H (1986) Production, purification and characterization of an amylase of the moderate halophile, Micrococcus varians subsp. halophilus. Microbios 46: 165–170Google Scholar
  14. Margesin R, Schinner F (2001) Potential of halotolerant and halophilic microorganisms for biotechnology. Extremophiles 5: 73–83PubMedCrossRefGoogle Scholar
  15. Mota RR, Marquez MC, Arahal DR, Mellado E, Ventosa A (1997) Polyphasic taxonomy of Nesterenkonia halobia. Int J Syst Bacteriol 47: 1231–1235PubMedCrossRefGoogle Scholar
  16. Nakajima R, Imanaka T, Aiba S (1986) Comparison of amino acid sequences of eleven different a-amylases.Appl Microbiol Biotechnol 23: 355–360Google Scholar
  17. Nieto JJ, Vargas C, Ventosa A (2000) Osmoprotection mechanisms in the moderately halophilic bacterium Halomonas elongata. Rec Res Dev Microbiol 4: 43–54Google Scholar
  18. Onishi H (1972a) Halophilic amylase from a moderately halophilic Micrococcus. J Bacte-Google Scholar
  19. riol 109:570–574Google Scholar
  20. Onishi H (1972b) Salt response of amylase produced in media of different NaCl or KCl concentrations by a moderately halophilic Micrococcus. Can J Microbiol 18: 1617–1620PubMedCrossRefGoogle Scholar
  21. Onishi H, Hidaka O (1978) Purification and properties of amylase produced by a moderately halophilic Acinetobacter sp. Can J Microbiol 24: 1017–1023PubMedCrossRefGoogle Scholar
  22. Onishi H, Kamekura M (1972) Micrococcus halobius sp. nov. Int J Syst Bacteriol 22: 233–236Google Scholar
  23. Onishi H, Mori T, Takeuchi S, Tani K, Kobayashi T, Kamekura M (1983) Halophilic nuclease of a moderately halophilic Bacillus sp.: production, purification, and characterization. Appl Environ Microbiol 45: 24–30PubMedGoogle Scholar
  24. Oren A (1994) Enzyme diversity in halophilic archaea. Microbiologia 10:217–228 Rodríguez-Valera F (1993) Introduction to saline environments. In: Vreeland RH, Hochstein LI (eds) The biology of halophilic bacteria. CRC Press, Boca Raton, pp 1–23Google Scholar
  25. Sánchez-Porro C, Martín S, Mellado E, Ventosa A (2003a) Diversity of moderately halophilic bacteria producing extracellular hydrolytic enzymes. J Appl Microbiol 94: 295–300PubMedCrossRefGoogle Scholar
  26. Sánchez-Porro C, Mellado E, Bertoldo C, Antranikian G, Ventosa A (2003b) Screening and characterization of the protease CP1 produced by the moderately halophilic bacterium Pseudoalteromonas sp. strain CP76. Extremophiles 7: 221–228PubMedGoogle Scholar
  27. Stackebrandt E, Koch C, Gvozdiak O, Schumann P (1995) Taxonomic dissection of the genus Micrococcus: Kocuria gen. nov., Nesterenkonia gen. nov., Kytococcus gen. nov., Dermacoccus gen. nov., and Micrococcus Cohn 1872 gen. emend. Int J Syst Bacteriol 45: 682–692PubMedCrossRefGoogle Scholar
  28. Van Qua D, Simidu U, Taga N (198 1) Purification and some properties of halophilic protease produced by a moderately halophilic marine Pseudomonas sp. Can J Microbiol 27: 505–510Google Scholar
  29. Ventosa A, Nieto JJ (1995) Biotechnological applications and potentialities of halophilic microorganisms. Word J Microbiol Biotechnol 11: 85–94CrossRefGoogle Scholar
  30. Ventosa A, García MT, Kamekura M, Onishi H, Ruiz-Berraquero F (1989) Bacillus halophilus sp. nov., a moderately halophilic Bacillus species. Syst Appl Microbiol 12: 162–166Google Scholar
  31. Ventosa A, Nieto JJ, Oren A (1998) Biology of moderately halophilic aerobic bacteria. Microbiol Mol Biol Rev 62: 504–544PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • E. Mellado
  • C. Sánchez-Porro
  • S. Martín
  • A. Ventosa

There are no affiliations available

Personalised recommendations