Advertisement

Multienzyme Complexes in the Archaea: Predictions from Genome Sequences

  • Michael J. Danson
  • David J. Morgan
  • Alex C. Jeffries
  • David W. Hough
  • Michael L. Dyall-Smith
Chapter

Abstract

Aerobic Bacteria and Eukarya possess a family of 2-oxoacid dehydrogenase multienzyme complexes that catalyse the general reaction:

Keywords

Lipoic Acid Multienzyme Complex Sulfolobus Solfataricus Methanosarcina Barkeri Dihydrolipoamide Dehydrogenase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bock A-K, Schönheit P, Teixeira M (1997) The iron-sulfur centres of the pyruvate: ferre doxin oxidoreductase from Methanosarcina barkeri ( Fusaro ). FEBS Lett 414: 209–212Google Scholar
  2. Danson MJ (1988) Dihydrolipoamide dehydrogenase: a “new” function for an old enzyme? Biochem Soc Trans 16: 87–89PubMedGoogle Scholar
  3. Danson MJ (1993) Central metabolism of the Archaea. New Comp Biochem (The Biochemistry of Archaea) 26: 1–24CrossRefGoogle Scholar
  4. Danson MJ, Eisenthal R, Hall S, Kessell SR, Williams DL (1984) Dihydrolipoamide dehydrogenase from halophilic archaebacteria. Biochem J 218: 811–818PubMedGoogle Scholar
  5. Danson MJ, McQuattie A, Stevenson KJ (1986) Dihydrolipoamide dehydrogenase from halophilic archaebacteria: purification and properties of the enzyme from Halobacterium halobium. Biochemistry USA 25: 3880–3884CrossRefGoogle Scholar
  6. Dardel F, Davis AL, Laue ED, Perham RN (1993) The three-dimensional structure of the lipoyl domain from Bacillus stearothermophilus pyruvate dehydrogenase multienzyme complex. J Mol Biol 229: 1037–1048PubMedCrossRefGoogle Scholar
  7. Deng W-L, Chang H-W, Peng H-L (1994) Acetoin catabolic system of Klebsiella pneumoniae CG43: sequence, expression and organisation of the aco operon. J Bacteriol 176: 3527–3535PubMedGoogle Scholar
  8. Green JDF, Laue ED, Perham RN, Ali ST, Guest JR (1995) Three-dimensional structure of a lipoyl domain from the dihydrolipoyl acetyltransferase component of the pyruvate dehydrogenase multienzyme complex of Escherichia coli. J Mol Biol 248: 328–343PubMedGoogle Scholar
  9. Hawkins CF, Borges A, Perham RN (1989) A common structural motif in thiamine pyrophosphate-binding enzymes. FEBS Lett 255: 77–82PubMedCrossRefGoogle Scholar
  10. Hendle J, Mattevi A, Westphal AH, Spee J, de Kok A, Teplyakov A, Hol, WGJ (1995) Crystallographic and enzymic investigations on the role of Ser558, His610, and Asn614 in the catalytic mechanism of Azotobacter vinelandii dihydrolipoamide acetyltransferase. Biochemistry 34: 4287–4298PubMedCrossRefGoogle Scholar
  11. Jolley KA, Rapaport E, Hough DW, Danson MJ, Woods WG, Dyall-Smith ML (1996) Dihydrolipoamide dehydrogenase from the halophilic archaeon Haloferax volcanii–homologous overexpression of the cloned gene. J Bacteriol 178: 3044–3048PubMedGoogle Scholar
  12. Jolley KA, Maddocks DG, Gyles SL, Mullan Z, Tang S-L, Dyall-Smith ML, Hough DW, Danson MJ (2000) 2-Oxoacid dehydrogenase multienzyme complexes in the halophilic Archaea? Gene sequences and protein structural predictions. Microbiology 146: 1061–1069Google Scholar
  13. Kalia YN, Brocklehurst SM, Hipps DS, Appella E, Sakaguchi K, Perham RN (1993) The high resolution structure of the peripheral subunit-binding domain of dihydrolipoamide acetyltransferase from the pyruvate dehydrogenase multienzyme complex of Bacillus stearothermophilus. J Mol Biol 230: 323–341PubMedCrossRefGoogle Scholar
  14. Kerscher L, Oesterhelt D (198 1) The catalytic mechanism of 2-oxoacid: ferredoxin oxidoreductases from Halobacterium halobium. Eur J Biochem 116: 595–600Google Scholar
  15. Kerscher L, Oesterhelt D (1982) Pyruvate ferredoxin oxidoreductase–new findings onGoogle Scholar
  16. an ancient enzyme. Trends Biochem Sci 7:371–374Google Scholar
  17. Mande SS, Sarfaty S, Allen MD, Perham RN, Hol WGJ (1996) Protein-protein interactions in the pyruvate dehydrogenase multienzyme complex: dihydrolipoamide dehydrogenase complexed with the binding domain of dihydrolipoamide acetyltransferase. Structure 4: 277–286PubMedCrossRefGoogle Scholar
  18. Mattevi A, de Kok A, Perham RN (1992) The pyruvate dehydrogenase multienzyme complex. Curr Opin Struct Biol 2: 877–887CrossRefGoogle Scholar
  19. Oppermann FB, Steinbüchel A (1994) Identification and molecular characterisation of the aco genes encoding the Pelobacter carbinolicus acetoin dehydrogenase enzyme system. J Bacteriol 176: 469–485PubMedGoogle Scholar
  20. Palmer JR, Daniels CJ (1995) In vivo definition of an archaeal promoter. J Bacteriol 177: 1844–1849PubMedGoogle Scholar
  21. Perham RN (1991) Domains, motifs and linkers in 2-oxoacid dehydrogenase multienzyme complexes: a paradigm in the design of a multifunctional protein. Biochemistry 30: 8501–8512PubMedCrossRefGoogle Scholar
  22. Perham RN (1996) Interaction of protein domains in the assembly and mechanism of 2- oxo acid dehydrogenase multienzyme complexes In: Patel MS, Roche TE, Harris RA (eds) Alpha-keto acid dehydrogenase complexes. Birkhäuser, Basel, pp 1–15Google Scholar
  23. Plaga W, Lottspeich F, Oesterhelt D (1992) Improved purification, crystallization and primary structure of pyruvate: ferredoxin oxidoreductase from Halobacterium halobium. Eur J Biochem 205: 391–397PubMedCrossRefGoogle Scholar
  24. Pratt KJ, Carles C, Carne TJ, Danson MJ, Stevenson KJ (1989) Detection of bacterial lipoic acid: a modified gas chromatographic–mass spectrometric procedure. Biochem J 258: 749–754PubMedGoogle Scholar
  25. Rost B (1996) PHD: predicting one-dimensional protein structure by profile based neural networks. Methods Enzymol 266: 525–539PubMedCrossRefGoogle Scholar
  26. Smith LD, Bungard SJ, Danson MJ, Hough DW (1987) Dihydrolipoamide dehydrogenase from the thermoacidophilic archaebacterium Thermoplasma acidophilum. Biochem Soc Trans 15: 10–97Google Scholar
  27. Tolstrup N, Sensen CW, Garrett RA, Clausen IG (2000) Two different and highly organised mechanisms of translation initiation in the archaeon Sulfolobus solfataricus Extremophiles 4: 175–179Google Scholar
  28. Vettakkorumakankav NN, Stevenson KJ (1992) Dihydrolipoamide dehydrogenase from Haloferax volcanii: gene cloning, complete primary sequence and comparison to other dihydrolipoamide dehydrogenases. Biochem Cell Biol 70: 656–663PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Michael J. Danson
  • David J. Morgan
  • Alex C. Jeffries
  • David W. Hough
  • Michael L. Dyall-Smith

There are no affiliations available

Personalised recommendations