Skip to main content
  • 61 Accesses

Zusammenfassung

Nach dem Darwin-Prinzip überleben jeweils die Individuen, die der Umwelt am besten angepaßt sind; die entsprechende Spezies überlebt. Da nur über eine ausreichende Anzahl von Individuen die Arterhaltung gewährleistet werden kann, zumal die Evolution durch das Überleben von zufällig besser angepaßten Individuen voranschreitet, kommt dem Fortpflanzungssystem zwangsläufig einen zentrale Stellung zu.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Abe H, Engleer D, Molitch ME, Bollinger-Gruber J, Reichlin S (1985) Vasoactive intestinal peptide is a physiological mediator of prolactin release in the rat. Endocrinolgy 116: 1383

    Article  CAS  Google Scholar 

  • Adashi EY The ovarian cycle (1991) In: Yen SCC, Jaffee RB (eds) Reproductive endocrinology. Saunders, Philadelphia, pp 181–237

    Google Scholar 

  • Adashi EY (1989) Cytokine-mediated regulation of ovarian function: encounters of a third kind. Endocrinology 124: 2043–2045

    Article  PubMed  CAS  Google Scholar 

  • Adashi EY, Hsueh AJ (1981) Stimulation of ß2-adrenergic responsiveness by folllicle-stimulating hormone in rat granulosa cells in vitro and in vivo. Endocrinology 108: 2170

    Article  PubMed  CAS  Google Scholar 

  • Adashi EY, Hsueh AJW (1982) Estrogens augment the stimulation of ovarian aromatase activity by follicle-stimulating hormone in cultured rat granulosa cells. J Biol Chem 257: 6077

    PubMed  CAS  Google Scholar 

  • Adashi EY, Resnick CE (1986) Antagonistic interactions of transforming growth factors in the regulabon of granulosa cell differentiation. Endocrinology 119: 1243

    Article  Google Scholar 

  • Adashi EY, Resnick CE, D’Ercole AJ, Svoboda ME Van Wyk JJ (1985) Insulin-like growth factors as intraovarian regulators of granulosa cell growth and function. Endocr Rev 6: 400

    CAS  Google Scholar 

  • Adashi EY, Resnick CE, Croft CS, May JV, Gospodarowicz D (1988a) Basic fibroblast growth factor as a regulator of ovarian granulosa cell differentiation: a novel non-mitogenic role. Mol Cell Endocrinol 55: 7–14

    Article  PubMed  CAS  Google Scholar 

  • Adashi EY, Resnick CE, Hernandez ER, May JV, Purchio AF, Twardzik DR (1988 b) Ovarian transforming growth factor-d (TGF-ß): cellular sites(s), and mechanism(s) of action. Mol Cell Endocrinol 61: 247

    Google Scholar 

  • Aedo AR, Pederson PH, Pederson SG, Diczfalusy E (1980) Ovarian steroid secretion in normally menstruating women. II. The contribution of the corpus luteum. Acta Endocrinol 95: 222–231

    Google Scholar 

  • Ali SM, McMurtry JP, Bagnell CA, Bryant Greenwood GD (1986) Immunocytochemical localization of relaxin in corpora lutea of sows throughout the estrous cycle Biol Reprod 34: 139–143

    CAS  Google Scholar 

  • Armstrong DT, Dorrington JH (1976) Androgens augnent FSHinduced progesterone secretion by cultured rat granulosa cells. Endocrinology 99: 1411

    Article  PubMed  CAS  Google Scholar 

  • Baker BL, Jaffe RB (1975) The genesis of cell types in the adenohypophysis of the human fetus as observed with immunocytochemistry. Am J Anatomy 143: 137

    Article  CAS  Google Scholar 

  • Baker TG (1963) A quantitative and cytological study of germ cells in human ovaries. Proc R Soc Lond (Biol) 158: 417

    Article  CAS  Google Scholar 

  • Baker TG, Franchi LL (1962) The fine structure of oogonia and oocytes in human ovaries. J Cell Sci 2: 213

    Article  Google Scholar 

  • Bala RM, Lopatka J, Leung A, McCoy E, McArther RG (1981) Serum immunoreactive somatomedin levels in normal adults, pregnant women at term, children at various ages, and children with constitutionally delayed growth. J Clin Endocrinol Metab 52: 508–512

    Article  PubMed  CAS  Google Scholar 

  • Balboni GC, Vannelli GB, Barni T, Orlando C, Serio M (1987) Transferrin and somatomedin C receptors in the human ovarian follicles. Fertil Steril 48: 796–801

    PubMed  CAS  Google Scholar 

  • Barreca A, Minuto F, Volpe A et al (1990) Insulin-like growth factor-I ( IGF-I) and IGF-I binding protein in the follicular fluids of growth hormone treated patients. Clin Endocrinol 32: 497

    Article  Google Scholar 

  • Batista MC, Cartledge TP, Zellmer AW, Nieman LK, Merriam GR, Loriaux DL (1993) Evidence for a critical role of progesterone in the regulation of the midcycle gonadotropin surge and ovulation. J Clin Endocrinol Metab 74: 565–570

    Article  Google Scholar 

  • Beers WH (1975) Follicular plasminogen and plasminogen activator and the effect of plasmin on ovarian follicular wall. Cell 6: 379

    Article  PubMed  CAS  Google Scholar 

  • Behrman HR, Romero RJ (1991) Prostaglandins and prostaglandin-like product in reproduction: eicosanoids, peroxides and oxygen radicals In: Yen SCC, Jaffee RB (eds) Reproductive endocrinology. Saunders, Philadelphia, pp 238–272

    Google Scholar 

  • Blandau R, Rumery R (1963) Measurements of intrafollicular pressure in ovulatory and preovulatory follicles in the rat. Fertil Steril 14: 330

    PubMed  CAS  Google Scholar 

  • Bloom FE (1991) Neuroendocrine mechanisms: cells and systems. In: Yen SCC, Jaffee RB (eds) Reproductive endocrinology. Saunders, Philadelphia, pp 1–25

    Google Scholar 

  • Boutin JM, Jolicoeur C, Okamura H et al (1988) Cloning and expression of the rat prolactin receptor, amember of the growth hormone/prolactin receptor family. Cell 53: 69

    Article  PubMed  CAS  Google Scholar 

  • Breckwoldt M, Neumann F, Bräuer H (1993) Exempla endokrinologica: Bildatlas zur Physiologie und Morphologie des endokrinen Systems. Schering AG, Berlin

    Google Scholar 

  • Breitenecker G, Friedrich P, Kemeter P (1978) Maturation and degeneration of human ovarian follicles and their oocytes. Fertil Steril 29: 336–341

    PubMed  CAS  Google Scholar 

  • Brown JB (1955) A chemical method for the determination of oestriol, oestrone and oestradiol in human urine. Biochem J 60: 185–190

    PubMed  CAS  Google Scholar 

  • Bruck K (1980) Funktionen des endokrinen Systems In: Schmidt RF, Thews G (Hrsg) Physiologie des Menschen, 20. Aufl., Springer, Berlin Heidelberg New York, pp 772

    Google Scholar 

  • Bulmer D (1964) The histochemistry of ovarian macrophages in the rat. J Anat 98: 313

    PubMed  CAS  Google Scholar 

  • Burger HG, Findlay IK (1989) Potential relevance of inhibin to ovarian physiology. Semin Reprod Endocrinol 7: 69

    Article  Google Scholar 

  • Burgus R, Dunn TF, Desiderio D, Ward DN, Vale W, Guillemin R (1970) Nature (London) 226: 321–325

    Article  CAS  Google Scholar 

  • Burgus R, Butcher M, Amoss M, Ling N, Monahan MW, Rivier J, Fellows R, Blackwell R, Vale W, Guillemin R (1972) Primary structure of the ovine hypothalamic luteinizing hormone-releasing factor ( LRF ). Proc Natl Acad Sci USA 69: 278–282

    Google Scholar 

  • Carmichael MS, Humbert R, Dixen J, Palmisano G, Greenleaf W, Davidson JM (1987) Plasma oxytocin increases in the human sexual response. J Clin Endocrinol Metab 64: 27

    Article  PubMed  CAS  Google Scholar 

  • Carr BR, Sadler RK, Rochelle DB, Stalmach MA, MacDonald PC, Simpson ER (1981) Plasma lipoprotein regulation of progesterone synthesis by human corpus luteum tissue in organ culture. J Clin Endocrinol Metab 62: 875

    Article  Google Scholar 

  • Catt JC, Dufau ML (1991) Gonadotropic hormones: biosynthesis, secretion, receptors and actions. In: Yen SCC, Jaffee RB (eds) Reproductive endocrinology. Saunders, Philadelphia, pp 105–155

    Google Scholar 

  • Cavender JL, Murdoch WJ (1988) Morphological studies of the microcirculatory system of periovulatory ovine follicles. Biol Reprod 39: 989

    Article  PubMed  CAS  Google Scholar 

  • Childs GV, Hyde C, Naor Z, Catt RJ (1983) Heterogenous luteinizing hormone and follicle-stimulating hormone storage patterns in subtypes of gonadotropes separated by centrifugal elutriation. Endocrinology 113: 2120–2128

    Article  PubMed  CAS  Google Scholar 

  • Christie JE (1987) Classical transmitters and neurotransmitters. In: Flückinger E, Müller EE, Thorner MO (eds) Transmitter molecules in the brain. Part II: Function and dysfunction. Springer, Berlin Heidelberg New York, Tokyo, pp 46–54

    Google Scholar 

  • Clayton RN, Catt KJ (1981) Gonadotropin-releasing hormone receptors: characterization, physiological regulation and relationship to reproductive function. Endocr Rev 2: 186–209

    Article  PubMed  CAS  Google Scholar 

  • Collins A, Eneroth P, Lalldgren B-M (1983) Psychoneuroendocrjne stress responses and mood as related to the menstrual cycle. Psychosom Med 47: 512

    Google Scholar 

  • Dailey RA, Neill JD (1981) Seasonal variation in reproductive hormones of rhesus monkeys: anovulatory and short luteal phase menstrual cycles. Biol Reprod 25: 560

    Article  PubMed  CAS  Google Scholar 

  • Daniel SAJ, Armstrong DT (1980) Enhancement of folliclestimutating hormone-induced aromatase activity by androgens in cultured rat granulosa cells. Endocrinology 107: 1027

    Article  PubMed  CAS  Google Scholar 

  • Davoren JB, Hsueh AJW (1986) Growth hormone increases ovarian levels of immunoreactive somatomedin C/insulin-like-growth factor I in vivo. Endocrinology 118: 888–890

    Article  PubMed  CAS  Google Scholar 

  • Demura R, Suzuki T, Tajima S, Mitsuhashi S, Odagiri E, Demura H, Ling N (1993) Human plasma free activin and inhibin levels during the menstrual cycle. J Clin Endocrinol Metab 76: 1080–1082

    Article  PubMed  CAS  Google Scholar 

  • Dennerstein L, Abraham SF (1982) Affective changes and the menstrual cycle. In: Beumont PJV, Burrows GD (eds). Handbook of psychiatry and endocrinology. Amsterdam, Elsevier, pp 367–400

    Google Scholar 

  • DiZerega GS, Mam RP, Roche PL, Campeau JD, Kling DR (1983) Identification of protein(s) in pooled human follicular fluid which suppress follicular response to gonadotropins. J Clin Endocrinol Metab 56: 35

    Article  PubMed  CAS  Google Scholar 

  • DiZerega GS, Tonetta SA, Westhof G J (1987) A postulated role for naturally occurring aromatose inhibitors in follicle selection. Steroid Biochem 27/1–3: 375–383

    Google Scholar 

  • Dluzen DE, Ramirez VD (1989) Receptive female rats stimulate norepinephrine release from olfactory bulbs of freely behaving male rats. Neuroendocrinology 49: 28

    Article  PubMed  CAS  Google Scholar 

  • Dorrington JH, Armstrong DT (1975) Follicle-stimulating hormone stimulates estradiol-17ß synthesis in cultured Sertoli cells. Proc Natl Acad Sci USA 72: 2677

    Article  PubMed  CAS  Google Scholar 

  • Dorrington JH, Armstrong DT (1979) Effects of FSH on gonadal functions. Rec Prog Horm Res 39: 301

    Google Scholar 

  • Erickson GF (1982) Follicular maturation and atresia. In: Flamigni C, Givens JR (eds) The gonadotropins: basic science and clinical aspects in females. Academic, New York, pp 171–186

    Google Scholar 

  • Erickson GF, Hseuh AJW (1978) Secretion of “inhibin” by rat granulosa cells in vitro. Endocrinology 103: 1960

    Article  PubMed  CAS  Google Scholar 

  • Erickson GF, Wang C, Hsueh AJW (1979) FSH induction of functional LH receptors in granulosa cells cultured in a chemically defined medium. Nature 279: 336

    Article  PubMed  CAS  Google Scholar 

  • Erickson GF, Garzo VG, Magoffin DA (1989) Insulin-like-growth-factor-I regulates aromatase activity in human granulosa and granulosa luteal cells. J Clin Endocrinol Me-tab 69: 716

    Article  CAS  Google Scholar 

  • Espey L (1974) Ovarian proteolytic enzymes and ovulation. Biol Reprod 10: 216

    Article  PubMed  CAS  Google Scholar 

  • Espey L (1980) Ovulation and an inflammatory reaction-a hypothesis. Biol Reprod 22: 73

    Article  PubMed  CAS  Google Scholar 

  • Espey L, Coons PJ, Marsh JM, LeMaire WJ (1981) Effect of indomethacin on preovulatory changes in the ultrastructure of rabbit Graafian follicles. Endocrinology 108: 1040–1048

    Article  PubMed  CAS  Google Scholar 

  • Falck B, Menander K, Nordanstedt O (1962) Androgen secretion by the rat ovary. Nature 193: 593

    Article  Google Scholar 

  • Farookhi R (1980) Effects of androgen on induction of gonadotropin receptors and gonadotropin-stimulated adenosine 3’,5’-monophosphate production in rat ovarian granulosa cells. Endocrinology 106: 1216

    Article  PubMed  CAS  Google Scholar 

  • Feldman E, Haberman S, Abisogun AO (1986) Arachidonic acid metabolism in human granulosa cells: evidence for cyclooxygenase and lipoxygenase activity in vitro. Hum Reprod 1: 353–356

    PubMed  CAS  Google Scholar 

  • Fisher DA (1983) Maternal-fetal neurohypophyseal system. Clin Perinatol 10: 695

    PubMed  CAS  Google Scholar 

  • Fox SR, Harlan RE, Shivers BD (1990) Pfaff DW. Chem ical characterization of neuroendocrine targets of progesterone in the female rat brain and pituitary. Neuroendocrinology 51: 276

    Google Scholar 

  • Franchi LL, Mandl AM, Zuckerman S (1962) The development of the ovary and the process of oogenesis. In: Zuckermann S, Mandl AM, Eckstein P (Hrsg.) The ovary. London, Academic Press, 1–88

    Google Scholar 

  • Fukuda M, Miyamoto K, Hasegawa Y, Normura M, Igarashi M, Kangawa K, Matsuo H (1986) Isolation of bovine follicular fluid inhibin of about 32 kDA. Mol Cell Endocrinol 44: 55

    Article  PubMed  CAS  Google Scholar 

  • Geisthövel F, Moretti-Rojas I, Asch RH, Rojas FJ (1990) Expression of insulin-like-growth-factor-II ( IGF-II)-messenger ribinucleic acid (mRNA), but not IGF-I-mRNA, in human preovulatory granulosa cells. Hum Reprod 4: 899–902

    Google Scholar 

  • Gemzell CA, Li CH (1958) Estimation of growth hormone content in a single human pituitary. J Clin Endocrinol 18: 146

    Google Scholar 

  • Gharib SD, Wierman ME, Shupnik MA, Chin WW (1990) Molecular biology of the pituitary gonadotropins. Endocr Rev 11: 177

    Article  PubMed  CAS  Google Scholar 

  • Going JJ, Anderson TJ, Battersby S, Maclntyre CCA (1988) Proliferative and secretory activity in human breast during natural and artificial menstrual cycles. Am J Pathol 130: 193

    PubMed  CAS  Google Scholar 

  • Goldenberg RL, Vaitukaitis JL, Ross GT (1972) Estrogen and follicle stimulating hormone interactions on follicle growth in rats. Endocrinology 90: 1492–1498

    Article  PubMed  CAS  Google Scholar 

  • Gong EJ, Garrel D, Calloway DH (1989) Menstrual cycle and voluntary food intake. Am J Clin Nutr 49: 252

    PubMed  CAS  Google Scholar 

  • Goodman AL, Hodgen GD (1979) Between-ovary interaction in the regulation of follicle growth, corpus luteum function, and gonadotropin secretion in the primate ovarian cycle. Effects of luteectomy and hemiovariectomy during the luteal phase in cynomolgus monkeys. Endocrinology 104: 1310

    Google Scholar 

  • Goodman AL, Hodgen GD (1983) The ovarian triad of the primate menstrual cycle. Rec Prog Horm Res 39: 1

    PubMed  CAS  Google Scholar 

  • Gospodarowicz D (1989) Fibroblast growth factor: involvement in early embryonic development and ovarian function. Se-min Reprod Endocrinol 7: 21

    Article  Google Scholar 

  • Gospodarowicz D, Bialecki H (1979) Fibroblast and epidermal growth factors are mitogenic agents for cultured granulosa cells of rodent, porcine, and human origin. Endocrinology 104: 757

    Article  PubMed  CAS  Google Scholar 

  • Gospodarowicz D, Ferrara NJ (1989) Fibroblast growth factor and the control of pituitary and gonad development and function. Steroid Biochem 32: 183–191

    Article  CAS  Google Scholar 

  • Gougeon A (1986) Dynamics of follicular growth in the human• a model from preliminary results. Hum Reprod 1: 81–87

    PubMed  CAS  Google Scholar 

  • Green ID, Harris GW (1949) Observation of the hypophyseal-portal vessels in the living rat. J Physiol (London) 108: 359

    Google Scholar 

  • Gross DS (1980) Effect of castration and steroid replacement on immunoreactive gonadotropin-releasing hormone in the hypothalamus and preoptic area. Endocrinology 106: 1442–1450

    Article  PubMed  CAS  Google Scholar 

  • Gudelsky GA, Porter JC (1980) Release of dopamine from tuberoinfundibular neurons into pituitary stalk blood after prolactin or haloperidol administration. Endocrinology 106: 526

    Article  PubMed  CAS  Google Scholar 

  • Gudelsky GA, Apud JA, Masotto C, Locatelli V, Cocchi D, Racgani G, Muller EE (1983) Ethanolamine-O-sulfate enhances a-aminobutyric acid secretion into hypophysial portal blood and lowers serum prolactin concentrations. Neuroendocrinology 37: 397

    Article  PubMed  CAS  Google Scholar 

  • Guillemin F (1978) Peptides in the brain: the new endocrinology of the neuron. Science 202: 390

    Article  PubMed  CAS  Google Scholar 

  • Guillemin R, Rosenberg B (1955) Humoral hypothalamic control of anterior pituitary a study of combined tissue cultures. Endocrinology 57: 599–607

    Article  PubMed  CAS  Google Scholar 

  • Guillemin R, Brazeau P, Bohlen P, Esch F, Ling N, Wehrenberg WB (1982) Growth hormone-releasing factor from a human pancreatic tumor that caused acromegaly. Science 218: 585–587

    Article  PubMed  CAS  Google Scholar 

  • Guillemin R, Brazeau P, Bohlen P (1984) Somatocrinin the growth hormone releasing factor. Recent Prog Horm Res 40: 233

    PubMed  CAS  Google Scholar 

  • Guler HP, Zapf J, Froesch ER (1987) Short term metabolic effects of recombinant human insulin-like growth factor-I in healthy adults. N Engl J Med 317: 137

    Article  PubMed  CAS  Google Scholar 

  • Hampson E (1990) Estrogen-related variations in human spatial and articulatory-motor skills. Psychoneuroendocrinology 15: 97

    Article  PubMed  CAS  Google Scholar 

  • Hardouin S, Gourmelen M, Noguiez P (1989) Molecular forms of serum insulin-like growth factor (IGF-)-binding proteins in man: relationship with growth hormone and IGFs and physiological significance. J Clin Endocrinol Metab 69: 1291

    Article  PubMed  CAS  Google Scholar 

  • Hazum E, Conn PM (1988) Molecular mechanism of gonadotropin releasing hormone (GnRH) action: 1. The GnRH receptor. Endocr Rev 9: 379

    Google Scholar 

  • Heinonen PK, Metsa Ketela T (1988) Prostanoids and cyclic nucleotides in malignant and benign ovarian tumors. Med Oncol Tumor Pharmacother 5: 11–15

    PubMed  CAS  Google Scholar 

  • Henkin RI (1974) Sensory changes during the menstrual cycle. In: Ferin M, Halberg F, Richart RL, Vande Wiele RL (eds) Biorhythms and human reproduction. John Wiley & Sons, New York, pp 277–285, 169

    Google Scholar 

  • Hernandez ER, Jimenez IL, Payne DW, Adashi EY (1988) Adrenergic regulation of ovarian androgen biosynthesis is mediated via ß-adrenergic theca-interstitial cell recognition sites. Endocrinology 122: 1592–1602

    Article  PubMed  CAS  Google Scholar 

  • Hillier SG, DeZwart FA (1981) Evidence that granulosa cell aromatase induction/activation by follicle-stimulating hormone is an androgen receptor-regulated process in vitro. Endocrinology 109: 1303

    Article  PubMed  CAS  Google Scholar 

  • Hillier SG, van den Boogaard AMJ, Reichert LE, van Hall EV (1980) Intraovarian sex steroid hormone interactions and the regulation of follicular maturation: aromatization of androgens by human granulosa cells in vitro. J Clin Endocrinol Metab 50: 640

    Article  PubMed  CAS  Google Scholar 

  • Hillier SG, Reichert LE Jr, Van Hall EV (1981) Control of preovulatory follicular estrogen biosynthesis in the human ovary. J Clin Endocrinol Metab 52: 847

    Article  PubMed  CAS  Google Scholar 

  • Himelstein-Braw R, Byskow AG, Peters H, Faber M (1976) Follicular atresia in the infant ovary. J Reprod Fertil 46: 55

    Article  PubMed  CAS  Google Scholar 

  • Hodgen GD (1982) The dominant ovarian follicle. Fertil Steril 38: 281–300

    PubMed  CAS  Google Scholar 

  • Hoff JD, Quigley ME, Yen-SSC (1983) Hormonal dynamics at midcycle: A reevaluation. J Clin Endocrinol Metab 57: 792–796

    Google Scholar 

  • Hoffman GE, Lee W-S, Attardi B. Yann V, Fitzsimmons MD ( 1990 Luteinizing hormone-releasing hormone neurons express c-fos antigen after steroid activation. Endocrinology 126: 1736

    Article  PubMed  CAS  Google Scholar 

  • Hsueh AJW, Jones PBC, Adashi EY, Wang C, Zhuang L-Z, Welsh TH Jr (1983) Intraovarian mechanisms in the hormonal control of granulosa cell differentiation in rats. J Re-prod Fertil 69: 325

    Article  CAS  Google Scholar 

  • Hsueh AJW, Dahl KD, Vaughan I, Tucker E, Rivier J, Bardin CW, Vale W (1987) Heterodimers and homodimers of inhibin subunits have different paracrine action in the modulation of luteinizing hormone-stimulated androgen biosynthesis. Proc Natl Acad Sci USA 84: 5082

    Article  PubMed  CAS  Google Scholar 

  • Hume DA, Halpin D, Charlton H, Gordon S (1984) The mononuclear phagocyte system of the mouse defined by immunohistochemical localization of antigen F4t 80: macrophages of endocrine organs. Proc Natl Acad Sci USA 81: 4174

    Article  PubMed  CAS  Google Scholar 

  • Hutchinson LA, Handlay IK, Devos FL, Robertson DM (1987) Effects of bovine inhibin, transforming growth factor-ß and bovine activin-A on granulosa cell differentiation. Biochem Biophys Res Commun 146: 1405

    Article  PubMed  CAS  Google Scholar 

  • Hutz RJ, Dierschke DJ, Wolf RC (1985) Seasonal effects on ovarian folliculogenesis in rhesus monkeys. Biol Reprod 33: 653

    Article  PubMed  CAS  Google Scholar 

  • Ichikawa F, Yoshimura Y, Oda T et al (1990) The effects of lipoxygenase products on progesterone and prostaglandin production by human corpora lutea. J Clin Endocrinol Metab 70: 849–855

    Article  PubMed  CAS  Google Scholar 

  • Illingworth DR, Corbin DK, Kemp ED, Keenan EJ (1982) Hormone changes during the menstrual cycle in abetalipoproteinemia: reduced luteal phase progesterone in a patient with homozygous hypobetalipoproteinemia. Proc Natl Acad Sci USA 79: 6685

    Article  PubMed  CAS  Google Scholar 

  • Ivell R, Richter D (1984) The gene for the hypothalamic peptide hormone oxytocin is highly expressed in the bovine corpus luteum: biosynthesis, structure and sequence analysis. EMBO J 3: 2351

    PubMed  CAS  Google Scholar 

  • Jacobson W, Kalra SP (1989) Decreases in mediobasal hypothalamic and preoptic area opioid ([3H]naloxone) binding are associated with the progesterone-induced luteinizing hormone surge. Endocrinology 124: 199

    Article  PubMed  CAS  Google Scholar 

  • Jacobson W, Wilkinson M (1986) Association of diurnal variations in hypothalamic but not cortical opiatenaloxone binding sites with the ability of naloxone to induce LH release in the prepubertal female rats. Neuroendocrinology 44: 132

    Article  PubMed  CAS  Google Scholar 

  • Jänig W (1980) Das vegetative Nervensystem. In: Schmidt RF, Thews G (eds) Physiologie des Menschen, 20. Aufl. Springer, Berlin Heidelberg New York, 142–144

    Google Scholar 

  • Kaufman JM, Kesner JS, Wilson RC, Knobil E (1985) Electrophysiological manifestations of luteinizing hormone-releasing hormone pulse generator activity in the rhesus monkey: influence of adrenergic and dopaminergic blocking agents. Endocrinology 116: 1327

    Article  PubMed  CAS  Google Scholar 

  • Kaverne EB, de la Riva C (1982) Pheromones in mice: reciprocal interaction between the nose and brain. Nature 296: 148

    Article  Google Scholar 

  • Kazer R, Mais V, Cetel N, Rivier J, Vale W, Yen SSC (1985) Inhibition of follicular maturation and induction of luteolysis by an antagonistic analog of GnRH in normal cycling women. Society for Gynecologic Investigation. Phoenix, April 9, 1985 (Abstract No 237)

    Google Scholar 

  • Kiesel L, Catt KJ (1984) Phosphatidic acid and the calcium-dependent actions of gonadotropin-releasing hormone in pituitary gonadotrophs. Arch Biochem Biophys 231: 202–210

    Article  PubMed  CAS  Google Scholar 

  • Kiesel L, Loumaye E, Catt KJ (1984a) Receptors and action of gonadotropin releasing hormone (GnRH) in the anterior pituitary. In: Runnebaum B, Rabe T, Kiesel L, Merz WE (eds) Secretion and action of gonadotropins. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  • Kiesel L, Rabe T, Hauser G, Runnebaum B (1984b) Stimulation of luteinizing hormone release by phospholipases and melittin in rat pituitary cells. Acta Endocrinol [Supp1267] 108: 9–10

    Google Scholar 

  • Knecht M, Catt KJ (1983) Modulation of cAMP-mediated differentiation in ovarian granulosa cells by epidermal growth factor and platelet-derived growth factor. J Biol Chem 258: 2789

    PubMed  CAS  Google Scholar 

  • Knecht M, Feng P, Catt KJ (1986) Transforming growth factor-beta regulates the expression of luteinizing hormone receptors in ovarian granulosa cells. Biochem Biophys Res Commun 139: 800

    Article  PubMed  CAS  Google Scholar 

  • Knobil E (1974) On the control of gonadotropin secretion in the rhesus monkey. Recent Prog Horm Res 30: 146

    Google Scholar 

  • Knobil E (1989) The electrophysiology of the GnRH pulse generator. J Steroid Biochem 33: 669

    Article  PubMed  CAS  Google Scholar 

  • Knobil E, Plant TM, Wildt L et al (1980) Control of the rhesus monkey menstrual cycle: permissive role of hypothalamic gonadotropin-releasing hormone. Science 207: 1371–1373

    PubMed  CAS  Google Scholar 

  • Koistinen R, Kalkkinen N, Huhtala ML, Seppala M, Bohn H, Rutanen EM (1986) Placental protein 12 is a decidual protein that binds somatomedin and has an identical N-terminal amino acid sequence with somatomedin-binding protein from human amniotic fluid. Endocrinology 118: 1375–1378

    Article  PubMed  CAS  Google Scholar 

  • Koistinen R, Suikkari AM, Tiitinen A, Kontula K, Seppala M (1990) Human granulosa cells contain insulin-like growth factor-binding protein (IGF BP-1) mRNA. Clin Endocrinol. 32: 635–640

    Article  CAS  Google Scholar 

  • Koves K, Gottschall PE, Gores T, Scammell JG, Arimura A (1990) Presence of immunoreactive vasoactive intestinal polypeptide in anterior pituitary of normal male and long term estrogen-treated female rats: a light microscopic immunohistochemical study. Endocrinology 126: 1756–1763

    Article  PubMed  CAS  Google Scholar 

  • Krishna A, Terranova PF (1985) Alterations in mast cell degranulation and ovarian histamine in the proestrous hamster. Biol Reprod 32: 1211

    Article  PubMed  CAS  Google Scholar 

  • Krishna A, Terranova PF, Maneri RL, Papkoff H (1986) Histamine and increased ovarian blood flow mediate LH-induced superovulation in the cyclic hamster. J Reprod Fertil 76: 23

    Article  PubMed  CAS  Google Scholar 

  • Laessle RG, Tuschl RJ, Schweiger U, Pirke KM (1990) Mood changes and physical complaints during the normal menstrual cycle in healthy young women. Psychoneuroendocrinology 15: 131

    Article  PubMed  CAS  Google Scholar 

  • Ledwitz-Rigby F, Rigby BW, Gay VL, Stetston M, Young I, Channing CP (1977) Inhibitory action of porcine follicular fluid upon granulosa cell luteinization in vitro. J Endocrinol 74: 175

    Article  PubMed  CAS  Google Scholar 

  • Ling N, Ying SY, Ueno N, Shimasaki S, Esch F, Hotta M, Guillemin R (1986) Pituitary FSH is released by a heterodimer of the ß-subunits from the two forms of inhibin. Nature 321: 779

    Article  PubMed  CAS  Google Scholar 

  • Liu JH, Yen SSC (1983) Induction of midcycle gonadotropin surge by ovarian steroids in women A critical evaluation. J Clinical Endocrinol Metab 57: 797

    Article  CAS  Google Scholar 

  • Lloyd RV, Anagnostou D, Cano M, Barkan AL, Chandler WF (1988) Analysis of mammosomatotropic cells in normal and neoplastic human pituitary tissues by the reverse hemolytic plaque assay and immunocytochemistry. J Clin Endocrinol Metab 66: 1103

    Article  PubMed  CAS  Google Scholar 

  • Longacre TA, Bartow SA (1986) A correlative morphologic study of human breast and endometrium in the menstrual cycle. Am J Surg Pathol 10: 382

    Article  PubMed  CAS  Google Scholar 

  • Lucky AW, Rebar RW, Rosenfield RL, Roche-Bender N, Helke J (1977) Reduction of the potency of luteinizing hormone by estrogen. N Engl J Med 12: 720–729

    Google Scholar 

  • Magoffin DA, Kurtz KM, Erickson GF (1990) Insulin-like growth factor-I selectively stimulates cholesterol side-chain cleavage expression in ovarian thekal interstitiel cells. Mol. Endocrinol 4: 489

    Google Scholar 

  • Massague J, Czech MP (1982) The subunit structures of two distinct receptors for insulin-like growth factor I and II and their relationship to the insulin receptor. J Biol Chem 257: 5038–5045

    PubMed  CAS  Google Scholar 

  • Matsuo H, Baba Y, Nair RM, Arimura A, Schally AV (1971) Structure of the porcine LH-and FSH-releasing hormone. I. The proposed amino acid sequence. Biochem Biophys Res Commun 43: 1334–1339

    Google Scholar 

  • McDonough PG Molecular Biology in reproductive endocrinology (1991) In: Yen SCC, Jaffee RB (eds) Reproductive endocrinology. Saunders, Philadelphia, pp 65–104

    Google Scholar 

  • McLachlan RI, Cohen NL, Dahl KD, Bremner WJ, Soules MR (1990) Serum inhibin levels during the the periovulatory interval in normal women throughout the menstrual cycle. Clin Endocrinol 32: 39

    Article  CAS  Google Scholar 

  • McNatty KP, Makris A, DeGrazia C, Osathanondh R, Ryan KJ (1979a) The production of progesterone, androgens, and estrogens by granulosa cells, thecal tissue, and stromal tissue from human ovaries in vitro. J Clin Endocrinol Metab 49: 687–699

    Article  PubMed  CAS  Google Scholar 

  • McNatty KP, Makris A, Reinhold VN, DeGrazia C, Osathanondh R, Ryan KJ (1979b) Metabolism of androstenedione by human ovarian tissues in vitro with particular reference to reductase and aromatase activity. Steroids 34: 429

    Article  PubMed  CAS  Google Scholar 

  • McNatty KP, Smith DM, Makris A, Osathanondh R, Ryan KJ (1979c) The microenvironment of the human antral follicle: interrelationships among the steroid levels in antral fluid, the population of granulosa cells, and the status of the oocyte in vivo and in vitro. J Clin Endocrinol Metab 49: 851

    Article  PubMed  CAS  Google Scholar 

  • McQueen JK (1987) Classical transmitters and neurotransmitters. In: Flückinger E, Müller EE, Thorner MO (eds) Transmitter molecules in the brain. Part I: biochemistry of transmitter molecules. Springer, Berlin Heidelberg New York Tokyo, pp 7–26

    Chapter  Google Scholar 

  • Melis GB, Cagnacci A, Gambacciani M, Paoletti AM, Caffi T, Fioretti P (1988) Chronic bromocryptine administration restores luteinizing hormone reponse to naloxone in postmenopausal women. Neuroendocrinology 47: 159

    Article  PubMed  CAS  Google Scholar 

  • Melmed S, Braunstein GD, Horvath E, Ezrin C, Kovacs K (1983) Pathophysiology of acromegalie. Endocr Rev 4: 271

    Article  PubMed  CAS  Google Scholar 

  • Milewich L, Chen G, Lyons C, Tucker T, Uhr J, MacDonald P (1982) Metabolism of androstenedione by guinea-pig peritoneal macrophages: synthesis of testosterone and 5a-reduced metabolites. J Steroid Biochem 17: 61

    Article  PubMed  CAS  Google Scholar 

  • Morales TI, Woessner JF Jr, Marsh JM, LeMaire WJ (1983) Collagen, collagenase and collagenolytic activity in rat graafian follicles during follicular growth and ovulation. Biochim Biophys Acta 756: 119–122

    Article  PubMed  CAS  Google Scholar 

  • Morikawa H, Okamura H, Takenaka A, Morimoto K, Nishimura T (1981) Histamine concentration and its effect on ovarian contractility in humans. Int J Fertil 26: 283

    PubMed  CAS  Google Scholar 

  • Murdoch WJ, McCormick RJ (1989) Production of low molecular weight chemoattractants for leukocytes by periovulatory ovine follicles. Biol Reprod 40: 86

    Article  Google Scholar 

  • Murdoch WJ (1987) Treatment of sheep with prostaglandin F2alpha enhances production of a luteal chemoattractant for eosinophils. Am J Reprod Immunol Microbiol 15: 52

    PubMed  CAS  Google Scholar 

  • Murdoch WL, Cavender IL (1987) Mechanism of ovulation. Adv Contra Delv Sys 3: 353

    Google Scholar 

  • Murdoch WJ, Steadman LE, Belden EL (1988) Immunoregulation of luteolysis. Med Hypotheses 27: 197

    Article  PubMed  CAS  Google Scholar 

  • Nagy G, Mulchaney JJ, Neill JD (1988) Autocrine control of prolactin secretion by vasoactive intestinal peptide. Endocrinology 122: 364

    Article  PubMed  CAS  Google Scholar 

  • Naor Z, Katikineni M, Loumaye E, Garcia Vela A, Dufau ML, Catt KJ (1982) Compartmentalization of luteinizing hormone pools: dynamics of gonadotropin releasing hormone action in superfused pituitary cells. Mol Cell Endocrinol 27: 213–220

    Article  PubMed  CAS  Google Scholar 

  • Ohashi M, Carr BR, Simpson ER (1982) Lipoprotein binding sites in human corpus luteum membrane fractions. Endocrinology 110: 1477

    Article  PubMed  CAS  Google Scholar 

  • Ohno S, Klinger H, Atkin N (1962) Human oogenesis. Cytogenetics 1: 42

    Article  PubMed  CAS  Google Scholar 

  • Olasov B, Jackson J (1987) Effects of expectancies on women’s reports of moods during the menstrual cycle. Psychosom Med 49: 65

    PubMed  CAS  Google Scholar 

  • Parr EL (1974) Histological examination of the rat ovarian follicle wall prior to ovulation. Biol Reprod 11: 483

    Article  PubMed  CAS  Google Scholar 

  • Peluso IJ, Steger RW (1978) Role of FSH in regulating granulosa cell division and follicular atresia in rats. J Reprod Fertil 54: 275

    Article  PubMed  CAS  Google Scholar 

  • Pfaff DW (1986) Gene expression in hypothalamic neurons: luteinizing hormone-releasing hormone. J Neurosci Res 16: 109–115

    Article  PubMed  CAS  Google Scholar 

  • Pliner P, Fleming AS (1983) Food intake, body weight, and sweetness preferences over the menstrual cycle in humans. Physiol Behav 30: 663

    Article  PubMed  CAS  Google Scholar 

  • Plotsky PM, Cunningham ET Jr, Widmaier EP (1989) Catecholaminergic modulation of corticotropin-releasing factor and adrenocorticotropin secretion. Endocr Rev 10: 437

    Article  PubMed  CAS  Google Scholar 

  • Poretsky L, Kalin MF (1987) The gonadotropic function of insulin. Endocr Rev 8: 132

    Article  PubMed  CAS  Google Scholar 

  • Ramirez VD, Feder HH, Sawyer CH (1984) The role of brain catecholamines in the regulation of LH secretion: a critical inquiry. In: Martini L, Ganong WF (eds) Frontiers in neuroendocrinology, vol 8. Raven, New York, p 27

    Google Scholar 

  • Rani CSS, Salhanick AR, Armstrong DT (1981) Follicle stimulating hormone induction of luteinizing hormone receptor in cultured rat granulosa cells: An examination of the needs for steroids in the induction process. Endocrinology 108: 1379

    Google Scholar 

  • Rao MC, Midgley AR, Richards JS (1978) Hormonal regulation of ovarian cellular proliferation. Cell 14: 71–78

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen DD, Liu JH, Wolf PL, Yen SSC (1983) Endogenous opioid regulation of gonadotropin-releasing hormone release from the human fetal hypothalamus in vitro. J Clin Endocrinol Metab 57: 881

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen DD, Liu JH, Swartz WH, Tueros VS, Yen SSC (1986) Human fetal hypothalamic GnRH neurosecretion: dopaminergic regulation in vitro. Clin Endocrinol (Oxf) 25: 127

    Article  CAS  Google Scholar 

  • Rasmussen DD, Liu JH, Wolf PL, Yen SSC (1987) Neurosecretion of human hypothalamic immunoreactive ß-endorphin: in vitro regulation by dopamine. Neuroendocrinology 45: 197

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen DD, Gambacciani M, Swartz W, Tueros VS, Yen SSC (1989) Pulsatile gonadotropin-releasing hormone release from the human mediobasal hypothalamus in vitro: opiate receptor-mediated suppression. Neuroendocrinology 49: 150

    Article  PubMed  CAS  Google Scholar 

  • Reid RL, Hoff JD, Yen SSC, Li CH (1981) Effects of exogenous ß-endorphin on pituitary hormone secretion and its disappearance rate in normal human subjects. J Clin Endocrinol Metab 52: 1179

    Article  PubMed  CAS  Google Scholar 

  • Reyes RI, Boroditsky RS, Winter JSD, Faiman C (1974) Studies on human sexual development: II. Fetal and maternal serum gonadotropin and sex steroid concentrations. J Clin Endocrinol Metab 38: 612

    Google Scholar 

  • Reynolds H, Nathan P, Srivastava L, Hess E (1982) Release of estradiol from fetal bovine serum by rat thymus spleen, kidney, lung and lung macrophage cultures. Endocrinology 110: 2213

    Article  PubMed  CAS  Google Scholar 

  • Rice BF, Savard K (1966) Steroid hormone formation in the human ovary. IV. Ovarian stromal compartment; formation of radioactive steroids from acetate-1-’4C and action of gonadotropins. J Clin Endocrinol Metab 26: 593

    Article  PubMed  CAS  Google Scholar 

  • Richards JS (1975) Estradiol receptor content in rat granulosa cells during follicular development; modification by estradiol and gonadotrophins. Endocrinology 97: 1174–1184

    Article  PubMed  CAS  Google Scholar 

  • Richards JS, Bogvich K (1982) Effects of human chorionic gonadotropin and progesterone on follicular development in the immature rat. Endocrinology I 1 1: 1429

    Article  Google Scholar 

  • Richards JS, Ireland JJ, Rao MC, Bernath GA, Midgley AR Jr, Reichert LE Jr (1976) Ovarian follicular development in the rat: Hormone receptor regulation by estradiol, follicle-stimulating hormone and luteinizing hormone. Endocrinology 99: 1562

    Google Scholar 

  • Richards JS, Jongssen JA, Kersey KA (1980) Evidence that changes in tonic luteinizing hormone secretion deter mine the growth of preovulatory follicles in the rat. Endocrinology 107: 641

    Article  PubMed  CAS  Google Scholar 

  • Rivier C, Rivier J, Vale W (1986) Inhibin-mediated feedback control of follicle-stimulating hormone secretion in the female rat. Science 234: 205

    Article  PubMed  CAS  Google Scholar 

  • Robertson DM, Foulds LM, Leversha L (1985) Isolation of inhibin from bovine follicular fluid. Biochem Biophys Res Commun 126: 220

    Article  PubMed  CAS  Google Scholar 

  • Robertson DM, Klein R, Vos FLD et al (1987) The isolation of polypeptides with FSH suppressing activity from bovine follicular fluid which are structurally different to inhibin. Biochem Biophys Res Commun 149: 744

    Article  PubMed  CAS  Google Scholar 

  • Rodgers KE, Marks JF, Ellefson DD et al (1990) Follicle regulatory protein: A novel marker for granulosa cell cancer patients. Gynecol Oncol 37: 381–387

    Article  PubMed  CAS  Google Scholar 

  • Romano GJ, Krust A, Pfaff DW (1989) Expression and estrogen regulation of progesterone receptor mRNA in neurons of the mediobasal hypothalamus: an in situ hybridization study. Mol Endocrinol 3: 1295

    Article  PubMed  CAS  Google Scholar 

  • Roseff SJ, Bangah ML, Kettel LM, Vale W, Rivier J, Burger HG, Yen SSC (1989) Dynamic changes in circulating inhibin levels during the the luteal-follicular transition of the human menstrual cycle. J Clin Endocrinol Metab 69: 1033

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg B (1992) Postrezeptormechsnismen der GnRH-induzierten Gonadotropinsekretion und ihre Interaktionen. Promotionsarbeit, Abt. Gynäkologische Endokrinologie und Reproduktionsmedizin, Universitäts-Frauenklinik Heidelberg, Universität Heidelberg

    Google Scholar 

  • Rosenblatt H, Dyrenfurth L, Ferin M, Vande Wiele RL (1980) Food intake and the menstrual cycle in rhesus monkeys. Physiol Behav 24: 447

    Article  PubMed  CAS  Google Scholar 

  • Rossmanith WG (1990) Neuroendokrine Steuerung der menschlichen Reproduktion: Regulation der Gonadotropinfreisetzung durch Neurotransmitter und ovarielle Steroide. Habilitationschrift.

    Google Scholar 

  • Rossmanith WG, Laughlin GA, Mortola JF, Johnson ML, Veld-huis JD, Yen SSC (1990) Pulsatile cosecretion of estradiol and progesterone by the midluteal phase corpus luteum: Temporal link to luteinizing hormone pulses. J Clin Endocrinol Metab 70: 990

    Google Scholar 

  • Rossmanith WG, Mortola JF, Yen SSC (1988) Role of endogenous opioid peptides in the initiation of the midcycle luteinizing hormone surge in normal cycling women. J Clin Endocrinol Metab 61: 695

    Article  Google Scholar 

  • Rossmanith WG, Yen SSC (1987) Sleep-associated decrease in LH pulse frequency during the early follicular phase of the menstrual cycle: evidence for an opioidergic mechanism. J Clin Endocrinol Metab 65: 715

    Article  PubMed  CAS  Google Scholar 

  • Rudenstein RS, Bigdeli H, McDonald MH, Snyder PJ (1979) Administration of gonadal steroids to the castrated male rat prevents a decrease in the release of gonadotropin-releasing hormone from the incubated hypothalamus. J Clin Invest 63: 262–267

    Article  PubMed  CAS  Google Scholar 

  • Runnebaum B, Rieben W, Bierwirth-v. Münstermann AM, Zander J (1972) Circadian variations in plasma progesterone in the luteal phase of the menstrual cycle and during pregnancy. Acta Endocrinol 69: 731–738

    PubMed  CAS  Google Scholar 

  • Ryan KJ, Petro Z (1966) Steroid biosynthesis by human ovarian granulosa and thecal cells. J Clin Endocrinol Metab 26: 46

    Article  PubMed  CAS  Google Scholar 

  • Said SI, Porter JC (1979) Vasoactive intestinal polypeptide; Release into hypophysial portal blood. Life Sci 24: 227

    Google Scholar 

  • Saint-Andre JP, Rohmer V, Alhenc-Gelas F, Menard J, Bigorgne JC, Corvol P (1986) Presence of renin, angiotensinogen-and converting enzyme in humanpituitary lactotroph cells and prolactin adenomas. J Clin Endocrinol Metab 63: 231

    Article  PubMed  CAS  Google Scholar 

  • Salomon F, Cuneo RC, Hesp R, Sonksen PH (1989) The effects of treatment with recombinant human growth hormone on body composition and metab olism in adults with growth hormone deficiency. N Engl J Med 321: 1797

    Article  PubMed  CAS  Google Scholar 

  • Samson WK, Bianchi R, Mogg RJ, Rivier J, Vale W, Melin P (1989) Oxytocin mediates the hypothalamic action of vaso-active intestinal peptide to stimulate prolactin secretion. Endocrinology 124: 812

    Article  PubMed  CAS  Google Scholar 

  • Sano Y, Suzuki K, Okinaga S, Taaoki BI (1981) Changes in enzyme activities related to steroidogenesis in human ovaries during the menstrual cycle. J Clin Endocrinol Metab 52: 994

    Article  PubMed  CAS  Google Scholar 

  • Sar M (1984) Estradiol is concentrated in tyrosine hydroxylase containing neurons of the hypothalamus. Science 223: 938

    Article  PubMed  CAS  Google Scholar 

  • Sarkar DK (1989) Evidence for prolactin feedback actions on hypthalamic oxytocin, vasoactive intestinal peptide and dopamine secretion. Neuroendocrinology 36: 27

    Google Scholar 

  • Schaeffer JM, Liu J, Hsueh AJ1V, Yen SSC (1984) Presence of oxytocin and arginine-vasopressin in human ovary, oviduct and follicular fluid. J Clin Endocrinol Metab 59: 970

    CAS  Google Scholar 

  • Schally AV, Arimura A, Baba Y et al (1971) Isolation and properties of the FSH and LH-releasing hormone. Biochem Biophys Res Commun 43: 393–399

    Article  PubMed  CAS  Google Scholar 

  • Schmidt CL, Black VH, Sarosi P, Weiss G (1986) Progesterone and relaxin secretion in relation to the ultrastructure of human luteal cells in culture: effects of human chorionic gonadotropin. Am J Ob stet Gynecol 155: 1209–1219

    CAS  Google Scholar 

  • Schmidt-Mathiesen (1991) Lehrbuch für Gynäkologie und Geburtshilfe

    Google Scholar 

  • Schramme C, Denef C (1983) Stimulation of prolactin release by angiotensin II in superfused rat anterior pituitary cell aggregates. Neuroendocrinology 36: 483

    Article  PubMed  CAS  Google Scholar 

  • Seeburg PH, Adelman JP (1984) Characterization of cDNA for precursor of human luteinizing hormone releasing hormone. Nature 311: 666

    Article  PubMed  CAS  Google Scholar 

  • Sheehan KL, Casper RF, Yen SSC (1982) Introduction of luteolysis by luteinizing hormone releasing factor (LRF) agonist: sensitivity, reproducibility and reversibility. Fertil Steril 37: 209

    PubMed  CAS  Google Scholar 

  • Sherman TG, Akil H, Watson SJ (1989) The molecular biology of neuropeptides. Geneva. Fondation pour l’Etude du Systeme Nerveux. Elsevier, Amsterdam, Vol Vl, No. 1

    Google Scholar 

  • Shivers BD, Harlan RE, Morell JI, Pfaff DW (1983) Absence of oestradiol concentration in cell nuclei of LHRH-immunoreactive neurones. Nature 304: 345–347

    Article  PubMed  CAS  Google Scholar 

  • Simpson ER, Rochelle DBJ Carr BR, MacDonald PC (1981) Plasma lipoproteins in follicular fluid of human ovaries. J Clin Endocrinol Metab 51: 1469

    Article  Google Scholar 

  • Skinner MK, Keski-Oja J, Osteen KG, Moses HL (1987) Ovarian thecal cells produce transforming growth factor-ß which can regulate granulosa cell growth. Endocrinology 121: 786

    Article  PubMed  CAS  Google Scholar 

  • Sommer B (1983) How does menstruation affect cognitive competence and psychophysiological response? In Gotub S (ed) Lifting the curse of menstruation. Hawthorne, New York, pp 53–90

    Google Scholar 

  • Speroff L, Glass RH, Kase NG (1989) Neuroendokrinologie In: Bohnet H (Hrsg) Gynäkologische Endokrinologie u. steriles Paar. Diesbach, Berlin, S 49–85

    Google Scholar 

  • Suikkari AM, Jalkanen J, Koistinen R, Butzow R, Ritvos O, Ranta T, Seppala M (1989a) Human granulosa cells synthesize low molecular weight insulin-like growth factor-binding protein. Endocrinology 124: 1088

    Article  PubMed  CAS  Google Scholar 

  • Suikkari AM, Ruutiainen K, Erkkola R, Seppala M (1989b) Low levels of of low molecular weight insulin-like growth factor-binding protein in patients with polycystic ovarian disease. Hum Reprod 4: 136–139

    PubMed  CAS  Google Scholar 

  • Szego CM, Pitin ES (1964) Ovarian histamine depletion during acute hyperaemic response to luteinizing hormone. Nature 201: 682

    Article  PubMed  CAS  Google Scholar 

  • Szontagh FE (1973) Short-loop („internal“) pituitary-hypothalamus gonadotropin feedback in the human. Endocrinol Exp 7: 65

    PubMed  CAS  Google Scholar 

  • Takano K, Hizuka N, Shizume K, Hayashi N, Motoiko Y (1977) Serum somatomedin peptides measured by somatomedin, a radioreceptor assay in chronic liver disease J Clin Endocrinol Metab 45: 828–832

    CAS  Google Scholar 

  • Tan GJS, Tweedale R, Biggs JSG (1982) Oxytocin may play a role in the control of corpus luteum. Endocrinology 95: 65

    Article  CAS  Google Scholar 

  • Tannenbaum GS, Ling N (1984) The interrelationship of growth hormone ( GH)-releasing factor and somatostatin in generation of the ultradian rhythm of GH secretion. Endocrinology 115: 1952

    Google Scholar 

  • Tonetta SA, DeVinna RS, diZerega GS J (1988) Effects of follicle regulatory protein on thecal aromatase and 3 beta hydroxysteroid dehydrogenase activity in medium-and large-sized pig follicles. Reprod Fertil 82: 163–171

    Article  CAS  Google Scholar 

  • Tonetta SA, Stone BA, Marrs RP, DiZerega GSJ (1990) Concentrations of follicle regulatory protein, steroids and gonadotrophins in antral fluids from women stimulated with metro-din and hCG. Reprod Fertil 88: 389–397

    Article  CAS  Google Scholar 

  • Too CKL, Bryant Greenwood GD, Greenwood FC (1984) Relaxin increases the release of plasminogen activator, collagenase, and proteoglycanase from rat granulosa cells in vitro. Endocrinology 115: 1043–1050

    Article  PubMed  CAS  Google Scholar 

  • Too KLC, Greenwood FC (1981) The effect of relaxin on rat uterine collagenase activity. Biol Reprod 24: 267

    Article  Google Scholar 

  • Ueno N, Lins N, Yins SY, Esch F, Shimasaki S, Guillemin R (1987) Isolation and partial characterization of follistatin: a single-chain Mr 35,000 monomeric protein that inhibits the release of follicle-stimulating hormone. Proc Natl Acad Sci USA 84: 82–82

    Article  Google Scholar 

  • Vale W, Spiess J, Rivier C (1981) Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin an ß-endorphin. Science 213: 1394

    Article  PubMed  CAS  Google Scholar 

  • Vale W, Rivier J, Vaughan J et al (1986) Purification and characterization of an FSH releasing protein from porcine ovarian follicular fluid. Nature 321: 776

    Article  PubMed  CAS  Google Scholar 

  • Vale W, Hsueh A, Rivier C, Yu J (1990a) The inhibin/activin family of hormones and growth factors. In: Sporn MB, Roberts AB (eds) Peptide growth factors and their receptors II. Springer, Berlin Heidelberg New York Tokyo, pp 211–248

    Chapter  Google Scholar 

  • Vale W, Hsueh A, Rivier C, Yu J (1990b) The inhibin/activin family of hormones and growth factors. In: Sporn MB, Roberts AB (eds) Peptide growth factors and their receptors 11. Springer, Berlin Heidelberg New York Tokyo, pp 248

    Google Scholar 

  • VandeWiele R, Bogumil J, Dyrenfurth I et al (1970) Mechanisms regulating the menstrual cycle in women. Rec Prog Horm Res 26: 63–92

    CAS  Google Scholar 

  • Vierling JS, Rock J (1967) Variations in olfactory sensitivity to exaltolide during the menstrual cycle. J Appl Physiol 22: 311

    PubMed  CAS  Google Scholar 

  • Vincent S, Hokfelt T, Wu JY (1982) GABA neuron systems in the hypothalamus and the pituitary gland. Neuroendocrinology 34: 117

    Article  PubMed  CAS  Google Scholar 

  • Voutilainen L, Miller WL (1987) Coordinate tropic hormone regulation if mRNAs for insulin-like-growth factor II and the cholesterol side-chain cleavage enzyme P450scc, in human steroidogenic tissues. Proc Natl Acad Sci USA 84: 1590

    Article  PubMed  CAS  Google Scholar 

  • Wehrenberg WB, Ling H, Bohlen P, Esch F, Bra zeau P, Guillemin R (1982) Physiological roles of somatocrinin and somatostatin in the regulation of growth hormone secretion. Biochem Biophys Res Commun 109: 562

    Article  PubMed  CAS  Google Scholar 

  • Weingartner H, Gold P, Ballenger JC et al (1981) Effects of va-sopressin on human memory function. Science 211: 601

    Article  PubMed  CAS  Google Scholar 

  • Welsh TH Jr, Zhuang L-Z, Hsueh AJW (1983) Estrogen augmentation of gonadotropin-stimulated progestin biosynthesis in cultured rat granulosa cells. Endocrinology 112: 1916

    Article  PubMed  CAS  Google Scholar 

  • Wildt L, Hausler A, Marshall G, Hutchison IS, Plant TM, Belchetz PE, Knobil E (1981) Frequency and amplitude of gonadotropin-releasing hormone stimulation and gonadotropin secretion in the rhesus monkey. Endocrinology 109: 376

    Article  PubMed  CAS  Google Scholar 

  • Wilkes MM, Yen SSC (1980) Reduction by ß-endorphin of efflux of dopamine and DOPAC from superfused medial basal hypothalamus. Life Sci 27: 1387

    Article  PubMed  CAS  Google Scholar 

  • Witschi E (1948) Migration of the germ cells of human embryos from the yolk sac to the primitive gonadal folds. Contrib Embryol 32: 67

    Google Scholar 

  • Yen SSC (1983) Pituitary hormone release in response to food ingestion: evidence for neuroendocrine signals from gut to brain. J Clin Endocrinol Metab 57: 1111

    Article  PubMed  Google Scholar 

  • Yen SCC (1988) Reproductive strategies in women: neuroendocrine basis of endogenous contraception. In: Roland R (ed) Neuroendocrinology of reproduction. Excerpta Medica, Amsterdam, pp 231–239

    Google Scholar 

  • Yen SCC (1991a) The human menstrual cycle: Neuroendocrine regulation. In: Yen SCC, Jaffee RB (eds) Reproductive endocrinology. Saunders, Philadelphia, pp 273–308

    Google Scholar 

  • Yen SCC (199lb) The hypothalamic control of pituitary hormone secretion. In: Yen SCC, Jaffe RB (eds) Reproductive endocrinology. Saunders, Philadelphia, pp 1–25

    Google Scholar 

  • Yen SSC, Rebar RW (1979) Endocrine rhythms in gonadotropins and ovarian steroids with reference to reproductive processes. In: Krieger DT (ed) Endocrine rhythms. Raven, New York

    Google Scholar 

  • Yen SSC, Tsai CC (1972) Acute gonadotropin release induced by exogenous estradiol during the mid-follicular phase of the menstrual cycle. J Clin Endocrinol Metab 34: 298–305

    Article  PubMed  CAS  Google Scholar 

  • Yen SSC, Quigley ME, Reid RL, Cetel N S (1985) Neuroendocrinology of opioid peptides and their role in the control of gonadotropin and prolactin secretion. Am J Obstet Gynecol 152: 485

    PubMed  CAS  Google Scholar 

  • Ying SY (1988) Inhibins, activins, and follistatins: gonadal proteins modulating the secretion of follicle-stimulating hormone. Endocr Rev 9: 267

    Article  PubMed  CAS  Google Scholar 

  • Ying SY, Becker A, Swanson G et al (1987) Follistatin specifically inhibits pituitary follicle stimulating hormone release in vitro. Biochem Biophys Res Commun 149: 133

    Article  PubMed  CAS  Google Scholar 

  • Zanisi M, Martini L (1975a) Effects of progesterone metabolites on gonadotrophin secretion. J Steroid Biochem 6: 1021

    Article  PubMed  CAS  Google Scholar 

  • Zanisi M, Martini L (1975b) Differential effects of castration on LH and FSH secretion in male and female rats. Acta Endocrinol 78: 683

    PubMed  CAS  Google Scholar 

  • Zapf J, Walter H, Froesch ER (1981) Radioimmunological determination of insulin-like growth factors I and II in normal subjects and in patients with growth disorders and extra-pancreatic tumor hypoglycemia. J Clin Invest 68: 1321–1330

    Article  PubMed  CAS  Google Scholar 

  • Zhiwen Z, Carson RS, Herington AC, Lee VWK, Burger HG (1987) Follicle stimulating hormone and somatomedin-C stimulate inhibin production by rat granulosa cells in vitro. Endocrinology 120: 1633

    Article  CAS  Google Scholar 

  • Zimmermann EA, Defendini R, Frantz AG (1974) Prolactin and growth hormone in patients with with pituitary adenomas: a correlative study of hormone in tumor and plasma by immunoperoxidase technique and radioimmunoassay. J Clin Endocrinol Metab 38: 577

    Article  Google Scholar 

  • Zoller LC, Weisz J (1979a) A quantitative cytochemical study of glucose-6-phosphate dehydrogenase and/-53ß-hydroxysteroid dehydrogenase activity in the membrana granulosa of the ovulable type of follicle of the rat. Histochemistry 62: 125

    Article  PubMed  CAS  Google Scholar 

  • Zoller LC, Weisz J (1979b) Identification of cytochrome P450, and its distribution in the membrana granulosa of the preovulatory follicle using quantitative cytochemistry. Endocrinology 103: 310

    Article  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Grunwald, K., Rabe, T., Kiesel, L., Runnebaum, B. (1994). Physiologie des menstruellen Zyklus. In: Gynäkologische Endokrinologie und Fortpflanzungsmedizin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-07635-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-07635-4_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-07636-1

  • Online ISBN: 978-3-662-07635-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics