Skip to main content

Mitochondriale DNA des Menschen

  • Chapter
Grundlagen der Molekularen Medizin
  • 281 Accesses

Zusammenfassung

Ein Hauptmerkmal eukaryontischer Organismen ist der Besitz von Mitochondrien, in sich abgeschlossenen Zellorganellen, als Bestandteile des Zytoplasma. Mitochondrien sind zumeist stäbchenförmig und messen zwischen 0,2 und 1 tm im Durchmesser und 2–8 μm in Längsrichtung. Ihre Zahl schwankt je nach Zelltyp zwischen wenigen Dutzenden in den Spermien und primordialen Keimzellen bis zu Zehntausenden in Leberzellen oder reifen Oozyten. Einige Protisten besitzen sogar lediglich ein singuläres Mitochondrium (Trypanosomen, Physarum).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Altman S, Baer M, Guerrier-Takada C, Vioque A (1986) Enzymatic cleavage of RNA by RNA. Trends Biochem Sci 11: 515–518

    Article  CAS  Google Scholar 

  • Anderson S, Bankier AT, Barrell BG et al. (1981) Sequence and organization of the human mitochondrial genome. Nature 290: 457–465

    Article  PubMed  CAS  Google Scholar 

  • Andrews RM, Kubacka I, Chinnery PF, Lightowlers RN, Turnbull DM, Howell N (1999) Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA. Nat Genet 23: 147

    Article  PubMed  CAS  Google Scholar 

  • Ashley MV, Laipis PJ, Hauswirth WW (1989) Rapid segregation of heteroplasmic bovine mitochondria. Nucleic Acids Res 17: 7325–7331

    Article  PubMed  CAS  Google Scholar 

  • Attardi G (1985) Animal mitochondrial DNA: an extreme example of genetic economy. Int Rev Cytol 93: 93–145

    Article  PubMed  CAS  Google Scholar 

  • Aujame L, Freeman KB (1979) Mammalian mitochondrial transfer RNAs: chromatographic properties, size and origin. Nucleic Acids Res 6: 455–470

    Article  PubMed  CAS  Google Scholar 

  • Awadalla P, Eyre-Walker A, Maynard Smith J (1999a) Questioning evidence for recombination in human mitochondria. Science 288: 1931

    Google Scholar 

  • Awadalla P, Eyre-Walker A, Maynard Smith J (1999b) Linkage disequilibrium and recombination in human mitochondria. Science 286: 2524–2525

    Article  PubMed  CAS  Google Scholar 

  • Barrell BG, Bankier AT, Drouin J (1979) A different genetic code in human mitochondria. Nature 282: 189–194

    Article  PubMed  CAS  Google Scholar 

  • Barrell BG, Anderson S, Bankier AT et al. (1980) Different pattern of codon recognition by mammalian mitochondrial tRNAs. Proc Natl Acad Sci USA 77: 3164–3166

    Article  PubMed  CAS  Google Scholar 

  • Berk AJ, Clayton DA (1974) Mechanism of mitochondrial DNA replication in mouse L-cells: asynchronous replication of strands, segregation of circular daughter molecules, aspects of topology and turnover of an initiation sequence. J Mol Biol 86: 801–824

    Article  PubMed  CAS  Google Scholar 

  • Bibb MJ, Van Etten RA, Wright CT, Walberg MW, Clayton DA (1981) Sequence and gene organization of mouse mitochondrial DNA. Cell 26: 167–180

    Article  PubMed  CAS  Google Scholar 

  • Bidooki SK, Johnson MA, Chrzanowska-Lightowlers Z, Bindoff LA, Lightowlers RN (1997) Intracellular mitochondrial triplasmy in a patient with two heteroplasmic base changes. Am J Hum Genet 60: 1430–1438

    Article  PubMed  CAS  Google Scholar 

  • Birky CW (1995) Uniparental inheritance of mitochondrial and chloroplast genes: mechanisms and evolution. Proc Natl Acad Sci USA 92: 11331–11338

    Article  PubMed  CAS  Google Scholar 

  • Bittner-Eddy P, Monroy AF, Brambl R (1994) Expression of mitochondrial genes in the germinating conidia of Neurospora crassa. J Mol Biol 235: 881–897

    Article  PubMed  CAS  Google Scholar 

  • Blok RB, Gook DA, Thorburn DR, Dahl HH (1997) Skewed segregation of the mtDNA nt8993 ( T-G) mutation in human oocytes. Am J Hum Genet 60: 1495–1501

    Google Scholar 

  • Bogenhagen DF (1996) Interaction of mtTFB and mtRNA polymerase at core promoters for transcription of Xeno-pus laevis mtDNA. J Biol Chem 271:12 036–12 041

    Google Scholar 

  • Bogenhagen DF, Clayton DA (1977) Mouse L cell mitochondrial DNA molecules are selected randomly for replication throughout the cell cycle. Cell 11: 719–727

    Article  PubMed  CAS  Google Scholar 

  • Bogenhagen DF, Clayton DA (1978) Mechanism of mitochondrial DNA replication in mouse L-cells: introduction of superhelical turns into newly replicated molecules. J Mol Biol 119: 49–68

    Article  PubMed  CAS  Google Scholar 

  • Brown MD, Wallace DC (1994) Molecular basis of mitochon- drial DNA disease. J Bioenerg Biomembr 26: 273–289

    Article  PubMed  CAS  Google Scholar 

  • Brown GG, Gadaleta G, Pepe G, Saccone C, Sbisa E (1986) Structural conservation and variation in the D-loop containing region of vertebrate mitochondrial DNA. J Mol Biol 192: 503–511

    Article  PubMed  CAS  Google Scholar 

  • Brown DT, Samuels DC, Michael EM, Turnbull DM, Chinnery PF (2001) Random genetic drift determines the level of mutant mtDNA in human primary oocytes. Am J Hum Genet 68: 533–536

    Article  PubMed  CAS  Google Scholar 

  • Cai YC, Bullard JM, Thompson NL, Spremulli LL (2000) Interaction of mitochondrial elongation factor Tu with aminoacyl-tRNA and elongation factor Ts. J Biol Chem 275: 20 308–20 314

    Google Scholar 

  • Cann RL, Stoneking M, Wilson AC (1987) Mitochondrial DNA and human evolution. Nature 325: 31–36

    Article  PubMed  CAS  Google Scholar 

  • Chang DD, Clayton DA (1985) Priming of human mitochondrial DNA replication occurs at the light-strand promo-tor. Proc Natl Acad Sci USA 82: 351–355

    Article  PubMed  CAS  Google Scholar 

  • Chang DD, Clayton DA (1987a) A novel endoribonuclease cleaves at a priming site of mouse mitochondrial replication. EMBO J 6: 409–417

    PubMed  CAS  Google Scholar 

  • Chang DD, Clayton DA (1987b) A mammalian mitochondrial RNA processing activity contains nuclear-encoded RNA. Science 235: 1178–1184

    Article  PubMed  CAS  Google Scholar 

  • Chang DD, Clayton DA (1989) Mouse RNAse MRP RNA is encoded by a nuclear gene and contains a decamer sequence complementary to a conserved region of mitochondrial RNA substrate. Cell 56: 131–139

    Article  PubMed  CAS  Google Scholar 

  • Chang DD, Hauswirth WW, Clayton DA (1985) Replication priming and transcription initiate from precisely the same site in mouse mitochondrial DNA. EMBO J 6: 15591567

    Google Scholar 

  • Chinnery PF, Johnson MA, Wardell TM et al. (2000) Epidemiology of pathogenic mitochondrial DNA mutations. Ann Neurol 48: 188–193

    Article  PubMed  CAS  Google Scholar 

  • Chinnery PF, Taylor GA, Howell N, Brown DT, Parsons TJ, Turnbull DM (2001) Point mutations of the mtDNA control region in normal and neurodegenerative human brains. Am J Hum Genet 68: 529–532

    Article  PubMed  CAS  Google Scholar 

  • Chomyn A, Mariottini P, Cleeter MW et al. (1985) Six unidentified reading frames of human mitochondrial DNA encode components of the respiratory-chain NADH dehydrogenase. Nature 314: 592–597

    Article  PubMed  CAS  Google Scholar 

  • Chomyn A, Cleeter MW, Ragan CI, Riley M, Doolittle RF, Attardi G (1986) URF6, last unidentified reading frame of human mtDNA, codes for an NADH dehydrogenase subunit. Science 234: 614–618

    Article  PubMed  CAS  Google Scholar 

  • Chu S, Archer RH, Zengel JM, Lindahl L (1994) The RNA of RNAse MRP is required for normal processing of ribosomal RNA. Proc Natl Acad Sci USA 91: 659–663

    Article  PubMed  CAS  Google Scholar 

  • Clayton DA (1982) Replication of animal mitochondrial DNA. Cell 28: 693–705

    Article  PubMed  CAS  Google Scholar 

  • Corral-Debrinski M, Horton T, Lott MT, Shoffner JM, Beal MF, Wallace DC (1992) Mitochondrial DNA deletions in human brain: regional variability and increase with advanced age. Nat Genet 2: 324–329

    Article  PubMed  CAS  Google Scholar 

  • Correns C (1937) Nichtmendelnde Vererbung. Bornträger, Berlin

    Google Scholar 

  • Cummins JM, Jequier AM, Martin R, Mehmet D, Goldblatt J (1998) Semen levels of mitochondrial deletions in men attending an infertility clinic do not correlate with phenotype. Int J Androl 21: 47–52

    Article  PubMed  CAS  Google Scholar 

  • Daga A, Micol V, Hesse D, Aebersold R, Attardi G (1993) Molecular characterization of the transcription termination factor from human mitochondria. J Biol Chem 268: 8123–8130

    PubMed  CAS  Google Scholar 

  • Davis AF, Clayton DA (1996) In situ localization of mitochondrial DNA replication in intact mammalian cells. J Cell Biol 135: 883–893

    Article  PubMed  CAS  Google Scholar 

  • Davis RE, Miller S, Hermstadt C et al. (1997) Mutations in mitochondrial cytochrome c oxidase genes segregate with late-onset Alzheimer disease. Proc Natl Acad Sci USA 94: 4526–4531

    Article  PubMed  CAS  Google Scholar 

  • De Bruijn MH, Klug A (1983) A model for the tertiary structure of mammalian mitochondrial transfer RNAs lacking the entire ‘dihydrouridine’ loop and stem. EMBO J 2: 1309–1321

    PubMed  Google Scholar 

  • Doersen CJ, Guerrier-Takada C, Altman S, Attardi G (1985) Characterization of an RNAse P activity from HeLa cell mitochondria. Comparison with the cytosolic RNAse P activity. J Biol Chem 260: 5942–5949

    Google Scholar 

  • Dubin DT, Taylor RH (1978) Modification of mitochondrial ribosomal RNA from hamster cells: the presence of GmG and late-methylated UmGmU in the large subunit (17 S) RNA. J Mol Biol 121: 523–540

    Article  PubMed  CAS  Google Scholar 

  • Ephrussi B (1953) Nucleo-cytoplasmic relations in microorganisms. Oxford University Press, London

    Google Scholar 

  • Eyre-Walker A (2000) Do mitochondria recombine in humans? Phil Trans R Soc Lond B 355: 1573–1580

    Article  CAS  Google Scholar 

  • Fan L, Sanschagrin PC, Kaguni LS, Kuhn LA (1999) The accessory subunit of mtDNA polymerase shares structural homology with aminoacyl-tRNA-synthetases: implications for a dual role as a primer recognition factor and processivity clamp. Proc Natl Acad Sci USA 96: 9527–9532

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-Silva P, Martinez-Azorin F, Micol V, Attardi G (1997) The human mitochondrial transcription termination factor (mTERF) is a multizipper protein but binds to DNA as monomer, with evidence pointing to intramolecular leucine zipper interaction. EMBO J 16: 1066–1079

    Article  PubMed  CAS  Google Scholar 

  • Fisher RP, Clayton DA (1988) Purification and characterization of human mitochondrial transcription factor 1. Mol Cell Biol 8: 3496–3509

    PubMed  CAS  Google Scholar 

  • Fisher RP, Lisowsky T, Parisi MA, Clayton DA (1992) DNA wrapping and bending by a mitochondrial high mobility group-like transcriptional activator protein. J Biol Chem 267: 3358–3367

    PubMed  CAS  Google Scholar 

  • Foury F, Roganti T, Lecrenier N, Purnelle B (1998) The complete sequence of the mitochondrial genome of Saccharomyces cerevisiae. FEBS Lett 440: 325–331

    Article  PubMed  CAS  Google Scholar 

  • Frey TG, Manella CA (2000) The internal structure of mitochondria. Trends Biochem Sci 25: 319–324

    Article  PubMed  CAS  Google Scholar 

  • Gadaleta G, Pepe G, De Candia G, Quagliariello C, Sbisa E, Saccone E (1989) The complete nucleotide sequence of the Rattus norvegicus mitochondrial genome: cryptic signals revealed by comparative analysis. J Mol Evol 28: 497516

    Google Scholar 

  • Gaines GL, Attardi G (1984) Intercalating drugs and low temperatures inhibit synthesis and processing of ribosomal RNA in isolated human mitochondria. J Mol Biol 172: 451–466

    Article  PubMed  CAS  Google Scholar 

  • Gelfand R, Attardi G (1981) Synthesis and turnover of mitochondrial ribonucleic acids in HeLa cells: the mature ribosomal and messenger ribonucleic acid species are metabolically unstable. Mol Cell Biol 1: 497–511

    PubMed  CAS  Google Scholar 

  • Giles RE, Blanc H, Cann HM, Wallace DC (1980) Maternal inheritance of human mitochondrial DNA. Proc Natl Acad Sci USA 77: 6715–6719

    Article  PubMed  CAS  Google Scholar 

  • Gill P, Ivanov PL, Kimpton C et al. (1994) Identification of the remains of the Romanov family by DNA analysis. Nat Genet 6: 130–135

    Article  PubMed  CAS  Google Scholar 

  • Gillum AM, Clayton DA (1979) Mechanism of mitochondrial DNA replication in mouse L-cells: RNA priming during the initiation of heavy-strand synthesis. J Mol Biol 135: 353–368

    Google Scholar 

  • Gold HA, Topper JN, Clayton DA, Craft J (1989) The RNA processing enzyme RNAse MRP is identical to the ThRNP and related to RNAse P. Science 245: 1377–1380

    Article  PubMed  CAS  Google Scholar 

  • Goto YI, Nonaka I, Horai S (1990) A mutation in the tRNALeu(UUR) gene associated with the MELAS subgroup of mitochondrial encepholomyopathies. Nature 348: 651–653

    Article  PubMed  CAS  Google Scholar 

  • Gray H, Wong TW (1992) Purification and identification of subunit structure of human mitochondrial DNA polymerase. Biochemistry 37: 6050–6058

    Google Scholar 

  • Gray MW, Burger G, Lang BF (1999) Mitochondrial evolution. Science 283: 1476–1481

    Article  PubMed  CAS  Google Scholar 

  • Haffter P, McMullin TW, Fox TD (1990) A genetic link between an mRNA-specific translational activator and the translation system in yeast mitochondria. Genetics 125: 495–503

    PubMed  CAS  Google Scholar 

  • Hagelberg E, Goldman N, Lio P et al. (1999) Evidence for mitochondrial recombination in a human population of island Melanesia. Proc R Soc Lond B Biol Sci 266: 485492

    Google Scholar 

  • Hallberg RL (1974) Mitochondrial DNA in Xenopus laevis oocytes. I. Displacement loop occurrence. Dev Biol 38: 346–355

    Article  PubMed  CAS  Google Scholar 

  • Hao H, Bonilla E, Manfredi G, DiMauro S, Moraes CT (1995) Segregation patterns of a novel mutation in the mitochondrial tRNA glutamic acid gene associated with myopathy and diabetes mellitus. Am J Hum Genet 56: 1017–1025

    PubMed  CAS  Google Scholar 

  • Hauswirth WW, Laipis PJ (1982) Mitochondrial DNA polymorphism in a maternal lineage of Holstein cows. Proc Natl Acad Sci USA 79: 4686–4690

    Article  PubMed  CAS  Google Scholar 

  • Hayashi JL, Takemitsu M, Goto Y, Nonoak I (1994) Human mitochondria and mitochondrial genome function as a single dynamic cellular unit. J Cell Biol 125: 43–50

    Article  PubMed  CAS  Google Scholar 

  • Hess JF, Parisi MA, Bennett JL, Clayton DA (1991) Impairment of mitochondrial transcription termination by a point mutation associated with the MELAS subgroup of mitochondrial encephalomyopathies. Nature 351: 236–239

    Article  PubMed  CAS  Google Scholar 

  • Hixson JE, Wong TW, Clayton DA (1986) Both the conserved stem-loop abd divergent 5’-flanking sequences are required for initiation at the human mitochondrial origin of light-strand DNA replication. J Biol Chem 261: 23842390

    Google Scholar 

  • Hoekstra RF (2000) Evolutionary origin and consequences of uniparental mitochondrial inheritance. Hum Reprod [Suppl 2] 15: 102–111

    Article  Google Scholar 

  • Holt IJ, Dunbar DR, Jacobs HT (1997) Behaviour of a population of partially duplicated mitochondrial DNA molecules in cell culture: segregation, maintenance and recombination dependent on the nuclear background. Hum Mol Genet 6: 1251–1260

    Article  PubMed  CAS  Google Scholar 

  • Howell N (1997) mtDNA recombination: what do in vitro data mean? Am J Hum Genet 61:19–22

    Google Scholar 

  • Howell N (1999) Human mitochondrial disease: answering questions and questioning answers. Int Rev Cytol 186: 49–116

    Article  PubMed  CAS  Google Scholar 

  • Howell N, Xu M, Halvorson S, Bodis-Wollner I, Sherman J (1994) A heteroplasmic LHON family: tissue distribution and transmission of the 11778 mutation. Am J Hum Genet 55: 203–206

    PubMed  CAS  Google Scholar 

  • Howell N, Kubacka I, Mackey DA (1996) How rapidly does the human mitochondrial genome evolve? Am J Hum Genet 59: 501–509

    PubMed  CAS  Google Scholar 

  • Huo L, Scarpulla RC (2001) Mitochondrial DNA instability and peri-implantation lethality associated with targeted disruption of nuclear respiratory factor 1 in mice. Mol Cell Biol 21: 644–654

    Article  PubMed  CAS  Google Scholar 

  • Ikebe SI, Tanaka M, Ozawa T (1995) Point mutations of mitochondrial genome in Parkinson’s disease. Mol Brain Res 28: 281–295

    Article  PubMed  CAS  Google Scholar 

  • Ingman M, Kaessmann H, Pääbo S, Gyllenstein U (2000) Mitochondrial genome variation and the origin of modern humans. Nature 408: 708–712

    Article  PubMed  CAS  Google Scholar 

  • Inoue K, Nakada K, Ogure A et al. (2000) Generation of mice with mitochondrial dysfunction by introducing mouse mtDNA carrying a deletion into zygotes. Nat Genet 26: 176–181

    Article  PubMed  CAS  Google Scholar 

  • Ivanov PL, Wadhams MJ, Roby RK, Holland MM, Weedn VW, Parsons TJ (1996) Mitochondrial DNA sequence heteroplasmy in the Grand Duke of Russia Georgij Romanov establishes the authenticity of the remains of Tsar Nicholas II. Nat Genet 12: 417–420

    Article  PubMed  CAS  Google Scholar 

  • Jackson DA, Bartlett J, Cook PR (1996) Sequences attaching loops of nuclear and mitochondrial DNA to underlying structures in human cells: the role of transcription units. Nucleic Acids Res 24: 1212–1219

    Article  PubMed  CAS  Google Scholar 

  • Jenuth JP, Peterson AC, Fu K, Shoubridge EA (1996) Random genetic drift in the female germline explains the rapid segregation of mammalian mitochondrial DNA. Nat Genet 14: 146–151

    Article  PubMed  CAS  Google Scholar 

  • Jenuth JP, Peterson AC, Shoubridge EA (1997) Tissue-specific selection for different mtDNA genotypes in hetero-plasmic mice. Nat Genet 16: 93–95

    Article  PubMed  CAS  Google Scholar 

  • Johns DR, Hurko 0 (1991) Mitochondrial leucine transfer-RNA mutation in neurological diseases. Lancet 337: 927928

    Google Scholar 

  • Khrapko K, Collier HA, Andre PC, Li XC, Hanekamp JS, Thilly W (1997) Mitochondrial mutation spectra in human cells and tissues. Proc Natl Acad Sci USA 94: 13 79813 803

    Google Scholar 

  • King MP, Attardi G (1988) Injection of mitochondria into human cells leads to a rapid replacement of the endogenous mitochondrial DNA. Cell 52: 811–819

    Article  PubMed  CAS  Google Scholar 

  • King MP, Attardi G (1989) Human cells lacking mtDNA: repopulation with exogenous mitochondria by complementation. Science 246: 500–503

    Article  PubMed  CAS  Google Scholar 

  • Knight RD, Freeland SJ, Landweber L (2001) Rewiring the keyboard: evolvability of the genetic code. Nat Rev 2: 4958

    Google Scholar 

  • Koehler CM, Lindberg GL, Brown DR et al. (1991) Replacement of bovine mitochondrial DNA by a sequence variant within one generation. Genetics 129: 247–255

    PubMed  CAS  Google Scholar 

  • Kolesnikova OA, Entelis NS, Mireau H, Fox TD, Martin RP, Tarassov IA (2000) Suppression of mutations in mitochondrial DNA by tRNAs imported from the cytoplasm. Science 289: 1931–1934

    Article  PubMed  CAS  Google Scholar 

  • Krings M, Stone A, Schmitz RW, Krainitzki H, Stoneking M, Pääbo S (1997) Neandertal DNA sequences and the origin of modern humans. Cell 90: 19–30

    Article  PubMed  CAS  Google Scholar 

  • Kruse B, Narasimhan N, Attardi G (1989) Termination of transcription in human mitochondria: identification and purification of a DNA binding protein factor that promotes termination. Cell 58: 391–397

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Hedrick P, Stoneking M (2000) Questioning evidence for recombination in human mitochondrial DNA. Science 288: 1931

    Article  PubMed  CAS  Google Scholar 

  • Kuroiwa T (1982) Mitochondrial nuclei. Int Rev Cytol 75: 159

    Google Scholar 

  • Kuroiwa T, Ohta T, Kuroiwa H, Shigeyuki K (1994) Molecular and cellular mechanisms of mitochondrial nuclear division and mitochondriokinesis. Microsc Res Tech 27: 220–232

    Article  PubMed  CAS  Google Scholar 

  • Kuroiwa T, Kuroiwa H, Sakai A, Takahashi H, Toda K, Itoh R (1998) The division apparatus of plastids and mitochondria. Int Rev Cytol 181: 1–41

    Article  PubMed  CAS  Google Scholar 

  • Laipis PJ, Van de Walle MJ, Hauswirth WW (1988) Unequal partitioning of bovine mitochondrial genotypes among siblings. Proc Natl Acad Sci USA 85: 8107–8110

    Article  PubMed  CAS  Google Scholar 

  • Lang BF, Burger G, O’Kelly CJ et al. (1997) An ancestral mitochondrial DNA resembling a eubacterial genome in miniature. Nature 387: 493–497

    Article  PubMed  CAS  Google Scholar 

  • Larsson NG, Wang J, Wilhelmsson H et al. (1998) Mitochondrial transcription factor A is necessary for mtDNA maintenance and embryogenesis in mice. Nat Genet 18: 231–236

    Article  PubMed  CAS  Google Scholar 

  • Lecrenier N, Foury F (2000) New features of mitochondrial DNA replication system in yeast and man. Gene 246: 3748

    Article  Google Scholar 

  • Lee DY, Clayton DA (1996) Properties of a primer RNA-DNA hybrid at the mouse mitochondrial DNA leading-strand origin of replication. J Biol Chem 271: 2426224 269

    Google Scholar 

  • Lee DY, Clayton DA (1997) RNAse mitochondrial RNA processing correctly cleaves a novel R loop at the mitochondrial DNA leading-strand origin of replication. Genes Dev 11: 582–592

    Article  PubMed  CAS  Google Scholar 

  • Lee DY, Clayton DA (1998) Initiation of mitochondrial DNA replication by transcription and R-loop processing. J Biol Chem 273:30. 614–30. 621

    Google Scholar 

  • Lim SE, Longley MJ, Copeland WC (1999) The mitochondrial p55 accessory subunit of human DNA polymerase enhances DNA binding, promotes processive DNA synthesis and confers N-ethylmaleimide resistance. J Biol Chem 274:38 197–38 203

    Google Scholar 

  • Liu M, Spremulli L (2000) Interaction of mammalian mitochondrial ribosomes with the inner membrane. J Biol Chem 275: 29400–29406

    Article  PubMed  CAS  Google Scholar 

  • Lygerou Z, Allmang, C, Tollervey D, Seraphin B (1996) Accurate processing of a eukaryotic precursor ribosomal RNA by RNAse MRP in vitro. Science 272: 268–270

    Article  PubMed  CAS  Google Scholar 

  • Lynch M (1996) Mutation accumulation in transfer RNA: molecular evidence for Muller’s ratchet in mitochondrial genomes. Mol Biol Evol 13: 209–220

    Article  PubMed  CAS  Google Scholar 

  • Madsen CS, Ghivizzani SC, Hauswirth WW (1993) Protein binding to a single termination-associated sequence in the mitochondrial DNA D-loop region. Mol Cell Biol 13: 2162–2171

    PubMed  CAS  Google Scholar 

  • Margulis L (1981) Symbiosis in cell evolution. Freeman, San Francisco

    Google Scholar 

  • Masters BS, Stohl LL, Clayton DA (1987) Yeast mitochondrial RNA polymerase is homologous to those encoded by bacteriophages T3 and T7. Cell 51: 89–99

    Article  PubMed  CAS  Google Scholar 

  • Matthews DE, Hessler RA, Denslow ND, Edwards JS, O’Brien TW (1982) Protein composition of the bovine mitochondrial ribosome. J Biol Chem 257: 8788–8794

    PubMed  CAS  Google Scholar 

  • Matthews PM, Hopkin J, Brown R, Stephenson J, Hilton-Jones D, Brown GK (1994) Comparison of the relative le-

    Google Scholar 

  • vels of the 3243 A —> G mtDNA mutation in heteroplasmic adult and fetal tissues. J Med Genet 31:41–44

    Google Scholar 

  • Michikawa Y, Mazzucchelli F, Bresolin N, Scarlato G, Attardi G (1999) Aging-dependent accumulation of point mutations in the human mtDNA control region for replication. Science 286: 774–779

    Article  PubMed  CAS  Google Scholar 

  • Montoya J, Gaines GL, Attardi G (1983) The pattern of transcription of the human mitochondrial rRNA genes reveals two overlapping transcription units. Cell 34: 151159

    Google Scholar 

  • Muller HJ (1964) The relation of recombination to mutational advance. Mutat Res 1: 2–9

    Article  Google Scholar 

  • Nachman MW, Brown WM, Stoneking M, Aquadro CF (1996) Nonneutral mitochondrial DNA variation in humans and chimpanzees. Genetics 142: 953–963

    PubMed  CAS  Google Scholar 

  • Nass MMK, Nass S ( 1963 a) Intramitochondrial fibers with DNA characteristics: I. Fixation and electron staining reaction. J Cell Biol 19: 593–611

    Google Scholar 

  • Nass S, Nass MMK (1963b) Intramitochondrial fibers with DNA characteristics: II. Enzymatic and other hydrolytic treatments. J Cell Biol 19: 613–629

    Google Scholar 

  • Nierlich DP (1982) Fragmentary 5S-rRNA gene in the hu- man mitochondrial genome. Mol Cell Biol 2: 207–209

    PubMed  CAS  Google Scholar 

  • O’Brien TW, Denslow ND, Anders J, Coutney BC (1990) The translation system of mammalian mitochondria. Biochim Biophys Acta 1050: 174–178

    Article  PubMed  Google Scholar 

  • Ojala D, Montoya J, Attardi G (1981) tRNA punctuation model of RNA processing in human mitochondria. Science 290: 470–474

    Google Scholar 

  • Palmieri F (1994) Mitochondrial carrier proteins. FEBS Lett 246: 48–54

    Article  Google Scholar 

  • Parisi MA, Clayton DA (1991) Similarity of human mitochondrial transcription factor 1 to high mobility group proteins. Science 252: 965–969

    Article  PubMed  CAS  Google Scholar 

  • Patel VB, Cunningham CC, Hantgan RR (2001) Physiochemical properties of rat liver mitochondrial ribosomes. J Biol Chem 276: 6739–6746

    Article  PubMed  CAS  Google Scholar 

  • Perna NT, Kocher TD (1996) Mitochondrial DNA: molecular fossils in the nucleus. Curr Biol 6: 128–129

    Article  PubMed  CAS  Google Scholar 

  • Pietromonaco SF, Denslow ND, O’Brien TW (1991) Proteins of mammalian mitochondrial ribosomes. Biochimie 73: 827–836

    Article  PubMed  CAS  Google Scholar 

  • Puranam RS, Attardi G (2001) The RNase P associated with HeLa cell mitochondria contains an essential RNA component identical in sequence to that of the nuclear RNase P. Mol Cell Biol 21: 548–561

    Article  PubMed  CAS  Google Scholar 

  • Radloff R, Bauer W, Vinograd J (1967) A dye-buoyant-density method for the detection and isolation of closed circular duplex DNA: the closed circular DNA in HeLa cells. Proc Natl Acad Sci USA 57: 1514–1521

    Article  PubMed  CAS  Google Scholar 

  • Reichert A, Mörl M (2000) Repair of tRNAs in metazoan mitochondria. Nucleic Acids Res 28: 2043–2048

    Article  PubMed  CAS  Google Scholar 

  • Reichert A, Rothbauer U, Mörl M (1998) Processing and editing of overlapping tRNAs in human mitochondria. J Biol Chem 273: 31977–31984

    Article  PubMed  CAS  Google Scholar 

  • Richter C (1994) Role of mitochondrial DNA modifications in degenerative diseases and aging. Curr Topics Bioenerg 17: 1–16

    CAS  Google Scholar 

  • Robberson DL, Clayton DA (1972) Replication of mitochondrial DNA in mouse L cells and their thymidine kinase-derivatives: displacement replication on a covalentlyclosed circular template. Proc Natl Acad Sci USA 69: 3810–3814

    Article  PubMed  CAS  Google Scholar 

  • Rossmanith W, Tullo A, Potuschak T, Karwan R, Sbisa E (1995) Human mitochondrial tRNA processing. J Biol Chem 270:12 885–12 891

    Google Scholar 

  • Rutter GA, Rizzuto R (2000) Regulation of mitochondrial metabolism by ER Cat+ release: an intimate connection. Trends Biochem Sci 25: 215–221

    Article  PubMed  CAS  Google Scholar 

  • Satoh M, Kuroiwa T (1991) Organization of multiple nucleoids and DNA molecules in mitochondria of human cells. Exp Cell Res 196: 137–140

    Article  PubMed  CAS  Google Scholar 

  • Schneider A, Marechal-Drouard L (2000) Mitochondrial tRNA import: are there distinct mechanisms? Trends Cell Biol 10: 509–513

    Article  PubMed  CAS  Google Scholar 

  • Schon EA (2000) Mitochondrial genetics and disease. Trends Biochem Sci 25: 555–560

    Article  PubMed  CAS  Google Scholar 

  • Shadel GS, Clayton DA (1997) Mitochondrial DNA mainte- nance in vertebrates. Annu Rev Biochem 66: 409–435

    Article  PubMed  CAS  Google Scholar 

  • Shang J, Clayton DA (1994) Human mitochondrial transcription termination exhibits RNA polymerase independence and biased bipolarity in vitro. J Biol Chem 269:29 112–29 120

    Google Scholar 

  • Shenkar R, Navidi W, Tavare S et al. (1996) The mutation rate of the human mtDNA deletion mtDNA4977. Am J Hum Genet 59: 772–780

    PubMed  CAS  Google Scholar 

  • Shine J, Dalgarno L (1974) The 3’-terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites. Proc Natl Acad Sci USA 71: 1342–1346

    Article  PubMed  CAS  Google Scholar 

  • Shoffner JM, Brown MD, Torroni A et al. (1993) Mitochondrial DNA variants observed in Alzheimer and Parkinson disease patients. Genomics 17: 171–184

    Article  PubMed  CAS  Google Scholar 

  • Skulachev VP (2001) Mitochondrial filaments and clusters as intracellular power-transmitting cables. Trends Biochem Sci 26: 23–29

    Article  PubMed  CAS  Google Scholar 

  • Smith LC, Alcivar AA (1993) Cytoplasmic inheritance and its effects on development and performance. J Reprod Fertil [Supplj 48: 31–43

    CAS  Google Scholar 

  • Sutovsky P, Navara CS, Schatten G (1996) Fate of the sperm mitochondria and the incorporation, conversion and disassembly of the sperm tail structures during bovine fertilization. Biol Reprod 55: 1195–1205

    Article  PubMed  CAS  Google Scholar 

  • Swerdlow RH, Parks JK, Miller SW et al. (1996) Origin and functional consequences of the complex I defect in Parkinson’s disease. Ann Neurol 40: 663–671

    Article  PubMed  CAS  Google Scholar 

  • Tiranti V, Rocchi M, DiDonato S, Zeviani M (1993) Cloning of human and rat cDNAs encoding the mitochondrial single-stranded DNA-binding protein ( SSB ). Gene 126: 219–225

    Google Scholar 

  • Thyagarajan B, Padua RA, Campbell C (1996) Mammalian mitochondria possess homologous recombination activity. J Biol Chem 271:27 536–27 543

    Google Scholar 

  • Unseld M, Marienfeld JR, Brandt P, Brennicke A (1997) The mitochondrial genome of Arabidopsis thaliana contains 57 genes in 366,924 nucleotides. Nat Genet 15: 57–61

    Article  PubMed  CAS  Google Scholar 

  • Van den Boogaart P, Samallo J, Agsteribbe E (1982) Similar genes for a mitochondrial ATPase subunit in the nuclear and mitochondrial genomes of Neurospora crassa. Nature 298: 187–189

    Article  PubMed  Google Scholar 

  • Van den Ouweland JMW, Lemkes HHPJ, Ruitenbeek W et al. (1992) Mutation in mitochondrial transfer RNALeu(UUR) gene in a large pedigree with maternally inherited type-II diabetes-mellitus and deafness. Nat Genet 1: 368–371

    Article  PubMed  Google Scholar 

  • Vigilant L, Stoneking M, Harpending H, Hawkes K, Wilson AC (1991) African populations and the evolution of human mitochondrial DNA. Science 253: 1503–1507

    Article  PubMed  CAS  Google Scholar 

  • Virbasius CA, Scarpulla RC (1994) Activation of the human transcription factor A gene by nuclear respiratory factors: a potential link between nuclear and mitochondrial gene expression in organelle biogenesis. Proc Natl Acad Sci USA 91: 1309–1313

    Article  PubMed  CAS  Google Scholar 

  • Virbasius CA, Virbasius JV, Scarpulla RC (1993) NRF-1, an activator involved in nuclear-mitochondrial interactions, utilizes a new DNA-binding domain conserved in a family of developmental regulators. Genes Dev 7: 2431–2445

    Article  PubMed  CAS  Google Scholar 

  • Wallace DC, Singh G, Lott MT et al. (1998) Mitochondrial DNA mutation associated with Leber’s hereditary optic neuropathy. Science 242: 1427–1430

    Article  Google Scholar 

  • Ward BL, Anderson RS, Bendich AJ (1981) The mitochondrial genome is large and variable in a family of plants (cucurbitaceae). Cell 25: 793–803

    Article  PubMed  CAS  Google Scholar 

  • Wernette CM, Conway MC, Kaguni LS (1988) Mitochondrial DNA polymerase from Drosophila melanogaster embryos: kinetics, processivity, and fidelity of DNA polymerisation. Biochemistry 27: 6046–6054

    Article  PubMed  CAS  Google Scholar 

  • Wolstenholme DR (1992) Animal mitochondrial DNA: structure and evolution. Int Rev Cytol 141: 173–216

    Article  PubMed  CAS  Google Scholar 

  • Wong TW, Clayton DA (1985) Isolation and characterization of a DNA primase from human mitochondria. J Biol Chem 260:11 530–11 535

    Google Scholar 

  • Wu Z, Puigserver P, Andersson U et al. (1999) Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic co-activator PGC-1. Cell 98: 115–124

    Article  PubMed  CAS  Google Scholar 

  • Xu B, Clayton DA (1996) RNA-DNA hybrid formation at the human mitochondrial heavy-strand origin ceases at replication start sites: an implication for RNA-DNA hybrids serving as primers. EMBO J 15: 3135–3143

    PubMed  CAS  Google Scholar 

  • Zhang Y, Spremulli LL (1998) Identification and cloning of human mitochondrial translational release factor 1 and the ribosome recycling factor. Biochim Biophys Acta 1443: 245–250

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wissinger, B. (2003). Mitochondriale DNA des Menschen. In: Ganten, D., Ruckpaul, K. (eds) Grundlagen der Molekularen Medizin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-07588-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-07588-3_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-07589-0

  • Online ISBN: 978-3-662-07588-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics