Ribozyme in der molekularen Medizin

  • Jens Kurreck
  • Jens P. Fürste
  • Volker A. Erdmann

Zusammenfassung

Erst in den 80er Jahren wurde entdeckt, dass nicht nur Proteine, sondern auch Ribonukleinsäuren enzymatisch aktiv sein können. Diese katalytischen RNA-Moleküle werden als Ribozyme bezeichnet. Das erste beschriebene Ribozym war eine sich selbst spleißende rRNA-Sequenz aus dem Ziliaten Tetrahymena thermophila (Cech et al. 1981; Kruger et al. 1982), später wurden jedoch auch Nukleinsäuren beobachtet, die in trans aktiv sind, d. h. ein anderes Molekül umsetzen und damit das entscheidende Kriterium für ein echtes Enzym erfüllen (GuerrierTakada et al. 1983). Aufgrund dieser Entdeckungen musste die klassische Vorstellung revidiert werden, dass RNA-Moleküle lediglich Informationsüberträger und Strukturbildner sind, während katalytische Aktivitäten ausschließlich Proteinen vorbehalten sind. Thomas Cech und Sidney Altman wurden für ihre bahnbrechenden Arbeiten 1989 mit dem Nobelpreis für Chemie geehrt.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Bassi GS, Mollegaard NE, Murchie AI, Kitzing E von, Lilley DM (1995) Ionic interactions and the global conformations of the hammerhead ribozyme. Nat Struct Biol 2: 4555CrossRefGoogle Scholar
  2. Becker DL, Lin JS, Green CR (1999) Pluronic gel as a means of antisense delivery. In: Leslie RA, Hunter AJ, Robertson HA (eds) Antisense technology in the central nervous system. Oxford University Press, New York, pp 147–157Google Scholar
  3. Beger C, Pierce LN, Krüger M et al. (2001) Identification of Id4 as a regulator of BRCA1 expression by using a ribozyme-library-based inverse genomic approach. Proc Natl Acad Sci USA 98: 130–135PubMedCrossRefGoogle Scholar
  4. Beigelman L, McSwiggen JA, Draper KG et al. (1995) Chemical modification of hammerhead ribozymes. Catalytic activity and nuclease resistance. J Biol Chem 270: 2570225708Google Scholar
  5. Bramlage B, Alefelder S, Marschall P, Eckstein F (1999) Inhibition of luciferase expression by synthetic hammerhead ribozymes and their cellular uptake. Nucleic Acids Res 15: 3159–3167CrossRefGoogle Scholar
  6. Bramlage B, Luzi E, Eckstein F (2000) HIV-1 LTR as a target for synthetic ribozyme-mediated inhibition of gene expression: site selection and inhibition in cell culture. Nucleic Acids Res 28: 4059–4067PubMedCrossRefGoogle Scholar
  7. Cairns MJ, Hopkins TM, Witherington C, Wang C, Sun L-Q (1999) Target site selection for an RNA-cleaving catalytic DNA. Nat Biotechnol 17: 480–486PubMedCrossRefGoogle Scholar
  8. Cate JH, Gooding AR, Podell E et al. (1996) Crystall structure of a group I ribozyme domain: principles of RNA packing. Science 273: 1678–1685PubMedCrossRefGoogle Scholar
  9. Cech TR, Zaug AJ, Grabowski PJ (1981) In vitro splicing of the ribosomal RNA precursor of Tetrahymena: involvement of a guanosine nucleotide in the excision of the intervening sequence. Cell 27: 487–296PubMedCrossRefGoogle Scholar
  10. Eaton BE, Gold L, Hicke BJ et al. (1997) Post-SELEX combinatorial optimization of aptamers. Bioorg Med Chem 5: 1087–1096PubMedCrossRefGoogle Scholar
  11. Eckstein F (1985) Nucleoside phosphorothioates. Annu Rev Biochem 54: 367–402PubMedCrossRefGoogle Scholar
  12. Ferré-D’Amaré AR, Zhao K, Doudna JA (1998) Crystal structure of a hepatitis delta virus ribozyme. Nature 395: 567–574PubMedCrossRefGoogle Scholar
  13. Flory CM, Pavco PA, Jarvis TC et al. (1996) Nuclease-resistant ribozymes decrease stromelysin mRNA levels in rabbit synovium following exogenous delivery of the knee joint. Proc Natl Acad Sci USA 93: 754–758PubMedCrossRefGoogle Scholar
  14. Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285: 1182–1186PubMedCrossRefGoogle Scholar
  15. Guerrier-Takada C, Gardiner K, Marsh T, Pace N, Altman S (1983) The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell 35: 849–857PubMedCrossRefGoogle Scholar
  16. Guo H, Karberg M, Long M, Jones III JP, Sullenger B, Lambowitz AM (2000) Group II introns designed to insert into therapeutically relevant DNA target sites in human cells. Science 289: 452–457PubMedCrossRefGoogle Scholar
  17. Haseloff J, Gerlach WL (1988) Simple RNA enzymes with new and highly specific endoribonuclease activities. Nature 334: 585–591PubMedCrossRefGoogle Scholar
  18. Heidenreich O, Eckstein F (1992) Hammerhead rib ozymemediated cleavage of the long terminal repeat RNA of human immunodeficiency virus type 1. J Biol Chem 267: 1904–1909PubMedGoogle Scholar
  19. Heidenreich O, Benseler F, Fahrenholz A, Eckstein F (1994) High activity and stability of hammerhead ribozymes containing 2’-modified pyrimidine nucleosides and phosphorothioates. J Biol Chem 269: 2131–2138PubMedGoogle Scholar
  20. Heidenreich O, Xu X, Swiderski P, Rossi JJ, Nerenberg M (1996) Correlation of activity with stability of chemically modified ribozymes in nuclei suspension. Antisense Nucleic Acid Drug Dev 6: 111–118PubMedCrossRefGoogle Scholar
  21. Hertel KJ, Pardi A, Uhlenbeck OC et al. (1992) Numbering system for the hammerhead. Nucleic Acids Res 20: 3252PubMedCrossRefGoogle Scholar
  22. Ho SP, Britton DHO, Stone BA et al. (1996) Potent antisense oligonucleotides to the human multidrug resistance-1 mRNA are rationally selected by mapping RNA-accessible sites with oligonucleotide libraries. Nucleic Acids Res 24: 1901–1907PubMedCrossRefGoogle Scholar
  23. Ho SP, Bao Y, Lesher T et al. (1998) Mapping of RNA accessible sites for antisense experiments with oligonucleotide libraries. Nat Biotechnol 16: 59–63PubMedCrossRefGoogle Scholar
  24. Hoogstraten CG, Legault P, Pardi A (1998) NMR solution structure of the lead-dependent ribozyme: evidence for dynamics in RNA catalysis. J Mol Biol 284: 337–350PubMedCrossRefGoogle Scholar
  25. Hoogstraten CG, Wank JR, Pardi A (2000) Active site dynamics in the lead-dependent ribozyme. Biochemistry 39: 9951–9958PubMedCrossRefGoogle Scholar
  26. Jack A, Ladner JE, Rhodes D, Brown RS, Klug A (1977) A crystallographic study of metal-binding to yeast phenyl-alanine transfer RNA. J Mol Biol 111: 315–328PubMedCrossRefGoogle Scholar
  27. Jarvis TC, Wincott FE, Alby LJ et al. (1996) Optimizing the cell efficacy of synthetic ribozymes. J Biol Chem 271: 29107–29112PubMedCrossRefGoogle Scholar
  28. Jäschke A, Seelig B (2000) Evolution of DNA and RNA as catalysts for chemical reactions. Curr Opin Chem Biol 4: 257–262PubMedCrossRefGoogle Scholar
  29. Jen K-Y, Gerwirtz AM (2000) Suppression by targeted disruption of messenger RNA: available options and current strategies. Stem Cells 18: 307–319PubMedCrossRefGoogle Scholar
  30. Jeoung YH, Kumar PK, Suh YA, Taira K, Nishikawa S (1994) Identification of phosphate oxygens that are important for self-cleavage activity of the HDV ribozyme by phosphorothioate substitution interference analysis. Nucleic Acids Res 22: 3722–3727PubMedCrossRefGoogle Scholar
  31. Kawakami J, Yuda K, Suh Y-A et al. (1996) Constructing an efficient trans acting genomic HDV ribozyme. FEBS Lett 394: 132–136PubMedCrossRefGoogle Scholar
  32. Kilpatrick MW, Phylactou LA, Godfrey M, Wu CH, Wu GY, Tsipouras P (1996) Delivery of a hammerhead ribozyme specifically down-regulates the production of fibrillin-1 by cultured dermal fibroblasts. Hum Mol Genet 5: 19391944Google Scholar
  33. Klussmann S, Nolte A, Bald R, Erdmann VA, Furste JP (1996) Mirror-image RNA that binds D-adenosine. Nat Biotechnol 14: 1112–1115PubMedCrossRefGoogle Scholar
  34. Knoll R, Bald R, Furste JP (1997) Complete identification of nonbridging phosphate oxygens involved in hammerhead cleavage. RNA 3: 132–140PubMedGoogle Scholar
  35. Koizumi M, Ohtsuka E (1991) Effects of phosphorothioate and 2-amino groups in’hammerhead ribozymes on cleavage rates and Mgt+ binding. Biochemistry 30: 5145–5150PubMedCrossRefGoogle Scholar
  36. Kore AR, Vaish NK, Kutzke U, Eckstein F (1998) Sequence specificity of the hammerhead ribozyme revisited, the NHH rule. Nucleic Acids Res 26: 4116–4120PubMedCrossRefGoogle Scholar
  37. Kruger K, Grabowski PJ, Zaug AJ, Sans J, Gottschling DF, Cech TR (1982) Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena. Cell 31: 147–157PubMedCrossRefGoogle Scholar
  38. Kurreck J, Bieber B, Jahnel R, Erdmann VA (2002) Comparative study of DNA enzymes and ribozymes against the same full length messenger RNA of the vanilloid receptor subtype I. J Biol Chem 277: 7099–7107PubMedCrossRefGoogle Scholar
  39. Kuwabara T, Warashina M, Tanabe T, Tani K, Asano S, Taira K (1997) Comparison of the specificities and catalytic activities of hammerhead ribozymes and DNA enzymes with respect to the cleavage of BCR-ABL chimeric L6 (b2a2) mRNA. Nucleic Acids Res 25: 3074–3081PubMedCrossRefGoogle Scholar
  40. Lan N, Howrey RP, Lee S-W, Smith CA, Sullenger BA (1998) Ribozyme-mediated repair of sickle ß-globin mRNAs in erythrocyte precursors. Science 280: 1593–1596PubMedCrossRefGoogle Scholar
  41. L’Huillier PJ, Soulier S, Stinnakre MG et al. (1996) Efficient and specific ribozyme-mediated reduction of bovine alpha-lactalbumin expression in double transgenic mice. Proc Natl Acad Sci USA 93: 6698–6703PubMedCrossRefGoogle Scholar
  42. Lieber A, Strauss M (1995) Selection of efficient cleavage sites in target RNAs by using a ribozyme expression library. Mol Cell Biol 15: 540–551PubMedGoogle Scholar
  43. Lott WB, Pontius BW, Hippel PH von (1998) A two-metal ion mechanism operates in the hammerhead ribozyme-mediated cleavage of an RNA substrate. Proc Natl Acad Sci USA 95: 542–547PubMedCrossRefGoogle Scholar
  44. Lyngstadaas SP, Risnes S, Sproat BS, Thrane PS, Prydz HP (1995) A synthetic, chemically modified ribozyme eliminates amelogenin, the major translation product in developing enamel in vivo. EMBO J 14: 5224–5229PubMedGoogle Scholar
  45. Macejak DG, Jensen KL, Jamison SF et al. (2000) Inhibition of hepatitis C virus ( HCV)-RNA-dependent translation and replication of a chimeric HCV poliovirus using synthetic stabilized ribozymes. Hepatology 31: 769–776Google Scholar
  46. Matveeva O, Felden B, Audlin S, Gesteland RF, Atkins JF (1997) A rapid in vitro method for obtaining RNA accessibility patterns for complementary DNA probes: correlation with an intracellular pattern and known RNA structures. Nucleic Acids Res 25: 5010–5016PubMedCrossRefGoogle Scholar
  47. McKay DB (1996) Structure and function of the hammer- head ribozyme: an unfinished story. RNA 2: 395–403PubMedGoogle Scholar
  48. Michienzi A, Cagnon L, Bahner I, Rossi JJ (2000) Ribozyme-mediated inhibition of HIV 1 suggests nucleolar trafficking of HIV-1 RNA. Proc Natl Acad Sci USA 97: 8955–5960PubMedCrossRefGoogle Scholar
  49. Milner N, Mir KU, Southern EM (1997) Selecting effective antisense reagents on combinatorial oligonucleotide arrays. Nat Biotechnol 15: 537–541PubMedCrossRefGoogle Scholar
  50. Müller MW, Hetzer M, Schweyen RJ (1993) Group II intron RNA catalysis of progressive nucleotide insertion: a model for RNA editing. Science 261: 1035–1038CrossRefGoogle Scholar
  51. Murray JB, Seyhan AA, Walter NG, Burke JM, Scott WG (1998) The hammerhead, hairpin and VS ribozymes are catalytically proficient in monovalent cations alone. Chem Biol 5: 587–595PubMedCrossRefGoogle Scholar
  52. Narlikar GJ, Herschlag D (1997) Mechanistic aspects of enzymatic catalysis: lessons from comparison of RNA and protein enzymes. Annu Rev Biochem 66: 19–59PubMedCrossRefGoogle Scholar
  53. Nesbitt S, Hegg LA, Fedor MJ (1997) An unusual pH-independent and metal-ion-independent mechanism for hairpin ribozyme catalysis. Chem Biol 4: 619–630PubMedCrossRefGoogle Scholar
  54. Nolte A, Klussmann S, Bald R, Erdmann VA, Furste JP (1996) Mirror-design of L-oligonucleotide ligands binding to L-arginine. Nat Biotechnol 14: 1116–1119PubMedCrossRefGoogle Scholar
  55. Nowakowski J, Shim PJ, Prasad GS, Stout CD, Joyce GF (1999) Crystal structure of an 82-nucleotide RNA-DNA complex formed by the 10–23 DNA enzyme. Nat Struct Biol 6: 151–156PubMedCrossRefGoogle Scholar
  56. Pan T, Uhlenbeck OC (1992) A small metalloribozyme with a two-step mechnism. Nature 358: 560–563PubMedCrossRefGoogle Scholar
  57. Paolella G, Sproat BS, Lamond AI (1992) Nuclease resistant ribozymes with high catalytic activity. EMBO J 11: 1913–1919PubMedGoogle Scholar
  58. Parry TJ, Cushman C, Gallegos AM et al. (1999) Bioactivity of anti-angiogenic ribozymes targeting Flt-1 and KDR mRNA. Nucleic Acids Res 27: 2569–2577PubMedCrossRefGoogle Scholar
  59. Pavco PA, Bouhana KS, Gallegos AM et al. (2000) Antitumor and antimetastatic activity of ribozymes targeting the messenger RNA of vascular endothelial growth factor receptors. Clin Cancer Res 6: 2094–2103PubMedGoogle Scholar
  60. Pérez-Ruiz M, Barroso-deiJesus A, Berzal-Herranz A (1999) Specificity of the hairpin ribozyme. J Biol Chem 274: 29376–29380PubMedCrossRefGoogle Scholar
  61. Perreault JP, Wu TF, Cousineau B, Ogilvie KK, Cedergren R (1990) Mixed deoxyribo-and ribo-oligonucleotides with catalytic activity. Nature 344: 565–567PubMedCrossRefGoogle Scholar
  62. Perreault JP, Labuda D, Usman N, Yang JH, Cedergren R (1991) Relationship between 2’-hydroxyls and magnesium binding in the hammerhead RNA domain: a model for ribozyme catalysis. Biochemistry 30: 4020–4025PubMedCrossRefGoogle Scholar
  63. Perrotta AT, Shih I, Been MD (1999) Imidazole rescue of a cytosine mutation in a self-cleaving ribozyme. Science 286: 123–126PubMedCrossRefGoogle Scholar
  64. Phylactou LA, Darrah C, Wood MJA (1998) Ribozyme-mediated trans-splicing of a trinucleotide repeat. Nat Genet 18: 378–381PubMedCrossRefGoogle Scholar
  65. Phylactou LA, Darrah C, Everatt L, Maniotis D, Kilpatrick MW (1999) Utilization of natural catalytic RNA to design and synthesize functional ribozymes. Methods Enzymol 313: 485–506CrossRefGoogle Scholar
  66. Pieken WA, Olsen DB, Benseler F, Aurup H, Eckstein F (1991) Kinetic characterization of ribonuclease-resistant 2’-modified hammerhead ribozymes. Science 253: 314–317PubMedCrossRefGoogle Scholar
  67. Pierce ML, Ruffner DE (1998) Construction of a hammerhead ribozyme library: towards the identification of optimal target sites for antisense-mediated gene inhibition. Nucleic Acids Res 26: 5093–5101PubMedCrossRefGoogle Scholar
  68. Pley HW, Flaherty KM, McKay DB (1994) Three-dimensional structure of a hammerhead ribozyme. Nature 372: 68–74PubMedCrossRefGoogle Scholar
  69. Pontius BW, Lott WB, Hippel PH von (1997) Observations on catalysis by hammerhead ribozymes are consistent with a two-divalent-metal-ion mechanism. Proc Natl Acad Sci USA 94: 2290–2294PubMedCrossRefGoogle Scholar
  70. Rossi JJ (2000) Ribozymes in the nucleolus. Science 285: 1685CrossRefGoogle Scholar
  71. Ruffner DE, Uhlenbeck OC (1990) Thiophosphate interference experiments locate phosphates important for the hammerhead RNA self-cleavage reaction. Nucleic Acids Res 18: 6025–6029PubMedCrossRefGoogle Scholar
  72. Rupert PB, Ferré-D’Amaré AR (2001) Crystal structure of a hairpin ribozyme-inhibitor complex with implications for catalysis. Nature 410: 780–786PubMedCrossRefGoogle Scholar
  73. Samarsky DA, Ferbeyre G, Bertrand E, Singer RH, Cedergren R, Fournier MJ (1999) A small nucleolar RNA:ribozyme hybrid cleaves a nucleolar RNA target in vivo with near-perfect efficiency. Proc Natl Acad Sci USA 96: 6609–6614PubMedCrossRefGoogle Scholar
  74. Sandberg JA, Sproul CD, Blanchard KS et al. (2000) Acute toxicology and pharmacokinetic assessment of a ribozyme ( ANGIOZYME) targeting vascular endothelial growth factor receptor mRNA in the cynomolgus monkey. Antisense Nucleic Acid Drug Dev 10: 153–162Google Scholar
  75. Santiago FS, Lowe HC, Kavurma MM et al. (1999) New DNA enzyme targeting Egr-1 mRNA inhibits vascular smooth muscle proliferation and regrowth after injury. Nat Med 5: 1264–1269PubMedCrossRefGoogle Scholar
  76. Santoro SW, Joyce GF (1997) A general purpose RNA-cleav- ing DNA enzyme. Proc Natl Acad Sci USA 94: 4262–4266PubMedCrossRefGoogle Scholar
  77. Santoro SW, Joyce GF (1998) Mechanism and utility of an RNA-cleaving enzyme. Biochemistry 37:13. 330–13. 342Google Scholar
  78. Schmidt C, Welz R, Müller C (2000) RNA double cleavage by a hairpin-derived twin ribozyme. Nucleic Acids Res 28: 886–894PubMedCrossRefGoogle Scholar
  79. Scott WG, Finch JT, Klug A (1995) The crystal structure of an all-RNA hammerhead ribozyme: a proposed mechanism for RNA catalytic cleavage. Cell 81: 991–1002PubMedCrossRefGoogle Scholar
  80. Scott WG, Murray JB, Arnold JR, Stoddard BL, Klug A (1996) Capturing the structure of a catalytic RNA intermediate: the hammerhead ribozyme. Science 274: 2065–2069PubMedCrossRefGoogle Scholar
  81. Shimayama T, Nishikawa F, Nishikawa S, Taira K (1993) Nuclease-resistant chimeric ribozymes containing deoxyribonucleotides and phosphorothioate linkages. Nucleic Acids Res 21: 2605–2611PubMedCrossRefGoogle Scholar
  82. Slim G, Gait MJ (1991) Configurationally defined phosphorothioate-containing oligoribonucleotides in the study of the mechanism of cleavage of hammerhead ribozymes. Nucleic Acids Res 19: 1183–1188PubMedCrossRefGoogle Scholar
  83. Sohail M, Southern EM (2000) Selecting optimal antisense reagents. Adv Drug Deliv Rev 44: 23–34PubMedCrossRefGoogle Scholar
  84. Sriram B, Banerjea AC (2000) In vitro-selected RNA cleaving DNA enzymes from a combinatorial library are potent inhibitors of HIV-1 gene expression. Biochem J 352: 667–673PubMedCrossRefGoogle Scholar
  85. Sullenger BA, Cech TR (1993) Tethering ribozymes and a retroviral packaging signal for destruction of viral RNA. Science 262: 1566–1569PubMedCrossRefGoogle Scholar
  86. Sun L-Q, Cairns MJ, Gerlach WL, Witherington C, Wang L, King A (1999) Suppression of smooth muscle cell proliferation by a c-myc RNA-cleaving deoxyribozyme. J Biol Chem 274:17. 236–17. 241Google Scholar
  87. Sun LQ, Cairns MJ, Saravolac EG, Baker A, Gerlach WL (2000) Catalytic nucleic acids: from lab to applications. Pharmacol Rev 52: 325–347PubMedGoogle Scholar
  88. Tanner NK (1999) Ribozymes: the characteristics and prop- erties of catalytic RNAs. FEMS Micrbiol Rev 23: 257–275CrossRefGoogle Scholar
  89. Thomas KA (1996) Vascular endothelial growth factor, a potent and selective angiogenic agent. Biol Chem 271: 603–606CrossRefGoogle Scholar
  90. Tuschl T, Gohlke C, Jovin TM, Westhof E, Eckstein F (1994) A three-dimensional model for the hammerhead ribozyme based on fluorescence measurements. Science 266: 785–789PubMedCrossRefGoogle Scholar
  91. Uhlenbeck OC (1987) A small catalytic ribonucleotide. Nature 328: 596–600PubMedCrossRefGoogle Scholar
  92. Usman N, Blatt LM (2000) Nuclease-resistent ribozymes: developing a new class of therapeutics. J Clin Invest 106: 1197–1202PubMedCrossRefGoogle Scholar
  93. Vaish NK, Heaton PA, Fedorva O, Eckstein F (1998a) In vitro selection of a purine nucleotide-specific hammerhead-like ribozyme. Proc Natl Acad Sci USA 95: 2158–2162PubMedCrossRefGoogle Scholar
  94. Vaish NK, Kore AR, Eckstein F (1998b) Recent developments in the hammerhead ribozyme field. Nucleic Acids Res 26: 5237–5242PubMedCrossRefGoogle Scholar
  95. Van Tol H, Buzayan JM, Feldstein PA, Eckstein F, Bruening G (1990) Two autolytic processing reactions of a satellite RNA proceed with inversion of configuration. Nucleic Acids Res 8: 1971–1975Google Scholar
  96. Wedekind JE, McKay DB (1999) Crystal structure of a lead-dependent ribozyme revealing metal binding sites relevant to catalysis. Nat Struct Biol 6: 261–268PubMedCrossRefGoogle Scholar
  97. Weng DE, Usman N (2001) Angiozyme: a novel angiogenesis inhibitor. Curr Oncol Rep 3: 141–146PubMedCrossRefGoogle Scholar
  98. Young KJ, Gill F, Grasby JA (1997) Metal ions play a passive role in the hairpin ribozyme catalysed reaction. Nucleic Acids Res 25: 3760–3766PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Jens Kurreck
  • Jens P. Fürste
  • Volker A. Erdmann

There are no affiliations available

Personalised recommendations