Skip to main content

Zusammenfassung

Proteine (Eiweißstoffe) sind für eine Vielfalt dynamischer Lebensfunktionen wie Bewegung, Kraftentwicklung, Stoffwechselkontrolle sowie Signaltransduktion, Differenzierung, Entwicklung und Regulation verantwortlich. Andere Proteine bilden intrazelluläre Strukturen und bestimmen die Form und die Funktion von Organismen. Schließlich gibt es Proteine mit enzymatischen Eigenschaften, die die Verknüpfung oder die Auflösung von kovalenten Bindungen katalysieren. Zur Realisierung dieser vielfältigen Funktionen enthält das menschliche Genom, das etwa 109 Basenpaare umfasst, etwa 30 000–40 000 Gene. Die Produkte dieser Gene sind die Proteine, die zu verschiedenen Zeiten und in unterschiedlichen Konzentrationen in den einzelnen Zellen und Geweben gebildet werden. Das physiologische Geschehen einer Zelle wird wesentlich durch das Zusammenspiel der Gene und der jeweils angeschalteten Proteine reguliert.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Agrawal RK, Spahn CM, Penzek P, Grassucci RA, Nierhaus KH, Frank J (2000) Visualization of tRNA movements on the Escherichia coli 70 S ribosome at the elongation cycle. J Cell Biol 150: 447–460

    PubMed  CAS  Google Scholar 

  • Allen JB, Walberg MW, Edwards MC, Elledge SJ (1995) Finding prospective partners in the library: the two-hydrid system and phage display find a match. Trends Biochem Sci 20: 511–516

    PubMed  CAS  Google Scholar 

  • Anderson NL, Anderson NG (1998) Review: proteome and proteomics: new technologies, new concepts, and new words. Electrophoresis 19: 1853–1861

    PubMed  CAS  Google Scholar 

  • Anderson L, Seilhammer J (1997) A comparison of selected mRNA and protein abundances in human liver. Electrophoresis 18: 533–537

    PubMed  CAS  Google Scholar 

  • Arai M, Kuwajima K (2000) Role of the molten globule state in protein folding (review). Adv Protein Chem 53: 209282

    Google Scholar 

  • Armstrong RA, Lantos PL, Cairns NJ (2001) The spatial patterns of prion protein deposits in Creutzfeldt-Jacob disease: comparison with beta-amyloid deposits in Alzheimer’s disease. Neurosci Lett 298: 53–56

    PubMed  CAS  Google Scholar 

  • Arnsdorf MF, Xu S (1996) Atomic (scanning) force microscopy in cardiovascular research. J Cardiovasc Electrophysiol 7: 639–652

    PubMed  CAS  Google Scholar 

  • Ashman K, Houthaeve T, Clayton J et al. (1997) The application of robotics and mass spectrometry to the characterization of the Drosophila melanogaster indirect flight muscle proteome. Letters Peptide Sci 4: 57–65

    CAS  Google Scholar 

  • Badock V, Steinhusen U, Bommert K, Otto A (2001) Prefractionation of protein samples for proteome analysis using reversed-phase high-performance liquid chromatography. Electrophoresis 22: 2856–2864

    PubMed  CAS  Google Scholar 

  • Baker D (2000) A surprising simplicity to protein folding. Nature 405: 39–42

    PubMed  CAS  Google Scholar 

  • Ban N, Nissen P, Hansen J, Moore PB, Steitz TA (2000) The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. Science 289: 905–920

    PubMed  CAS  Google Scholar 

  • Banks RE, Dunn MJ, Hochstrasser DF et al. (2000) Proteomics: new perspectives, new biomedical opportunities. Lancet 356: 1749–1756

    PubMed  CAS  Google Scholar 

  • Bartel PL, Fields S (1995) Analyzing protein-protein interactions using the two-hybrid system. Methods Enzymol 254: 241–263

    PubMed  CAS  Google Scholar 

  • Baumeister W, Walz J, Zühl F, Seemüller E (1998) The proteasome: paradigm of a self-compartmentalizing protease. Cell 92: 367–380

    PubMed  CAS  Google Scholar 

  • Bayer TA, Wirths O, Majtenyi K et al. (2001) Key factors in Alzheimer’s disease: beta amyloid precursor protein processing, metabolism, and intraneural transport. Brain Pathol 11: 1–11

    PubMed  CAS  Google Scholar 

  • Beeley LJ, Malcolm Duckworth D, Southan C (2000) The impact of genomics on drug discovery: In: King FD, Oxford AW (eds) Progress in medicinal chemistry, vol 37. Elsevier Science, Amsterdam New York, pp 1–43

    Google Scholar 

  • Behlke J, Ristau 0 (2000) Analysis of protein self-association under conditions of the thermodynamic ideality. Biophys Chem 87: 1–13

    CAS  Google Scholar 

  • Belov ME, Gorshkov MV, Udseth HR, Anderson GA, Smith RD (2000) Zeptomole sensitivity electrospray ionization-Fourier transform ion cyclotron resonance mass spectrometry of proteins. Anal Chem 72: 2271–2279

    PubMed  CAS  Google Scholar 

  • Berkenkamp S, Menzel C, Karas F, Hillenkamp F (1997) Performance of infrared matrix-assisted laser desorption/ ionization mass spectrometry with lasers emitting in the 3 mm wavelength range. Rapid Commun Mass Spectrom 11: 1399–1406

    CAS  Google Scholar 

  • Berkovitch-Yellin Z, Wittmann HG, Yonath A (1990) Low-resolution models for ribosomal particles reconstructed from electron micrographs of tilted two-dimensional sheets. Acta Crystallogr B 46: 637–643

    PubMed  Google Scholar 

  • Biemann K, Scoble HA (1987) Characterization by tandem mass spectrometry of structural modifications in proteins. Science 237: 992–998

    PubMed  CAS  Google Scholar 

  • Bieschke J, Giese A, Schulz-Schaeffer W et al. (2000) Ultrasensitive detection of pathological prion protein aggregates by dual-color scanning for intensely fluorescent targets. Proc Natl Acad Sci USA 97: 5468–5473

    PubMed  CAS  Google Scholar 

  • Blobel G, Wozniak RW (2000 a) Proteomics for the pore. Nature 403: 835–836

    Google Scholar 

  • Blobel G, Wozniak RW (2000 b) Proteomics: quantitative and physical mapping of cellular proteins. Trends Biotechnol 17: 121–127

    Google Scholar 

  • Blum H, Beier H, Gross HJ (1987) Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. Electrophoresis 8: 93–99

    Google Scholar 

  • Bolton AE, Hunter WM (1973) The labeling of proteins to high specific radioactivities by conjugation to a í-containing acylating reagent. Biochem J 133: 529–539

    PubMed  CAS  Google Scholar 

  • Bonner RF, Emmerbuck M, Cole K et al. (1997) Laser capture microdissection: molecular analysis of tissue. Science 278: 1481–1483

    PubMed  CAS  Google Scholar 

  • Brimacombe R, Atmadja J, Kyriatsoulis A, Stiege W (1985) RNA structure and RNA-protein neighborhoods in the ribosome. In: Hardesty B, Kramer G (eds) Structure, function and genetics of ribosomes. Springer, Berlin Heidelberg New York, pp 184–202

    Google Scholar 

  • Brockstedt E, Otto A, Rickers A, Bommert K, Wittmann-Liebold B (1999) Preparative high resolution two-dimensional gel electrophoresis enables the identification of RNA polymerase B transcription factor 3 as an apoptosis-associated protein in a human BL-60–2 Burkitt lymphoma cell line. J Protein Chem 18: 225–231

    PubMed  CAS  Google Scholar 

  • Brockstedt E, Peters-Kottig M, Badock V, Hegele-Hartung C, Lessl M (2000) Luteinizing hormon induces mouse vas deferens protein expression in the murine ovary. Endocrinology 141: 2574–2581

    PubMed  CAS  Google Scholar 

  • Bronstein I, Kricka L-J (1992) Chemiluminescence: properties of 1,2.dioxetane chemiluminescence. In: Kessler C (ed) Non-radioactive labeling and detection of biomolecules. Springer, Berlin Heidelberg New York, pp 168–175

    Google Scholar 

  • Bu Z, Neumann DA, Lee SH, Brown CM, Engelman DM, Han CC (2000) A view of dynamic changes in the molten globule-native folding step by quasielastic neutron scattering. J Mol Biol 301: 525–536

    PubMed  CAS  Google Scholar 

  • Budnik BA, Jensen KB, Jorgensen TJD, Haase A, Zubarev RA (2000) Benefits of 2.94 micron infrared matrix-assisted laser desorption/ionization for analysis of labile molecules by Fourier transform mass spectrometry. Rapid Commun Mass Spectrom 14: 578–584

    PubMed  CAS  Google Scholar 

  • Bundle DR, Sigurskjold BW (1994) Determination of accurate thermodynamics of binding by microcalorimetry. Methods Enzymol 247: 288–305

    PubMed  CAS  Google Scholar 

  • Cao P, Stults JT (2000) Mapping the phosphorylation sites of proteins casing online immobilized metal affinity chromatography/capillary electrophopresis/electrospray ionization multiple stage tandem mass spectrometry. Rapid Commun Mass Spectrom 14: 1600–1606

    PubMed  CAS  Google Scholar 

  • Celis JE (ed) (1994) Cell biology, a laboratory handbook. Academic Press, London

    Google Scholar 

  • Celis A (1999) A comprehensive protein resource for the study of bladder cancer. Electrophoresis 20: 300–309

    PubMed  CAS  Google Scholar 

  • Cerione RA, Ross EM (1991) Reconstitution of receptors and G proteins in phospholipid vesicles. Methods Enzymol 195: 329–342

    PubMed  CAS  Google Scholar 

  • Chait BT, Wang R, Beavis RC, Kent SBH (1993) Protein ladder sequencing. Science 262: 89–92

    PubMed  CAS  Google Scholar 

  • Chou PY, Fasman GD (1978) Prediction of the secondary structure of proteins from their amino acid sequence. Adv Enzymol 47: 45–148

    PubMed  CAS  Google Scholar 

  • Clarke S (1992) Protein isoprenylation and methylation at carboxy-terminal cysteine residues. Annu Rev Biochem 61: 355–386

    PubMed  CAS  Google Scholar 

  • Claudio T (1992) Stable expression of heterologous multi-subunit protein complexes established by calcium phosphate-or lipid-mediated cotransfection. Methods Enzymol 207: 391–408

    PubMed  CAS  Google Scholar 

  • Dalen H, Saetersdal T, Roli J, Larsen TH (1998) Effect of collagenase on surface expression of immunoreactive fibronectin and laminin in freshly isolated cardiac myocytes. J Mol Cell Cardiol 30: 947–955

    PubMed  CAS  Google Scholar 

  • Damaschun G, Müller JJ, Bielka H (1979) Scattering studies of ribosomes and ribosomal components. Methods Enzymol 59: 706–750

    PubMed  CAS  Google Scholar 

  • Demchenko AP (1994) Protein fluorescence, dynamics and function: exploration of analogy between electronically excited and biocatalytic transition. Biochim Biophys Acta 1209: 149–164

    PubMed  Google Scholar 

  • Deterding LJ, Kast J, Przybylski M, Tomer KB (2000) Molecular characterization of a tetramolecular complex between dsDNA and a DNA-binding leucine zipper peptide dimer by mass spectrometry. Bioconjug Chem 11: 335–344

    PubMed  CAS  Google Scholar 

  • Deziel MR, Mau MM (1990) Biotin-conjugated reagents as site specific probes of membrane protein structure. Application to the study of the human erythrocyte hexose transporter. Anal Biochem 190: 297–303

    Google Scholar 

  • Dodson M, Echols H (1991) Electron microscopy of protein-DNA complexes. Methods Enzymol 208: 168–196

    PubMed  CAS  Google Scholar 

  • Doolittle RF (1995) The multiplicity of domains in proteins. Annu Rev Biochem 64: 287–314

    PubMed  CAS  Google Scholar 

  • Draper DF (1995) Protein-RNA recognition. Annu Rev Biochem 64: 593–620

    PubMed  CAS  Google Scholar 

  • Dubochet J, Duconmun M, Zollinger M, Kellenberger E (1971) A new preparation method for dark-field electron microscopy of biomacromolecules. J Ultrastruct Res 55: 147–157

    Google Scholar 

  • Dupont DR, Bozzini M, Boyd VI (2000) The alkylated thiohydantoin method for C-terminal sequence analysis, review. EXS 88: 119–131

    PubMed  CAS  Google Scholar 

  • Durchschlag H (1993) Small angle X-ray scattering of proteins. In: Baianu IC, Pessen H, Kumosinski TF (eds) Physical chemistry of food processes, vol 2. ITP Thompson Publishing, London, pp 18–117

    Google Scholar 

  • Dwek RA, Edge CJ, Harvey DJ, Wormald MR, Paregh RB (1993) Analysis of glycoprotein-associated oligosaccharides. Annu Rev Biochem 62: 65–100

    PubMed  CAS  Google Scholar 

  • Eckerskorn C, Strupat K, Schleuder D et al. (1997) Analysis of proteins by direct scanning infrared-MALDI-mass spectrometry after 2D page separation and electroblotting. Anal Chem 69: 2888–2892

    PubMed  CAS  Google Scholar 

  • Edman P, Begg G (1967) Ein Protein Sequenator. Eur J Biochem 1: 80–91

    PubMed  CAS  Google Scholar 

  • Edman P, Begg G (1975) Sequence determination. In: Needleman SB (ed) Protein sequence determination. Springer, Berlin Heidelberg New York, pp 232–279

    Google Scholar 

  • Engel A, Lyubchenko Y, Muller D (1999) Atomic force microscopy: a powerful tool to observe biomolecules at work. Trends Cell Biol 9: 77–80

    PubMed  CAS  Google Scholar 

  • Fernandez-Patron C, Calero M, Rodriguez Collazo P et al. (1995) Protein reverse staining: high-efficiency microanalysis of unmodified proteins detected on electrophoresis gels. Anal Biochem 224: 203–211

    PubMed  CAS  Google Scholar 

  • Figeys D, Pinto D (2001) Proteomics on a chip: promising developments, review. Electrophoresis 22: 208–216

    PubMed  CAS  Google Scholar 

  • Figeys D, Ducret A, Yates III JR, Aebersold R (1996) Protein identification by solid phase microextraction-capillary zone electrophoresis-microspray-tandem mass spectrometry. Nat Biotechnol 14: 1579–1583

    PubMed  CAS  Google Scholar 

  • Fimmel S, Choli T, Dencher NA, Büldt G, Wittmann-Liebold B (1989) Topography of surface-exposed amino acids in the membrane protein bacteriorhodopsin determined by proteolysis and microsequencing. Biochim Biophys Acta 978: 231–240

    PubMed  CAS  Google Scholar 

  • Formosa T, Barry J, Alberts BM, Greenblatt J (1991) Using protein affinity chromatography to probe structure of protein machines. Methods Enzymol 208: 24–45

    PubMed  CAS  Google Scholar 

  • Fushman D, Cahill S, Lemmon MA, Schlessinger J, Cowburn D (1995) Solution structure of pleckstrin homology domain of dynamin by heteronuclear NMR spectroscopy. Proc Natl Acad Sci USA 92: 816–820

    PubMed  CAS  Google Scholar 

  • Gabor Miklos GL, Maleszka R (2001) Integrating molecular medicine with functional proteomics: realities and expectations. Electrophoresis 1: 30–41

    CAS  Google Scholar 

  • Gaevert K, Vandekerckhove J (2000) Protein identification methods in proteomics. Electrophoresis 21: 1145–1154

    Google Scholar 

  • Gagneux P, Varki A (1999) Mini review: evolutionary considerations in resulting oligosaccharide diversity to biological function. Glycobiology 9: 747–755

    PubMed  CAS  Google Scholar 

  • Garcia-Parajo MF, Segers-Nolten GM, Veerman JA, Greve J, Hulst NF van (2000) Real time light-driven dynamics of the fluorescence emission in single green fluorescent protein molecules. Proc Natl Acad Sci USA 97: 7237–7242

    PubMed  CAS  Google Scholar 

  • Gierasch LM, King J (eds) (1990) Protein folding: deciphering the second half of the genetic code. AAAS Press, Washington, DC

    Google Scholar 

  • Giri L, Hill WE, Wittmann HG, Wittmann-Liebold B (1984) Ribosomal proteins: their structure and spatial arrangement in prokaryotic ribosomes. Adv Protein Chem 36: 178

    Google Scholar 

  • Gobom J, Kraeuter KO, Persson R, Stehen H, Roepstorff P, Ekman R (2000) Detection and quantification of neurotensin in human brain tissue by matrix assisted laser desorption/ionization time-of-flight mass spectrometry. Anal Chem 72: 3320–3326

    PubMed  CAS  Google Scholar 

  • Goeoffroy F, Sodoyer R, Aujame L (1994) A new phage display system to construct multicombinatorial libraries of very large antibody repertoires. Gene 151: 109–113

    Google Scholar 

  • Goodlett DR, Bruce JE, Anderson GA et al. (2000) Protein identification with a single accurate mass of a cysteinecontaining peptide and constrained database searching. Anal Chem 72: 1112–1118

    PubMed  CAS  Google Scholar 

  • Görg A, Obermaier C, Boguth G et al. (2000) The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis 21: 1037–1053

    PubMed  Google Scholar 

  • Graham JM, Higgins JA (eds) (1993) Methods in molecular biology, vol 19, Biomembrane protocols I. Isolation and analysis. Humana Press, Totowa, NJ, pp 19–28

    Google Scholar 

  • Gregoriadis G (1994) Liposomes as immunoadjuvants and vaccine carriers: antigen entrapment. Immunomethods 4: 210–216

    PubMed  CAS  Google Scholar 

  • Grinberg AV, Hannemann F, Schiffler B, Mulller J, Heinemann U, Bernhardt R (2000) Adrenodoxin: structure, stability, and electron transfer properties. Proteins 40: 590612

    Google Scholar 

  • Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 10: 994–999

    Google Scholar 

  • Hage DS (1998) Survey of recent advances in analytical applications of immunoaffinity chromatography. J Chromatogr B Biomed Sci Appl 715: 3–28

    PubMed  CAS  Google Scholar 

  • Hahn U, Heinemann U (1995) Structure determination, modeling and site-directed mutagenesis studies. In: Wrede P, Schneider G (eds) Concepts in protein engineering and design. de Gruyter, Berlin, pp 109–168

    Google Scholar 

  • Haley BE (1991) Nucleotide photoaffinity labeling of protein kinase subunits. Methods Enzymol 200: 477–487

    PubMed  CAS  Google Scholar 

  • Hall D (2000) Use of optical biosensors for the study of mechanistically concerted surface adsorption processes. Anal Biochem 15: 109–125

    Google Scholar 

  • Hanning K (1982) New aspects in preparative and analytical continuous free-flow cell electrophoresis. Electrophoresis 3: 235–243

    Google Scholar 

  • Happersberger HP, Bantscheff M, Barbirz S, Glocker MO (2000) Multiple and subsequent MALDI-MS on-target chemical reactions for the characterization of disulfide bonds and primary structures of proteins. Methods Mol Biol 146: 167–184

    PubMed  CAS  Google Scholar 

  • Haris PI, Chapman D (1994) Analysis of polypeptide and protein structures using Fourier transform infrared spectroscopy. Methods Mol Biol 22: 183–202

    PubMed  CAS  Google Scholar 

  • Harrison SC, Aggarwal AK (1990) DNA recognition by proteins with the helix-turn-helix motif. Annu Rev Biochem 59: 933–969

    PubMed  CAS  Google Scholar 

  • Hart GW, Haltiwanger RS, Gordon GD, Kelly WG (1989) Glycosylation in the nucleus and cytoplasm. Annu Rev Biochem 58: 841–874

    PubMed  CAS  Google Scholar 

  • Harvey DJ, Bateman RH, Bordoli RS, Tyldesley R (2000) Ionisation and fragmentation of complex glycans with quadrupol time of flight mass spectrometer fitted with a matrix-assisted laser desorption/ionization ion source. Rapid Commun Mass Spectrom 14: 2135–42

    PubMed  CAS  Google Scholar 

  • Haselbeck A, Hösel W (1992) Labeling and detection of proteins and glycoproteins. In: Kessler C (ed) Non-radioactive labeling and detection of biomolecules. Springer, Berlin Heidelberg New York, pp 56–69

    Google Scholar 

  • Haudenschild DR, Tondravi MM, Hofer U, Chen Q, Goetinck PF (1995) The role of coiled-coil alpha-helices and disulfide bonds in the assembly and stabilization of cartilage matrix protein subunits–a mutational analysis. J Biol Chem 270: 23150–23154

    PubMed  CAS  Google Scholar 

  • Hauser N, Paulsson M (1994) Native cartilage matrix protein ( CMP) - an compact trimer of subunits assembled via a coiled-coil alpha-helix. J Biol Chem 269: 25747–25753

    Google Scholar 

  • Haynes PA, Yates III JR (2000) Proteome profiling–pitfalls and progress, review. Yeast 17: 81–87

    PubMed  CAS  Google Scholar 

  • Heinemann U (2000) Structural genomics in Europe: slow start, strong finish? Nature Struct Biol 7: 940–942

    PubMed  CAS  Google Scholar 

  • Hendrick JP, Hartl F-U (1993) Molecular chaperone functions of heat shock proteins. Annu Rev Biochem 62: 349–384

    PubMed  CAS  Google Scholar 

  • Hendrickson CL, Emmett MR (1999) Electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Annu Rev Phys Chem 50: 517–536

    PubMed  CAS  Google Scholar 

  • Hennessey ES, Broome-Smith JK (1993) Gene-fusion techniques for determining membrane-protein topology. Curr Opin Struct Biol 3: 524–531

    CAS  Google Scholar 

  • Henzel WJ, Billeci TM, Stults JT, Wong SC, Grimley C, Watanabe C (1993) Identifying proteins from two-dimensional gels by molecular mass searching of peptide fragments in protein sequence data bases. Proc Natl Acad Sci USA 90: 5011–5015

    PubMed  CAS  Google Scholar 

  • Herfurth E, Wittmann-Liebold B (1995) Determination of peptide regions exposed at the surface of the bacterial ribosome with antibodies against synthetic peptides. Biol Chem Hoppe-Seyler 376: 81–90

    PubMed  CAS  Google Scholar 

  • Hershko A, Ciechanover A (1992) The ubiquitin system for protein degradation. Annu Rev Biochem 61: 761–808

    PubMed  CAS  Google Scholar 

  • Hillenkamp F, Karas M, Beavis RC, Chait BT (1991) Matrix-assisted laser desorption/ionization mass spectrometry of biopolymers. Anal Chem 63: 1193A - 1203A

    PubMed  CAS  Google Scholar 

  • Hilt W, Wolf DH (1995) Proteasomes of the yeast S. cerevisiae: genes, structure and functions. Mol Biol Rep 21: 3–10

    PubMed  CAS  Google Scholar 

  • Hoffmann E, Rüterjans H (1988) Two-dimensional 1-H-NMR investigation of ribonuclease Ti. Resonance assignment, secondary and low resolution tertiary structures of ribonuclease Ti. Eur J Biochem 177: 539–560

    Google Scholar 

  • Hoogland C, Sanchez JC, Tonella L et al. (2000) The 1999 Swiss-2DPAGE database update. Nucleic Acids Res 28: 286–288

    PubMed  CAS  Google Scholar 

  • Hübner G (1989) Enzymkinetik. In: Schellenberger A (Hrsg) Enzymkatalyse. Fischer, Jena, S 72–132

    Google Scholar 

  • Hughes GJ, Frutiger S, Paquet N et al. (1993) Human liver protein map: update 1993. Electrophoresis 14: 1216–1222

    PubMed  CAS  Google Scholar 

  • Hunkapiller MW, Hewick RM, Dreyer WJ, Hood LE (1983) High-sensitivity sequencing with a gas phase sequenator. Methods Enzymol 91: 399–413

    PubMed  CAS  Google Scholar 

  • Hunt DF, Yates III JR, Shabanowitz J, Winston S, Hauer CR (1986) Protein sequencing by tandem mass spectrometry. Proc Natl Acad Sci USA 83: 6233–6237

    PubMed  CAS  Google Scholar 

  • Ito K, Matsuo E, Akiyama Y (1999) A class of integral membrane proteins will be overl000ked by the proteome study that is based on two-dimensional gel electrophoresis. Mol Microbiol 31: 1600–1601

    PubMed  CAS  Google Scholar 

  • Jaenicke R (1991) Protein folding: local structures, domains, subunits, and assemblies. Biochemistry 30: 3147–3161

    PubMed  CAS  Google Scholar 

  • Jaenicke R, Seckler R (1992) Protein folding and protein refolding. EASES J 6: 2545–2552

    Google Scholar 

  • Jameson DM, Hazlett TL (1991) Time-resolved fluorescence in biology and biochemistry. In: Dewey TG (ed) Biophysical and biochemical aspects of fluorescence spectroscopy. Plenum Press, New York

    Google Scholar 

  • Janda KD, Lo CH, Barbas CF, Wirsching P, Lerner RA (1994) Direct selection for a catalytic mechanism from combinatorial antibody libraries. Proc Natl Acad Sci USA 91: 2532–2536

    PubMed  CAS  Google Scholar 

  • Janek K, Behlke J, Zipper J et al. (1999) Water-soluble beta-sheet models which self-assemble into fibrillar structure. Biochemistry 38: 8246–8252

    PubMed  CAS  Google Scholar 

  • Janson JC, Ryden L (eds) (1989) Protein purification. Principles, high resolution methods, applications. VCH, Weinheim

    Google Scholar 

  • Jenö P, Thomas G (1991) Affinity purification of protein kinases using adenosine 5’-triphosphate, amino acid, and peptide analogs. Methods Enzymol 200: 178–187

    PubMed  Google Scholar 

  • Ji JY, Chakraborty A, Geng M et al. (2000) Strategy for qualitative and quantitative analysis in proteomics based on signature peptides. J Chromatogr B Biomed Sci Appl 745: 197–210

    PubMed  CAS  Google Scholar 

  • Joachimiak A, Sigler PB (1991) Crystallization of protein-DNA complexes. Methods Enzymol 208: 82–99

    PubMed  CAS  Google Scholar 

  • Jollès P, Jörnvall H (eds) (2000) Proteomics in functional genomics. Birkhäuser, Basel Boston Berlin

    Google Scholar 

  • Josel H-P (1992) Chemoluminescence. Luminol. In: Kessler C (ed) Non-radioactive labeling and detection of biomolecules. Springer, Berlin Heidelberg New York, pp 185188

    Google Scholar 

  • Kadonaga JT (1991) Purification of sequence-specific binding proteins by DNA affinity chromatography. Methods Enzymol 208: 10–23

    PubMed  CAS  Google Scholar 

  • Kamp RM, Choli-Papadopoulou T, Wittmann-Liebold B (eds) (1997) Protein structure analysis, preparation, characterization and microsequencing. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Karas M, Hillenkamp F (1988) Laser-desorption ionization of proteins with molecular masses exceeding 10,000 dal-tons. Anal Biochem 60: 2299–2301

    CAS  Google Scholar 

  • Karpatkin S, Shulman S, Howard L (1992) Crossed immunoelectrophoresis of human platelet membranes. Methods Enzymol 215: 440–455

    PubMed  CAS  Google Scholar 

  • Karschin A, Thorne BA, Thomas G, Lester HA (1992) Vacci-nia virus as vector to express ion channel genes. Methods Enzymol 207: 408–423

    PubMed  CAS  Google Scholar 

  • Kelley WL, Georgopoulos C (1993) Chaperones and protein folding. Curr Opin Cell Biol 4: 984–991

    Google Scholar 

  • Keough T, Youngquist RS, Lacey MP (1999) A method for high-sensitive peptide sequencing using postsource decay matrix-assisted laser desorption ionization mass spectrometry. Proc Natl Acad Sci USA 96: 7131–7136

    PubMed  CAS  Google Scholar 

  • Klose J (1975) Protein mapping by combined isoelectric focusing and electrophoresis of mouse tissues. A novel approach to testing for induced point mutations in mammals. Humangenetik 26: 231–243

    PubMed  CAS  Google Scholar 

  • Klose J, Kobalz U (1995) High resolution two-dimensional gel electrophoresis. Electrophoresis 16: 1043–1049

    Google Scholar 

  • Kovarova H, Stulik J, Hochstrasser DF, Bures J, Melichar B, Jandik P (1994) Two-dimensional electrophoretic study of normal colon mucosa and colorectal cancer. Appl The-or Electrophor 4: 103–106

    CAS  Google Scholar 

  • Krause KL, Volz KW, Lipscomb WN (1984) Structure at 2.9A resolution of aspartate carbamoyltransferase complexd with the bisubstrate analogue N-(phosphonoacetyl)-L-aspartate. Proc Natl Acad Sci US 82: 1643–1647

    Google Scholar 

  • Krishna RG, Wold F (1993) Post-translational modification of proteins. Adv Enzymol 67: 265–289

    PubMed  CAS  Google Scholar 

  • Kristensen A, Schou C, Roepstorff P (1997) Determination of isoforms, N-linked glycan structure and disulfide bond linkages of the major cat allergen Fel D1 by mass spectrometric approach. Biol Chem 378: 899–908

    PubMed  CAS  Google Scholar 

  • Kruft V, Wittmann-Liebold B (1991) Determination of peptide regions on the surface of the eubacterial and archaebacterial ribosome by limited proteolytic digestion. Biochemistry 30: 11781–11787

    PubMed  CAS  Google Scholar 

  • Labarca P, Latorre R (1992) Insertion of ion channels in planar lipid bilayers by vesicle fusion. Methods Enzymol 207: 447–463

    PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of of the head of bacteriophage T4. Nature 227: 680–685

    PubMed  CAS  Google Scholar 

  • Landry F, Lombardo CR, Smith JW (2000) A method for application of samples to matrix-assisted laser desorption ionization time-of-flight targets that enhances peptide detection. Anal Biochem 279: 1–8

    PubMed  CAS  Google Scholar 

  • Lawrence CE, Bryant SH (1991) Hydrophobic potentials from statistical analysis of protein structures. Methods Enzymol 202: 20–31

    PubMed  CAS  Google Scholar 

  • Lee AG (1994) Measurement of lipid-protein interactions in reconstituted membrane vesicles using fluorescence spectroscopy. Methods Mol Biol 27: 101–107

    PubMed  CAS  Google Scholar 

  • Lee KB, Loganathan D, Merchant CM, Linhardt RJ (1990) Carbohydrate analysis of glycoproteins. A review. Appl Biochem Biotechnol 23: 53–80

    Google Scholar 

  • Lewis CT, Hilvert D (1991) Engineered antibodies. Curr Opin Struct Biol 1: 624–629

    CAS  Google Scholar 

  • Liang P, Pardee AB (1992) Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 257: 967–971

    PubMed  CAS  Google Scholar 

  • Link AJ (1999) 2-D proteome analysis protocolls. In: Link AJ (ed) Methods in molecular biology, vol 12. Humana Press, Totowa, NJ

    Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1979) Protein measurement with the folin phenol reagent. Anal Biochem 100:201–220, 193: 265–275

    Google Scholar 

  • Lundblad RL, Noyes CM (1984) Chemical reagents for pro- tein modification, vol I, I I. CRC Press, Boca Raton, FL

    Google Scholar 

  • Lutsch G, Stahl J, Kärgel HJ, Noll F, Bielka H (1990) Immunoelectron microscopic studies on the location of ribosomal proteins on the surface of the 40 S ribosomal subunit from rat liver. Eur J Cell Biol 51: 140–150

    PubMed  CAS  Google Scholar 

  • Mach H, Middaugh CR, Lewis RV (1992) Statistical determination of the values of the extinction coefficients of tryptophan and tyrosine in native proteins. Anal Biochem 200: 74–80

    PubMed  CAS  Google Scholar 

  • Machold J, Weise C, Utkin YN, Franke P, Tsetlin VI, Hucho F (1995) A new class of photoactivatable and cleavable derivatives of neurotoxin II from Naja naja oxinana. Synthesis, characterization, and application for affinity labeling of the nicotinic acetylcholine receptor of Torpedo. Eur J Biochem 228: 947–954

    Google Scholar 

  • Mann M (1999) Quantitative proteomics? Nat Biotechnol 17: 954

    PubMed  CAS  Google Scholar 

  • Mann M, Wilm M (1995) Electrospray mass spectrometry for protein characterization. Trends Biochem Sci 20: 219–224

    PubMed  CAS  Google Scholar 

  • Mann M, Hojrup P, Roepstorff P (1993) Use of mass spectrometric molecular weight information to identify proteins in sequence databases. Biol Mass Spectrom 22: 338345

    Google Scholar 

  • Marcias MJ, Gervais V, Civera C, Oschkinat H (2000) Structural analysis of WW domains and design of a WW prototype. Nat Struct Biol 7: 375–379

    Google Scholar 

  • Martel P (1992) Biophysical aspects od neutron scattering from vibrational modes of proteins. Prog Biophys Mol Biol 57: 129–179

    PubMed  CAS  Google Scholar 

  • Matthew RC (1993a) Pathways of protein folding. Annu Rev Biochem 62: 653–684

    Google Scholar 

  • Matthews BW (1993b) Structural and genetic analysis of protein stability. Annu Rev Biochem 62: 139–160

    PubMed  CAS  Google Scholar 

  • Mattu TS, Royle L, Langridge J et al. (2000) 0-Glycan analysis of natural human neutrophil gelatinase B using a combination of normal phase HPLC and online tandem mass spectrometry: implication of the domain organization of the enzyme. Biochemistry 39: 1595–19704

    Google Scholar 

  • Meier T, Arni S, Malarkannan S, Poincelet M, Hoessli D (1992) Immunodetection of biotinylated lymphocyte-surface proteins by enhanced chemiluminiscence: a nonradioactive method for cell-surface protein analysis. Anal Biochem 204: 220–226

    PubMed  CAS  Google Scholar 

  • Merchant M, Weinberger SR (2000) Recent advancements in surface-enhanced laser desorption/ionization time-offlight mass spectrometry. Electrophoresis 21: 1164–1177

    PubMed  CAS  Google Scholar 

  • Middaugh CR, Vanin EF, Ji TH (1983) Chemical crosslinking of cell membranes. Mol Cell Biochem 50: 115–141

    PubMed  CAS  Google Scholar 

  • Mirgorodskaya OA, Kozmin YP, Titov MI, Korner R, Sonksen CP, Roepstorff P (2000a) Quantitation of peptides and proteins by matrix-assisted laser desorption/ionization mass spectrometry using (18)0-labeled internal standards. Rapid Commun Mass Spectrom 14: 1226–1232

    PubMed  CAS  Google Scholar 

  • Mirgorodskaya E, Krogh TN, Roepstorff P (2000b) Characterization of protein glycosylation by MALDI-TOF-MS. Methods Mol Biol 146: 273–292

    PubMed  CAS  Google Scholar 

  • Mothes W, Prehn S, Rapoport TA (1994) Systematic probing of the environment of a translocating secretory protein during translocation through the ER membrane. EMBO J 13: 3973–3982

    PubMed  CAS  Google Scholar 

  • Muchmore SW, Olson J, Jones R et al. (2000) Automated crystal mounting and data collection for protein crystallography. Structure 8: R243 - R246

    PubMed  CAS  Google Scholar 

  • Muller E-C, Schumann M, Rickers A, Bommert K, Wittmann-Liebold B, Otto A (1999) Study of Burkitt lomphoma cell line proteins by high resolution two-dimensional gel electrophoresis and nanospray mass spectrometry. Electrophoresis 20: 320–330

    PubMed  CAS  Google Scholar 

  • Mueller F, Sommer I, Baranov P et al. (2000 a) The 3D arrangement of the 23 S and 5 S rRNA in the Escherichia coli 50S ribosomal subunit based on cryo-electron microscopic reconstitution at 7.5 A resolution. J Mol Biol 298: 35–59

    Google Scholar 

  • Mueller U, Perl D, Schmidt FX, Heinemann U (2000b) Thermal stability and atomic-resolution crystal structure of the Bacillus caldolyticus cold shock protein. J Mol Biol 297: 975–988

    PubMed  CAS  Google Scholar 

  • Muller WA (1994a) Determination of cell surface polarity by solid-phase lactoperoxidase iodination. Methods Mol Biol 27: 19–30

    PubMed  CAS  Google Scholar 

  • Muller WA (1994b) Biochemical methods to determine cell-surface topography. Methods Mol Biol 27: 31–42

    PubMed  CAS  Google Scholar 

  • Natsume T, Nakayama H, Jansson 0, Isobe T, Takio K, Mikoshiba K (2000) Combination of biomolecular interaction analysis and mass spectrometric amino acid sequencing. Anal Chem 72: 4193–4198

    PubMed  CAS  Google Scholar 

  • Nesbitt SA, Horton MA (1992) A nonradioactive biochemical characterization of membrane proteins using enhanced chemiluminiscence. Anal Biochem 206: 267–272

    PubMed  CAS  Google Scholar 

  • Nie S, Zare RN (1997) Optical detection of single molecules. Annu Rev Biophys Biomol Struct 26: 567–596

    PubMed  CAS  Google Scholar 

  • Niehrs C, Beiswanger R, Huttner WB (1994) Protein tyrosine sulfation, 1993–an update. Chem Biol Interact 92: 257–271

    PubMed  CAS  Google Scholar 

  • Noel JP, Hamm HE, Sigler PB (1993) The 2.2 A crystal structure of transducin a-complex with GTP-y-S. Nature 366: 654–663

    PubMed  CAS  Google Scholar 

  • Nordhoff E, Krogsdam AM, Jorgensen HF et al. (1999) Rapid identification of DNA-binding proteins by mass spectrometry. Nat Biotechnol 17: 884–888

    PubMed  CAS  Google Scholar 

  • Nowotny V, May RP, Nierhaus KH (1985) Neutron-scattering analysis of structural and functional aspects of the ribosome: the strategy of the glassy ribosome. In: Hardesty B, Kramer G (eds) Structure, function and genetics of ribosomes. Springer, Berlin Heidelberg New York, pp 101–111

    Google Scholar 

  • O’Farrell PH (1975) High resolution two-dimensional electrophoresis of proteins. J Biol Chem 250: 4007–4021

    PubMed  Google Scholar 

  • Otto A, Thiede B, Müller E-C, Scheler C, Jungblut P (1996) Identification of human myocardial proteins separated by two-dimensional gel electrophoresis using an effective sample preparation for mass spectrometry. Electrophoresis 17: 1643–1650

    PubMed  CAS  Google Scholar 

  • Parrage G, Klevit RE (1991) Multidimensional nuclear magnetic resonance spectroscopy of DNA-binding proteins. Methods Enzymol 208: 63–82

    Google Scholar 

  • Pappin DJC, Hojrup P, Bleasby AJ (1993) Rapid identification of proteins by peptide-mass fingerprinting. Curr Biol 3: 327–332

    PubMed  CAS  Google Scholar 

  • Patterson SD, Aebersold R (1995) Mass spectrometric approaches for the identification of gel-separated proteins. Electrophoresis 16: 1791–1814

    PubMed  CAS  Google Scholar 

  • Pauli J, Rossum B van, Forster H, Groot HJ de, Oschkinat H (2000) Sample optimization and identification of signal patterns of amino acid side chains in 2D RFDR spectra of the alpha-spectrin SH3 domain. J Magn Reson 143: 411–416

    PubMed  CAS  Google Scholar 

  • Pearson WR (1998) Empirical statistical estimate for sequence similarity searches. J Mol Biol 276: 71–84

    PubMed  CAS  Google Scholar 

  • Peters K, Richards FM (1977) Chemical crosslinking reagents and problems in studies of membrane structure. Annu Rev Biochem 46: 523–551

    PubMed  CAS  Google Scholar 

  • Phillies GDJ (1990) Quasi-elastic light scattering. Anal Chem 62: 1049A - 1057A

    CAS  Google Scholar 

  • Prockop DJ, Kivirikko KJ (1995) Collagens: molecular biology, diseases, and potentials for therapy. Annu Rev Biochem 64: 403–434

    PubMed  CAS  Google Scholar 

  • Provencher SW, Glöckner J (1981) Estimation of globular protein secondary structure from circular dichroism. Biochemistry 20: 33–37

    PubMed  CAS  Google Scholar 

  • Quadroni M, James P (1999) Proteomics and automation. Electrophoresis 20: 664–677

    PubMed  CAS  Google Scholar 

  • Qureshi Emili A, Cagney G (2000) Large-scale functional analysis using peptide or protein arrays. Nat Biotechnol 18: 393–397

    PubMed  CAS  Google Scholar 

  • Rabilloud T (2000) Detecting proteins separated by 2D gel electrophoresis. Anal Chem 72: 48A - 55A

    PubMed  CAS  Google Scholar 

  • Reichle C, Sparbier K, Müller T, Schnelle T, Walden P, Fuhr G (2001) Combined laser tweezers and dielectric field cage for the analysis of receptor-ligand interactions on single cells. Electrophoresis 22: 272–282

    PubMed  CAS  Google Scholar 

  • Rich RL, Myszka DG (2000) Survey of the 1999 surface plasmon resonance biosensor literature. J Mol Regocnit 13: 388–407

    CAS  Google Scholar 

  • Righetti PG (1983) Isoelectric focusing: theory, methodology and applications. Elsevier Biomedical Press, Amsterdam

    Google Scholar 

  • Rigler R, Pramanik A, Jonasson P et al. (1999) Specific binding of proinsulin C-peptide to human cell membranes. Proc Natl Acad Sci USA 96: 13318–13323

    PubMed  CAS  Google Scholar 

  • Rizo J, Gierasch LM (1992) Constrained peptides: models of bioactive peptides and protein substructures. Annu Rev Biochem 61: 387–418

    PubMed  CAS  Google Scholar 

  • Roder H (1995) Watching protein folding. Direct NMR observation of a transient folding intermediate provides new evidence for the importance of molten globules as general intermediates in protein folding. Nat Struct Biol 2: 817–820

    PubMed  CAS  Google Scholar 

  • Roepstorff P (2000) MALDI-TOF mass spectrometry in protein chemistry, review. EXS 88: 81–97

    PubMed  CAS  Google Scholar 

  • Rost B, Sander C (2000) Third generation prediction of secondary structures. Methods Mol Biol 143: 71–95

    PubMed  CAS  Google Scholar 

  • Rout MP, Aitchison JD, Suprapto A, Hjertaas K, Zhao Y, Chait BT (2000) The yeast nuclear pore complex: composition, architecture, and transport mechanism. J Cell Biol 148: 635–651

    PubMed  CAS  Google Scholar 

  • Rüdiger AH, Rüdiger M, Carl UD, Chakraborty T, Roepstorff P, Wehland J (1999) Affinity mass spectrometry-based approaches for the analysis of protein-protein interaction and complex mixtures of peptide-ligands. Anal Biochem 275: 162–170

    PubMed  Google Scholar 

  • Santoni V, Molloy M, Rabilloud T (2000) Membrane proteins and proteomics: un amour impossible? Electrophoresis 21: 1054–1070

    PubMed  CAS  Google Scholar 

  • Sarvazyan AP (1991) Ultrasonic velocimetry of biological compounds. Annu Rev Biophys Biophys Chem 20: 321342

    Google Scholar 

  • Schägger H, Jagow G von (1987) Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166: 368–379

    PubMed  Google Scholar 

  • Schatz M, Heel M van (1990) Invariant classification of molecular views in electron micrographs. Ultramicroscopy 32: 255–264

    PubMed  CAS  Google Scholar 

  • Schellenberger A (1989) Enzymkatalyse. Einführung in die Chemie, Biochemie und Technologie der Enzyme. Fischer, Jena, S 196–292

    Google Scholar 

  • Scheller FW, Schubert F, Neumann B et al. (1991) Second generation biosensors. Biosens Bioelectron 6: 245–253

    PubMed  CAS  Google Scholar 

  • Scherzinger E, Lurz R, Turmaine M et al. (1997) Huntingtinencoded polyglutamine expansions from amyloid-like protein aggregates in vito and vivo. Cell 90: 549–558

    PubMed  CAS  Google Scholar 

  • Schluenzen F, Tocilj A, Zarivach R et al. (2000) Structure of functionally activated small ribosomal subunit at 3.3 angstroms resolution. Cell 102: 615–623

    PubMed  CAS  Google Scholar 

  • Schuerenberg M, Luebbert C, Eickhoff H, Kalkum M, Lehrach H, Nordhoff E (2000) Prestructured MALDI-MS sample supports. Anal Chem 72: 3436–3442

    PubMed  CAS  Google Scholar 

  • Schulz GE, Schirmer RH (1979) Principles of protein structure. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Sevin-Landais A, Rigler P, Tzartos S, Hucho F, Hovius R, Vogel H (2000) Functional immobilization of the nicotinic acetylcholine receptor in tethered lipid membranes. Biophys Chem 85: 141–152

    PubMed  CAS  Google Scholar 

  • Sharon N (1993) Lectin carbohydrate complexes of plants and animals. An atomic view. Trends Biochem Sci 18: 221–223

    PubMed  CAS  Google Scholar 

  • Shevchenko A, Loboda A, Shevchenko A, Ens W, Standing KG (2000) MALDI quadrupol time-of-flight mass spectrometry: a powerful tool for proteomics research. Anal Chem 72: 2132–2141

    PubMed  CAS  Google Scholar 

  • Siegmund E, Pommerenke H, Jonas L, Nizze H, Hollerich I, Rohring A, Schuff-Werner P (2000) Inositol 1,4,5-triphosphate formation, cytoplasmatic calcium dynamics, and alpha-amylase secretion of pancreatic acini isolated from aged and chronically alcohol-fed rats. Int J Pancreatol 27: 39–50

    PubMed  CAS  Google Scholar 

  • Sinensky M, Lutz RJ (1992) The prenylation of proteins. Bioessays 14: 25–30

    PubMed  CAS  Google Scholar 

  • Smalla M, Schmieder P, Kelly M et al. (1999) Solution structure of the receptor tyrosine kinase EphB2 SAM domain and identification of two distinct homotypic interaction sites. Protein Sci 8: 1954–1961

    PubMed  CAS  Google Scholar 

  • Sonksen CP, Nordhoff E, Jansson O, Malmqvist M, Roepstorff P (1998) Combining MALDI mass spectrometry and biomolecular interaction analysis using a biomolecular interaction analysis instrument. Anal Chem 70: 2731–2736

    PubMed  CAS  Google Scholar 

  • Soskic V, Görlach M, Poznanovic S, Boehmer FD, GodovacZimmermann J (1999 a) Functional proteomics analysis of signal transduction pathways of the platelet-derived growth factor ß-receptor. Biochemistry 38: 1757–1764

    Google Scholar 

  • Soskic V, Nyakutura E, Roos M, Müller-Esterl W, GodovacZimmermann J (1999 b) Correlation in palmitoylation and multiple phosphorylation of rat bradikinin B2 receptor in Chinese Hamster ovary cells. J Biol Chem 274: 8539–8545

    Google Scholar 

  • Spackmann DH, Stein W, Moore S (1958) Automatic recording apparatus for use in the chromatography of amino acids. Anal Chem 30: 1190–1206

    Google Scholar 

  • Spahr CS, Susin SA, Bures EJ et al. (2000) Simplification of complex peptide mixtures for proteomic analysis: reversible biotinylation of cysteinyl peptides. Electrophoresis 21: 1635–1650

    PubMed  CAS  Google Scholar 

  • Speicher KD, Kolbas O, Harper S, Speicher DW (2000) Systematic analysis of peptide recoveries from in-gel digestions for protein identifications in proteome studies. J Biomol Techn 11: 74–86

    CAS  Google Scholar 

  • Spengler B, Kirsch D, Kaufmann R (1991) Metastabile decay of peptides and proteins in matrix-assisted laser-desorption mass spectrometry. Rapid Commun Mass Spectrom 5: 198–202

    CAS  Google Scholar 

  • Stark H, Rodnina MN, Wieden HJ, Heel M van, Wintermeyer W (2000) Large-scale movement of elongation factor G and extensive conformational change of the ribosome during translocation. Cell 100: 301–309

    PubMed  CAS  Google Scholar 

  • Stark H, Dube P, Lührmann R, Kastner B (2001) Arrangement of RNA and proteins in the spliceosomal U1 small nuclear ribonucleoprotein particle. Nature 409: 539–542

    PubMed  CAS  Google Scholar 

  • Staros JV, Kotite NJ, Cunningham LW (1992) Membrane-impermeant cross-linking reagents for structural and functional analyses of platelet membrane glycoproteins. Methods Enzymol 215: 403–419

    PubMed  CAS  Google Scholar 

  • Stein T, Vater J, Kruft V et al. (1994) Detection of 4’-phosphopantetheine at the thioester binding site for L-valine of gramicidine S synthetase 2. FEBS Lett 340: 39–44

    PubMed  CAS  Google Scholar 

  • Stein T, Vater J, Kruft V et al. (1996) The multiple carrier model of non-ribosomal peptide biosynthesis at modular multienzymatic templates. J Biol Chem 271: 15428–15435

    PubMed  CAS  Google Scholar 

  • Stöffler G, Stöffler-Meilicke M (1985) Immuno electron microscopy on Escherichia coli ribosomes. In: Hardesty B, Kramer G (eds) Structure, function and genetics of ribosomes. Springer, Berlin Heidelberg New York, pp 28–46

    Google Scholar 

  • Stoller G, Rücknagel KP, Nierhaus KH, Schmid FX, Fischer G, Rahfeld J-U (1995) A ribosome-associated peptidyl prolyl cis/trans isomerase identified as the trigger factor. EMBO J 14: 4939–4948

    PubMed  CAS  Google Scholar 

  • Sturtevant JM (1994) The thermodynamic effects of protein mutations. Curr Opin Struct Biol 4: 69–78

    CAS  Google Scholar 

  • Sussman JL, Abola EE, Lin D, Jiang J, Manning NO, Prilusky J (1999) The protein data bank; bridging the gap between the sequence and 3D structure world. Genetica 106: 149158

    Google Scholar 

  • Sutton BJ, Sohi MK (1994) Crystallisation of membrane proteins for X-ray analysis. Methods Mol Biol 27: 1–18

    PubMed  CAS  Google Scholar 

  • Sytnik A, Vladimirov S, Jia Y, Li L, Cooperman BS, Hochstrasser RM (1999) Peptidyl transferase center activity observed in single molecules. J Mol Biol 285: 49–54

    PubMed  CAS  Google Scholar 

  • Takahashi H, Nakanishi T, Kami K, Arata Y, Shimada I (2000) A novel NMR method for determining the interfaces of large protein-protein complexes. Nat Struct Biol 7: 220–223

    PubMed  CAS  Google Scholar 

  • Tarr GE, Beecher JF, Bell M, McKean D (1978) Polyquaternary amines prevent peptide loss from sequenators. Anal Biochem 84: 822–827

    Google Scholar 

  • Thiede B, Wittmann-Liebold B, Bienert M, Krause E (1995) MALDI-MS for C-terminal sequence determination of peptides and proteins degraded by carboxypeptidase Y and P. FEBS Lett 357: 65–69

    PubMed  CAS  Google Scholar 

  • Thomas PJ, Qu B-H, Pedersen PL (1995) Defective protein folding as a basis of human disease. Trends Biochem Sci 20: 456–459

    PubMed  CAS  Google Scholar 

  • Tiselius A (1937) A new apparatus for electrophoretic analy- sis of colloidal mixtures. Trans Faraday Soc 33: 524–531

    CAS  Google Scholar 

  • Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76: 4350–4354

    PubMed  CAS  Google Scholar 

  • Turner GA (1992) N-glycosylation of serum proteins in disease and its investigation using lectins. Clin Chim Acta 208: 149–171

    PubMed  CAS  Google Scholar 

  • Twerenbold D, Vuilleumier JL, Gerber D, Tadsen A, Brandt B von der, Gillevet PM (1996) Detection of single macromolecules using a cryogenic particle detector coupled to a biopolymer mass spectrometer. Appl Phys Lett 68: 3503–3505

    CAS  Google Scholar 

  • Urlaub H, Kruft V, Bischof O, Müller E-C, Wittmann-Liebold B (1995) Protein-rRNA binding features and their functional effects in ribosomes as determined by cross-linking studies. EMBO J 14: 4578–4588

    PubMed  CAS  Google Scholar 

  • Utkin YN, Tsetlin VI, Hucho F (2000) Structural organization of nicotinic acetylcholine receptors. Membr Cell Biol 13: 143–164

    PubMed  Google Scholar 

  • Vanbogelen RA, Sankar P, Clark RL, Bogan JA, Neidhardt FC (1993) The gene-protein data base of Escherichia coli, edn 5. Electrophoresis 13: 1014–1054

    Google Scholar 

  • VanLook MS, Agrawal RK, Gabashvili IS, Qi L, Frank J, Harvey SC (2000) Movement of the decoding region of the 16 S ribosomal RNA accompanied with tRNA translocation. J Mol Biol 304: 507–515

    Google Scholar 

  • Villafranca JJ (ed) (1990) Current research in protein chemistry: techniques, structure, and function. Academic Press, New York

    Google Scholar 

  • Volkmann N, Hottentrager S, Hansen HA et al. (1990) Characterization and preliminary crystallographic studies on large ribosomal subunits from Thermus thermophilus. J Mol Biol 216: 239–241

    PubMed  CAS  Google Scholar 

  • Vorm O, Roepstorff P, Mann M (1994) Matrix surfaces made by fast evaporation yield improved resolution and very high sensitivity in MALDI-TOE Anal Chem 66: 3281–3287

    CAS  Google Scholar 

  • Wadzak J, Burkhardt N, Junemann R et al. (1997) Direct localization of the tRNAs within the elongating ribosome by near neutron scattering (proton-spin contrast-variation). J Mol Biol 266: 343–356

    Google Scholar 

  • Wang Y, Fiol CJ, DePaoli-Roach AA, Bell AW, Hermodson MA, Roach PJ (1988) Identification of phosphorylation sites in peptides using a gas-phase sequencer. Anal Biochem 174: 537–547

    PubMed  CAS  Google Scholar 

  • Weber G, Brocek P (1999) Recent developments in preparative free flow isoelectric focusing. Electrophoresis 19: 1649–1653

    Google Scholar 

  • Weber K, Pringle JR, Osborn M (1972) Measurements of molecular weights by electrophoresis in SDS-acrylamide gel. Methods Enzymol 26: 3–27

    PubMed  CAS  Google Scholar 

  • Weichsel A, Montfort WR (1995) Ligand-induced distortion of an active site in thymidylate synthase upon binding anticancer drug 1843U89. Nature Struct Biol 2: 1095–1101

    PubMed  CAS  Google Scholar 

  • Weiss S (1999) Fluorescence spectroscopy of single biomolecules. Science 283: 1676–1683

    PubMed  CAS  Google Scholar 

  • Westermann P, Benndorf R, Lutsch G, Bielka H, Nygard O (1985) Arrangement of eukaryotic initiation factor 3 and messenger RNA within preinitiation complexes. In: Hardesty B, Kramer G (eds) Structure, function and genetics of ribosomes. Springer, Berlin Heidelberg New York, pp 642–657

    Google Scholar 

  • Westermeier R (1993) Electrophoresis in practice. A guide to theory and practice. Verlag Chemie, Weinheim

    Google Scholar 

  • Wettenhall REH, Aebersold RH, Hood LE (1991) Solid-phase sequencing of 32P-labeled phosphopeptides at picomole and subpicomole levels. Methods Enzymol 201: 186–199

    PubMed  CAS  Google Scholar 

  • Wheeler SF, Harvey DJ (2000) Negative ion mass spectrometry of sialylated carbohydrates: discrimination of Nacetylneuraminic acid linkages by MALDI-TOF and ESITOF mass spectrometry. Anal Chem 72: 5027–5039

    PubMed  CAS  Google Scholar 

  • Wilkins MR, Sanchez J-C, Gooley AA et al. (1996) Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it. Biotechnol Genet Eng Rev 13: 19–50

    PubMed  CAS  Google Scholar 

  • Williams RJP (1993) Protein dynamics studied by NMR. Eur Biophys J 21: 393–401

    CAS  Google Scholar 

  • Wilm M, Shevchenko A, Houthaeve T et al. (1996) Femtomole sequencing of proteins from polyacrylamide gels by nano-electrospray mass spectrometry. Nature 379: 466469

    Google Scholar 

  • Wittmann HG (1976) The Seventh Sir Hans Krebs Lecture, structure, function and evolution of ribosomes. Eur J Biochem 61: 1–13

    PubMed  CAS  Google Scholar 

  • Wittmann-Liebold B (1992) High sensitive protein analysis. Pure Appl Chem 64: 537–543

    CAS  Google Scholar 

  • Wittmann-Liebold B, Ashman K (1985) On line detection of amino acid derivatives released by automated Edman degradation of polypeptides. In: Tschesche H (ed) Modern methods in protein chemistry. deGruyter, Berlin, pp 303–327

    Google Scholar 

  • Wold F (1981) In vivo modification of proteins. Annu Rev Biochem 50: 783–814

    PubMed  CAS  Google Scholar 

  • Wollenberger U, Schubert F, Pfeiffer D, Scheller FW (1993) Enhancing biosensor performance using multienzyme systems. Trends Biotechnol 11: 255–262

    PubMed  CAS  Google Scholar 

  • Woodbury CP jr, Hippel PH von (1983) On the determinations of deoxyribonucleic acid-protein interaction parameters using the nitrocellulose filter-binding assay. Biochemistry 22: 4730–4737

    PubMed  CAS  Google Scholar 

  • Woodgett JR (1991) Use of synthetic peptides mimicking phosphorylation sites for affinity purification of protein-serine kinases. Methods Enzymol 200: 169–178

    PubMed  CAS  Google Scholar 

  • Wüthrich K (1989) Determination od three-dimensional protein structure in solution by nuclear magnetic resonance. An overview. Methods Enzymol 177: 125–131

    PubMed  Google Scholar 

  • Wurzel C, Wittmann-Liebold B (2000) In: Jollès P, Jörnvall H (eds) Proteomics in functional genomics. Birkhäuser, Basel Berlin

    Google Scholar 

  • Yanagida T, Esaki S, Iwane AH et al. (2000) Single-motor mechanisms and models of the myosin motor. Philos Trans R Soc Lond B Biol Sci 355: 441–447

    PubMed  CAS  Google Scholar 

  • Yates III JR (2000) Mass spectrometry, from genomics to proteomics. Trends Genet 16: 5–8

    PubMed  CAS  Google Scholar 

  • Yates III JR, Carmack E, Hays L, Link AJ, Eng JK (1999) Automated protein identification using microcolumn liquid chromatography-tandem mass spectrometry. Methods Mol Biol 112: 553–569

    PubMed  CAS  Google Scholar 

  • Yeh E, Gustafson K, Boulianne GL (1995) Green fluorescent protein as a vital marker and reporter gene expression in Drosophila. Proc Natl Acad Sci USA 92: 7036–7040

    PubMed  CAS  Google Scholar 

  • Yonath A, Leonhard KR, Wittmann HG (1987) A tunnel in the large ribosomal subunit revealed by three-dimensional image reconstruction. Science 236: 813–816

    PubMed  CAS  Google Scholar 

  • Zeindl-Eberhart E, Jungblut P, Otto A, Rabes HM (1994) Identification of tumor-associated protein variants during hepatocarcinogenesis in the rat. J Biol Chem 269: 14589–14594

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Westermann, P., Wittmann-Liebold, B. (2003). Enzym- und Proteinanalytik. In: Ganten, D., Ruckpaul, K. (eds) Grundlagen der Molekularen Medizin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-07588-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-07588-3_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-07589-0

  • Online ISBN: 978-3-662-07588-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics