Skip to main content

Genomanalyse und Gendiagnostik

  • Chapter
  • 287 Accesses

Zusammenfassung

Eine Revolution ist im Gang, eine Revolution auf dem Gebiet der Medizin. Neue Erkenntnisse in der Molekularen Genetik und speziell die Entwicklungen in der Genomforschung führen zu bisher nicht da gewesenen Fertigkeiten und Perspektiven. Dabei finden diese rasanten Veränderungen parallel auf 3 Ebenen statt:

  1. 1.

    Der hohe Erkenntnisgewinn aus den Untersuchungen und methodischen Entwicklungen der Genomanalyse vergrößert das grundlegende, das molekulare Verständnis biologischer Vorgänge und ihres Nachweises und führt damit zu direkten Verbesserungen in medizinischen Anwendungen.

  2. 2.

    Als Ergebnis der Gentechnologie werden neue Methoden zur Verfügung stehen, die umwälzende Behandlungsformen ermöglichen.

  3. 3.

    Zumindest ein Teil der biomedizinischen Forschung wandelt sich weg von der Untersuchung von Einzelaspekten in einem relativ kleinen Rahmen und hin zu breit angelegten Projekten zur Analyse gesamtzellulärer Zusammenhänge, ein Vorgang der auch ein Umdenken der betroffenen Wissenschaftler erfordert.

Die resultierende Kenntnis komplexer Zusammenhänge hat wiederum unmittelbare Auswirkungen auf das Verständnis von Krankheiten und den Wegen zu ihrer Behandlung. Dieser Wandel im wissenschaftlichen Arbeiten und der Forschungskonzeption begann mit der Genomforschung und setzt sich mittlerweile in der Projektierung und Abwicklung derjenigen Studien fort, die sich daran anschließen.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Abbott A (2000) Manhattan versus Reykjavik. Nature 406: 340–342

    PubMed  CAS  Google Scholar 

  • Adams MD, Kerlavage AR, Fleischmann RD et al. (1995) Initial assessment of human gene diversity and expression patterns based upon 83 million nucleotides of cDNS sequence. Nature [Suppl] 377: 3–174

    CAS  Google Scholar 

  • Adams MD, Celniker SE, Holt RA et al. (2000) The genome sequence of Drosophila melanogaster. Science 287: 2185–2195

    PubMed  Google Scholar 

  • Ahrendt SA, Halachmi S, Chow II et al. (1999) Rapid sequence analysis in primary lung cancer using an oligonucleotide probe array. Proc Natl Acad Sci USA 96: 7382–7387

    PubMed  CAS  Google Scholar 

  • Ajioka JW, Smoller DA, Jones RW. (1991) Drosophila genome project: one-hit coverage in yeast artificial chromosomes. Chromosoma 100: 495–509

    Google Scholar 

  • Anderson S, Bankier AT, Barrell BG et al. (1981) Sequence and organization of the human mitochondrial genome. Nature 290: 457–465

    PubMed  CAS  Google Scholar 

  • Ashworth LK, Batzer MA, Brandriff B et al. (1995) An integrated metric physical map of human chromosome 19. Nat Genet 11: 422–447

    PubMed  CAS  Google Scholar 

  • Baer R, Bankier AT, Biggin MD et al. (1984) DNA sequence and expression of the B95–8 Epstein-Barr virus genome. Nature 310: 207–211

    PubMed  CAS  Google Scholar 

  • Barnes WM (1994) PCR amplification of up to 35-kb DNS with high fidelity and yield from lambda bacteriophage templates. Proc Natl Acad Sci USA 91: 2216–2220

    PubMed  CAS  Google Scholar 

  • Bassette Jr DE, Boguski MS, Hieter P (1996) Yeast genes and human disease. Nature 379: 589–599

    Google Scholar 

  • Beier M, Hoheisel JD (2000) Production by quantitative photolithographic synthesis of individually quality-checked DNA microarrays. Nucleic Acids Res 28: e11

    Google Scholar 

  • Bolivar F, Rodriguez RL, Greene PJ, Betlach MC, Heyneker HL, Boyer HW (1977) Construction and characterization of new cloning vehicles. II. A multipurpose cloning system. Gene 2: 95–113

    Google Scholar 

  • Brenner S, Elgar G, Sandford R, Macrae M, Venkatesh B, Aparicio S (1993) Characterization of the pufferfish (Fugu) genome as a compact model vertebrate genome. Nature 366: 265–268

    PubMed  CAS  Google Scholar 

  • Brock TD, Freeze H (1969) Thermus aquaticus gen. n. and sp. n, a non sporulating extreme thermophile. J Bacteriol 98: 289–297

    Google Scholar 

  • Buckler AJ, Chang DD, Graw SL et al. (1991) Exon amplification: a strategie to isolate mammalian genes based on RNS splicing. Proc Natl Acad Sci USA 88: 4005–4009

    PubMed  CAS  Google Scholar 

  • Burke DT, Carle GF, Olson MV (1987) Cloning of large segments of exogenous DNS into yeast by means of artificial chromosome vectors. Science 236: 806–812

    PubMed  CAS  Google Scholar 

  • Canard B, Sarfati RS (1994) DNS polymerase fluorescent substrates with reversible 3’-tags. Gene 148: 1–6

    PubMed  CAS  Google Scholar 

  • Chamberlain JS, Gibbs RA, Ranier JE, Nguyen PN, Caskey CT (1988) Deletion screening of the Duchenne muscular dystrophy locus via multiplex DNS amplification. Nucleic Acids Res 16: 11141–11156

    PubMed  CAS  Google Scholar 

  • Chee MS, Bankier AT, Beck S et al. (1990) Analysis of the protein-coding content of the sequence of human cytomegalovirus strain AD169. Curr Top Microbiol Immunol 154: 125–169

    PubMed  CAS  Google Scholar 

  • Chee M, Yang R, Hubbell E et al. (1996) Accessing genetic information with high-density DNS arrays. Science 274: 610–614

    PubMed  CAS  Google Scholar 

  • Chumakov IM, Rigault P, Le Gall I et al. (1995) A YAC contig map of the human genome. Nature 377: 175–297

    PubMed  CAS  Google Scholar 

  • Clarke L, Carbon J (1976) A colony bank containing synthetic ColE1 hybrid plasmids representative of the entire E. coli genome. Cell 9: 91–99

    PubMed  CAS  Google Scholar 

  • Cotton RGH (1993) Current methods of mutation detection. Mutat Res 285: 125–144

    PubMed  CAS  Google Scholar 

  • Cox DR, Burmeister M, Price ER, Kim S, Myers RM (1990) Radiation hybrid mapping: a somatic cell genetic method for constructing high-resolution maps of mammalian chromosomes. Science 250: 245–250

    PubMed  CAS  Google Scholar 

  • Craig A, Nizetic D, Hoheisel JH, Zehetner G, Lehrach GH (1990) Ordering of cosmid clones covering the herpes simplex virus type I (HSV-I) genome: a test case for fingerprinting by hybridisation. Nucleic Acids Res 18: 2653–2660

    PubMed  CAS  Google Scholar 

  • Cremer T, Landegent J, Bruckner A et al. (1986) Detection of chromosome aberrations in the human interphase nucleus by visualization of specific target DNSs with radioactive and non-radioactive in situ hybridization techniques, diagnosis of trisomy 18 with probe L1.84. Hum Genet 74: 346–352

    PubMed  CAS  Google Scholar 

  • Cremer T, Lichter P, Borden J, Ward DC, Manuelidis L (1988) Detection of chromosome aberrations in metaphase and interphase tumor cells by in situ hybridization using chromosome specific library probes. Hum Genet 80: 235–246

    PubMed  CAS  Google Scholar 

  • Cross SH, Bird AP (1995) CpG islands and genes. Curr Opin Genet Dev 5: 309–314

    PubMed  CAS  Google Scholar 

  • De Martinville B, Wyman AR, White R, Francke U (1982) Assignment of first random restriction fragment length polymorphism (RFLP) locus (D14S1) to a region of human chromosome 14. Am J Hum Genet 34: 216–226

    PubMed  Google Scholar 

  • Devine SE, Boeke JD (1994) Efficient integration of artificial transposons into plasmid targets in vitro: a useful tool for DNS mapping, sequencing and genetic analysis. Nucleic Acids Res 22: 3765–3772

    PubMed  CAS  Google Scholar 

  • Dib C, Fauré S, Fizames C et al. (1996) A comprehensive genetic map of the human genome based on 5,264 micro-satellites. Nature 380: 152–154

    PubMed  CAS  Google Scholar 

  • Drmanac S, Stavropoulos NA, Labat I et al. (1996) Gene-representing cDNA clusters defined by hybridisation of 57,419 clones from infant brain libraries with short oligonucleotide probes. Genomics 37: 29–40

    PubMed  CAS  Google Scholar 

  • Dunham I, Shimizu N, Roe BA et al. (1999) The DNA se- quence of human chromosome 22. Nature 402: 489–495

    PubMed  CAS  Google Scholar 

  • Duyk JM, Kim S, Myers RM, Cox DR (1990) Exon trapping: a genetic screen to identify candidate transcribed sequences in cloned mammalian genomic DNS. Proc Natl Acad Sci USA 87: 8995–8999

    PubMed  CAS  Google Scholar 

  • Eckert KA, Kunkel TA (1991) The fidelity of DNS polymerases used in PCR. In: McPherson MJ, Quirke P, Taylor GR (eds) Polymerase chain reaction: a practical approach. IRL Press, Oxford, pp 227–246

    Google Scholar 

  • Efstratiadis A, Kafatos FC, Maxam AM, Maniatis T (1976) Enzymatic in vitro synthesis of globin genes. Cell 7: 279–288

    PubMed  CAS  Google Scholar 

  • Ermantraut E, Köhler JM, Schulz T, Wohlfart K, Wölfl S (1997) Verfahren zur Herstellung von strukturierten, selbstorganisierten molekularen Monolagen einzelner molekularer Spezies, insbesondere von Substanzbibliotheken. Deutsches Patent DE 197 06 570 Cl

    Google Scholar 

  • Fleischmann RD, Adams MD, White O et al. (1995) Wholegenome random sequencing and assembly of Haemophilus influenzae Rd. Science 269: 496–512

    PubMed  CAS  Google Scholar 

  • Francis F, Zehetner G, Hoglund M, Lehrach H (1994) Construction and preliminary analysis of the ICRF human Pl library. Genet Anal Tech Appl 11: 148–157

    PubMed  CAS  Google Scholar 

  • Fraser CM, Gocayne JD, White 0 et al. (1995) The minimal gene complement of Mycoplasma genitalium. Science 270: 397–403

    PubMed  CAS  Google Scholar 

  • Freeman GJ, Huang AS (1981) Mapping temperature-sensitive mutants of vesicular stomatitis virus by RNS hetero-duplex formation. J Gen Virol 57: 103–117

    PubMed  CAS  Google Scholar 

  • Ganguly A, Prockop DJ (1990) Detection of single base mutations by reaction of DNS heteroduplexes with a water-soluble carbodiimide followed by primer extension: application to products from the polymerase chain reaction. Nucleic Acids Res 18: 3933–3939

    PubMed  CAS  Google Scholar 

  • Gill P, Ivanov PL, Kimpton C et al. (1994) Identification of the remains of the Romanov family by DNS analysis. Nat Genet 6: 130–135

    PubMed  CAS  Google Scholar 

  • Goffeau A, Barrell BG, Bussey H et al. (1996) Life with 6000 genes. Science 274: 546–567

    PubMed  CAS  Google Scholar 

  • Gress TM, Hoheisel JD, Lennon GG, Zehetner G, Lehrach H (1992) Hybridization fingerprinting of high density cDNS-library arrays with cDNS pools derived from whole tissues. Mamm Genomes 3: 609–619

    CAS  Google Scholar 

  • Gubler U, Hoffman BJ (1983) A simple and very efficient method for generating cDNS libraries. Gene 25: 263–269

    PubMed  CAS  Google Scholar 

  • Gut IG, Beck S (1995) A procedure for selective DNS alkylation and detection by mass spectrometry. Nucleic Acids Res 23: 1367–1373

    PubMed  CAS  Google Scholar 

  • Haas S, Vingron M, Poustka A, Wiemann S (1998) Primer design for large scale sequencing. Nucleic Acids Res 26: 3006–3012

    PubMed  CAS  Google Scholar 

  • Haase AT, Retzel EF, Staskus KA (1990) Amplification and detection of lentiviral DNS inside cells. Proc Natl Acad Sci USA 87: 4971–4975

    PubMed  CAS  Google Scholar 

  • Harding JD, Keller RA (1992) Single-molecule detection as an approach to rapid DNS sequencing. Trends Biotechnol 10: 55–57

    PubMed  CAS  Google Scholar 

  • Hattori M, Fujiyama A, Taylor TD et al. (2000) The DNA se- quence of human chromosome 21. Nature 405: 311–319

    PubMed  CAS  Google Scholar 

  • Heng HH, Squire J, Tsui LC (1992) High-resolution mapping of mammalian genes by in situ hybridization to free chromatin. Proc Natl Acad Sci USA 89: 9509–9513

    PubMed  CAS  Google Scholar 

  • Henikoff S (1984) Unidirectional digestion with exonuclease III creates targeted breakpoints for DNS sequencing. Gene 28: 351–359

    PubMed  CAS  Google Scholar 

  • Hintsche R, Paeschke M, Uhlig A, Seitz R (1997) In: Scheller FW, Schaubert F, Fedrowitz J (eds) Frontiers in biosensors: fundamental aspects. Birkhäuser, Stuttgart, pp 267–283

    Google Scholar 

  • Hoheisel JD (1994) Application of hybridization techniques to genome mapping and sequencing. Trends Genet 10: 79–83

    PubMed  CAS  Google Scholar 

  • Hoheisel JD, Vingron M (1998) DNS-Chip Technologie. Biospektrum 6: 17–20

    Google Scholar 

  • Hoheisel JD, Maier E, Mott R et al. (1993) High-resolution cos-mid and P1 maps spanning the 14-Mbp genome of the fission yeast Schizosaccharomyces pombe. Cell 73: 109–120

    PubMed  CAS  Google Scholar 

  • Hoheisel JD, Maier E, Meier-Ewert S, Lehrach H (1993) Relational genome analysis based on hybridisation techniques. Ann Biol Clin 50: 827–829

    Google Scholar 

  • Hubank M, Schatz DG (1994) Identifying differences in mRNS expression by representational difference analysis of cDNS. Nucleic Acids Res 22: 5640–5648

    PubMed  CAS  Google Scholar 

  • Hudson TJ, Stein LD, Gerety SS et al. (1995) An STS-based map of the human genome. Science 270: 1945–1954

    PubMed  CAS  Google Scholar 

  • Huntington’s Disease Collaborative Research Group (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s Disease chromosomes. Cell 72: 971–983

    Google Scholar 

  • Ioannou PA, Amemiya CT, Garnes J et al. (1994) A new bacteriophage P1-derived vector for the propagation of large human DNS fragments. Nat Genet 6: 84–89

    PubMed  CAS  Google Scholar 

  • Kallioniemi A, Kallioniemi OP, Sudar D et al. (1992) Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science 258: 818–821

    PubMed  CAS  Google Scholar 

  • Keen J, Lester D, Inglehearn C, Curtis A, Bhattacharya S (1991) Rapid detection of single base mismatches as heteroduplexes on hydrolink gels. Trends Genet 7: 5

    PubMed  CAS  Google Scholar 

  • Khan J, Wei JS, Ringner M. (2001) Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nat Med 7: 673–679

    PubMed  CAS  Google Scholar 

  • Komminoth PMD, Long AA. (1995) In situ polymerase chain reaction-methodologie, applications and nonspecific pathways. In: Boehringer Mannheim (ed) PCR application manual. Boehringer Mannheim, Mannheim, pp 97–106

    Google Scholar 

  • Korn B, Sedlacek Z, Manca A. (1992) A strategy for the selection of transcribed sequences in the Xq28 region. Hum Mol Genet 1: 235–242

    PubMed  CAS  Google Scholar 

  • Landegent J, Jansen E, Wal N in de, Dirks RW, Baas F, Ploeg M van der (1987) Use of whole cosmid cloned genomic sequences for chromosomal localization by non-radioactive in situ hybridization. Hum Genet 77: 366–370

    CAS  Google Scholar 

  • Landegren U, Kaiser R, Sanders J, Hood L (1988) A ligasemediated gene detection technique. Science 241: 1077–1080

    PubMed  CAS  Google Scholar 

  • Larin Z, Monaco AP, Meier-Ewert S, Lehrach H (1993) Construction and characterization of yeast artificial chromosome libraries from the mouse genome. Methods Enzymol 255: 623–637

    Google Scholar 

  • Lehrach H, Drmanac R, Hoheisel JD. (1990) Hybridisation fingerprinting in genome mapping and sequencing. In: Davies KE, Tilghman S (eds) Genome analysis, vol 1: Genetic and physical mapping. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 39–81

    Google Scholar 

  • Leung DW, Chen E, Goeddel DV (1989) A method for random mutagenesis of a defined DNS segment using a modified polymerase chain reaction. Technique 1: 11–15

    Google Scholar 

  • Liang P, Pardee AB (1995) Recent advances in differential display. Curr Opin Immunol 7: 274–280

    PubMed  CAS  Google Scholar 

  • Lichter P, Tang CC, Call K et al. (1990) High resolution mapping of human chromosome 11 by in situ hybridization with cosmid clones. Science 247: 64–69

    PubMed  CAS  Google Scholar 

  • Lichter P, Joos S, Bentz M, Lampel S (2000) Comparative genomic hybridization:uses and limitations. Semin Hematol 37: 348–357

    PubMed  CAS  Google Scholar 

  • Lieb JD, Liu X, Botstein D, Brown PO (2001) Promotor-specific binding of Rap revealed by genome-wide maps of protein-DNA association. Nat Genet 28: 327–334

    PubMed  CAS  Google Scholar 

  • Lin J, Qi R, Aston C et al. (1999) Whole-genome shotgun optical mapping of Deinococcus radiodurans. Science 285: 1558–1562

    PubMed  CAS  Google Scholar 

  • Lovett M, Kere J, Hinton LM (1991) Direct selection: a method for the selection of cDNSs encoded by large genomic regions. Proc Natl Acad Sci USA 88: 9628–9632

    PubMed  CAS  Google Scholar 

  • Lundberg KS, Shoemaker DD, Adams MW, Short JM, Sorge JA, Mathur EJ (1991) High fidelity amplification using a thermostable DNS polymerase isolated from Thermococcus furiosus. Gene 108: 1–6

    PubMed  CAS  Google Scholar 

  • Manoir S du, Kallioniemi OP, Lichter P et al. (1995) Hardware and sofware requirements for quantitative analysis of comparative genomic hybridization. Cytometry 19: 4–9

    Google Scholar 

  • Maxam AM, Gilbert W (1977) A new method for sequencing DNS. Proc Natl Acad Sci USA 74: 560–564

    PubMed  CAS  Google Scholar 

  • Meier-Ewert S, Maier E, Ahmadi AR, Curtis J, Lehrach H (1993) An automated approach to generating expressed sequence catalogues. Nature 361: 375–376

    PubMed  CAS  Google Scholar 

  • Meier-Ewert S, Lange J, Gerst H et al. (1998) Comparative gene expression profiling by oligonucleotide fingerprinting. Nucleic Acids Res 26: 2216–2223

    PubMed  CAS  Google Scholar 

  • Melmer G, Buchwald M (1994) Screening cosmid libraries with oligonucleotides corresponding to splice-site consensus sequences. Genet Anal Tech Appl 11: 39–42

    PubMed  CAS  Google Scholar 

  • Monaco AP, Neve RL, Colletti-Feener C, Bertelson CJ, Kurnit DM, Kunkel LM (1986) Isolation of candidate cDNSs for portions of the Duchenne muscular dystrophy gene. Nature 323: 646–650

    PubMed  CAS  Google Scholar 

  • Mullis KB, Faloona FA (1987) Specific synthesis of DNS in vitro via a polymerase-catalysed chainreaction. In: Wu R (ed) Methods in enzymology, vol 155. Academic Press, San Diego, pp 335–350

    Google Scholar 

  • Nizetic D, Zehetner G, Monaco AP, Gellen L, Young BD, Lehrach H (1991) Construction, arraying and high density screening of large insert libraries of human chromosomes X and 21: their potential use as reference libraries. Proc Natl Acad Sci USA 88: 3233–3237

    PubMed  CAS  Google Scholar 

  • Oliver SG, Aart QJM van der, Agostoni-Carbone ML et al. (1992) The complete DNA sequence of yeast chromosome III. Nature 357: 38–46

    PubMed  CAS  Google Scholar 

  • Olson M, Hood L, Cantor C, Botstein D (1989) A common language for physical mapping of the human genome. Science 245: 1434–1435

    PubMed  CAS  Google Scholar 

  • Orita M, Iwahana H, Kanazawa H, Hayashi K, Sekiya T (1989) Detection of polymorphisms of human DNS by gel electrophoresis as single-strand conformation polymorphisms. Proc Natl Acad Sci USA 86: 2766–2770

    PubMed  CAS  Google Scholar 

  • Pääbo S (1990) Amplifying ancient DNS. In: Innis MA, Gel-fand DH, Sninsky JJ (eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego, pp 159–166

    Google Scholar 

  • Parra, I, Windle B (1993) High resolution visual mapping of stretched DNS by fluorescent hybridization. Nat Genet 5: 17–21

    PubMed  CAS  Google Scholar 

  • Pastinen T, Raitio M, Lindroos K, Tainola P, Peltonen L, Syvänen AC (2000) A system for specific, high-throughput genotyping by allele-specific primer extension on micro-arrays. Genome Res 10: 1031–1042

    PubMed  CAS  Google Scholar 

  • Pease AC, Solas D, Sullivan EJ, Cronin MT, Holmes CP, Fodor SPA (1994) Light-generated oligonucleotide arrays for rapid DNS sequence analysis. Proc Natl Acad Sci USA 91: 5022–5026

    PubMed  CAS  Google Scholar 

  • Pierce JC, Sauer B, Sternberg N (1992) A positive selection vector for cloning high molecular weight DNS by the bacteriophage P1 system: improved cloning efficiency. Proc Natl Acad Sci USA 89: 2056–2060

    PubMed  CAS  Google Scholar 

  • Pinkel D, Straume T, Gray JW (1986) Cytogenetic analysis using quantitative, high-sensitivity, fluorescence hybridization. Proc Natl Acad Sci USA 83: 2934–2938

    PubMed  CAS  Google Scholar 

  • Pinkel D, Segraves R, Sudar D et al. (1998) High resolution analysis of DNS copy number variation using comparative genomic hybridization to microarrays. Nat Genet 20: 207–211

    PubMed  CAS  Google Scholar 

  • Pollack JR, Perou CM, Alizadeh AA et al. (1999) Genomewide analysis of DNS copy-number changes using cDNS microarrays. Nat Genet 23: 41–46

    PubMed  CAS  Google Scholar 

  • Rich A, Nordheim A, Wang AH-J (1984) The chemistry and biology of left-handed Z-DNS. Annu Rev Biochem 53: 791–846

    PubMed  CAS  Google Scholar 

  • Roberts RG, Bobrow M, Bentley DR (1992) Point mutations in the dystrophin gene. Proc Natl Acad Sci USA 89: 2331–2335

    PubMed  CAS  Google Scholar 

  • Ronaghi M, Uhlen M, Nyren PA (1998) A sequencing method based on real-time pyrophosphate. Science 281: 363–365

    PubMed  CAS  Google Scholar 

  • Ross J, Aviv H, Scolnick E, Leder P (1972) In vitro synthesis of DNS complementary to puryfied rabbit globin mRNS. Proc Natl Acad Sci USA 69: 264–268

    PubMed  CAS  Google Scholar 

  • Rychlik W, Rhoads RE (1989) A computer program for choosing optimal oligonucleotides for filter hybridization, sequencing and in vitro amplification of DNS. Nucleic Acids Res 17: 8543–8551

    PubMed  CAS  Google Scholar 

  • Saiki RK, Gelfand DH, Stoffel S. (1988) Primer-directed enzymatic amplification of DNS with a thermostable DNS polymerase. Science 239: 487–491

    PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning, a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Sanger F, Air GM, Barre11 BG. (1977) Nucleotide sequence of bacteriophage phi X174 DNA. Nature 265: 687–695

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNS sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74: 5463–5467

    PubMed  CAS  Google Scholar 

  • Sanger F, Coulson AR, Hong GF, Hill DF, Petersen GB (1982) Nucleotide sequence of bacteriophage lambda DNA. J Mol Biol 162: 729–773

    PubMed  CAS  Google Scholar 

  • Sasaki YF, Ayusawa D, Oishi M (1994) Construction of a normalized cDNS library by introduction of a semi-solid mRNS-cDNS hybridization system. Nucleic Acids Res 22: 987–992

    PubMed  CAS  Google Scholar 

  • Schaefer BC (1995) Revolutions in rapid amplification of cDNS ends: new strategies for polymerase chain reaction cloning of full-length cDNS ends. Anal Biochem 227: 255–273

    PubMed  CAS  Google Scholar 

  • Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene expression patterns with a complementary DNS microarray. Science 270: 467–470

    PubMed  CAS  Google Scholar 

  • Scholler P, Karger AE, Meier-Ewert S, Lehrach H, Delius H, Hoheisel JD (1995) Fine-mapping of shotgun template-libraries; an efficient strategy for the systematic sequencing of genomic DNS. Nucleic Acids Res 23: 3842–3849

    PubMed  CAS  Google Scholar 

  • Sheffield VC, Cox DR, Lerman LS, Myers RM (1989) Attachment of a 40-base-pair G+C-rich sequence ( GC-clamp) to genomic DNS fragments by the polymerase chain reaction results in improved detection of single-base changes. Proc Natl Acad Sci USA 86: 232–236

    Google Scholar 

  • Shizuya H, Birren B, Kim U-J et al. (1992) Cloning and stable maintenance of 300-kilobase-pair fragments of human DNS in Escherichia coli using an F-factor-based vector. Proc Natl Acad Sci USA 89: 8794–8797

    PubMed  CAS  Google Scholar 

  • Shoemaker DD, Lashkari DA, Morris D, Mittmann M, Davies RW (1996) Quantitative phenotypic analysis of yeast deletion mutants using highly parallel molecular bar-coding strategy. Nat Genet 14: 450–456

    PubMed  CAS  Google Scholar 

  • Smith CL, Cantor CR (1987) Purification, specific fragmentation, and separation of large DNS molecules. Methods Enzymol 155: 449–467

    PubMed  CAS  Google Scholar 

  • Solinas-Toldo S, Lampel S, Stilgenbauer S et al. (1997) Matrix-based comparative genomic hybridization: biochips to screen for genomic imbalances. Genes Chromosoms Cancer 20: 399–407

    CAS  Google Scholar 

  • Solokov BP (1989) Primer extension technique for the detection of single nucleotide in genomic DNS. Nucleic Acids Res 18: 3671

    Google Scholar 

  • Southern EM (1975) Detection of specific sequences among DNS fragments separated by gel electrophoresis. J Mol Biol 98: 503–517

    PubMed  CAS  Google Scholar 

  • Southern EM (1996) International Patent PTO WO 93/22480

    Google Scholar 

  • Southern EM, Maskos U, Elder JK (1992) Analysing and comparing nucleic acid sequences by hybridisation to arrays of oligonucleotides: evaluation using experimental models. Genomics 13: 1008–1017

    PubMed  CAS  Google Scholar 

  • Stimpson DI, Hoijer JV, Hsieh W-T et al. (1995) Real-time detection of DNA hybridisation and melting on oligonucleotide arrays by using optical wave guides. Proc Natl Acad Sci USA 92: 6379–6383

    PubMed  CAS  Google Scholar 

  • The Arabidopsis Genome Intiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408: 796–815

    Google Scholar 

  • The C. elegans Sequencing Consortium (1998) Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282:2012–2018

    Google Scholar 

  • The Genome International Sequencing Consortium (2000) Initial sequencing and analysis of the human genome. Nature 409: 860–921

    Google Scholar 

  • Trask BJ, Pinkel D, Engh G van den (1989) The proximity of DNS sequences in interphase cell nuclei is correlated to genomic distance and permits ordering of cosmids spanning 250 kilobase pairs. Genomics 5: 710–717

    PubMed  CAS  Google Scholar 

  • Tugendreich S, Bassett DE Jr, McKusick VA, Boguski MS, Hieter P (1994) Genes conserved in yeast and humans. Hum Mol Genet 3: 1509–1517

    PubMed  CAS  Google Scholar 

  • Velculescu VE, Zhang L, Vogelstein B, Kinzler K (1995) Seri-

    Google Scholar 

  • al analysis of gene expression. Science 270:484–487 Venter JC, Adams MD, Myers EW. (2000) The sequence of the human genome. Science 291: 1304–1351

    Google Scholar 

  • Veres G, Gibbs RA, Scherer SE, Caskey CT (1987) The molecular basis of the sparse fur mouse mutation. Science 237: 415–417

    PubMed  CAS  Google Scholar 

  • Verma IM, Temple GF, Fan H, Baltimore D (1972) In vitro synthesis of DNS complementary to rabbit reticulocyte 10 S RNS. Nature N Biol 235: 163–167

    CAS  Google Scholar 

  • Wada A (1987) Automated high-speed DNA sequencing. Nature 325: 771–772

    PubMed  CAS  Google Scholar 

  • Wallace RB, Johnston MJ, Hirose T, Miyake T, Kawashima EH, Itakura K (1981) The use of synthetic oligonucleotides as hybridization probes. II. Hybridization of oligonucleotides of mixed sequence to rabbit B-globin DNS. Nucleic Acids Res 9: 879–895

    Google Scholar 

  • Wang DG, Fan JB, Siao CJ et al. (1998) Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science 280: 1077–1082

    PubMed  CAS  Google Scholar 

  • Welsh J, Chada K, Dalai SS, Chang R, Ralph D, McClelland MM (1992) Arbitrary primed PCR fingerprinting of RNS. Nucleic Acids Res 20: 4965–4970

    PubMed  CAS  Google Scholar 

  • Winzeler EA, Richards DR, Conway AR et al. (1998) Direct allelic variation scanning of the yeast genome. Science 281: 1194–1197

    PubMed  CAS  Google Scholar 

  • Yanisch-Perron C, Vieira J, Messing J (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequence of the M13mp18 and pUC19 vectors. Gene 33: 103–119

    PubMed  CAS  Google Scholar 

  • Ye S, Humphries S, Green F (1992) Allele specific amplifica- tion by tetra-primer PCR. Nucleic Acids Res 20: 1152

    PubMed  CAS  Google Scholar 

  • Yershov G, Barsky V, Belgovsky A. (1996) DNS analysis and diagnostics on oligonucleotide microchips. Proc Natl Acad Sci USA 93: 4913–4918

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Würtz, S., Hanke, J., Solinas-Toldo, S., Hoheisel, J.D. (2003). Genomanalyse und Gendiagnostik. In: Ganten, D., Ruckpaul, K. (eds) Grundlagen der Molekularen Medizin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-07588-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-07588-3_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-07589-0

  • Online ISBN: 978-3-662-07588-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics