Molekülmodelle und Modellmoleküle: Strukturanalyse großer biologischer Moleküle für die Medizin

  • Yves A. Muller
  • Udo Heinemann

Zusammenfassung

Die Molekulare Medizin handelt von Molekülen und ihren vielfältigen Funktionen im gesunden und kranken Organismus. Diese Funktionen sind eng an die genaue dreidimensionale Molekülstruktur geknüpft: Die große Mehrzahl der Proteine und Nukleinsäuren einer Zelle besitzen eine definierte räumliche Struktur, die auf der Ebene einzelner Atome exakt beschrieben werden kann. Ein wichtiger Teil dieser Struktur sind charakteristisch geformte Oberflächen mit diskreten biophysikalischen Eigenschaften wie elektrostatisches Potenzial, Hydrophobizität oder die Fähigkeit zur Ausbildung gerichteter, nichtkovalenter Wechselwirkungen (z. B. durch Wasserstoffbrücken) mit anderen Molekülen. Die Komplementarität dieser Oberflächen ist für die Interaktion zwischen Molekülen und damit die Ausprägung ihrer Funktionalität entscheidend.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Abola E, Kuhn P, Earnest T, Stevens RC (2000) Automation of X-ray crystallography. Nat Struct Biol 7: 973–977PubMedCrossRefGoogle Scholar
  2. Anderson JE, Ptashne M, Harrison SC (1987) Structure of the repressor-operator complex of bacteriophage 434. Nature 326: 846–852PubMedCrossRefGoogle Scholar
  3. Anfinsen C (1973) Principles that govern the folding of protein chains. Science 181: 223–230PubMedCrossRefGoogle Scholar
  4. Baker D (2000) A surprising simplicity to protein folding. Nature 405: 39–42PubMedCrossRefGoogle Scholar
  5. Baldwin J, Chothia C (1979) Hemoglobin: the structural changes related to ligand binding and its allosteric mechanism. J Mol Biol 129: 175–220PubMedCrossRefGoogle Scholar
  6. Baldwin RL, Rose GD (1999) Is protein folding hierarchic? II. Folding intermediates and transition states. Trends Biochem Sci 24: 26–33Google Scholar
  7. Ban N, Nissen P, Hansen J, Moore PB, Steitz TA (2000) The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. Science 289: 905–920PubMedCrossRefGoogle Scholar
  8. Banner DW, D’Arcy A, Janes W et al. (1993) Crystal structure of the soluble human 55 kd TNF receptor-human TNF/1 complex: implications for TNF receptor activation. Cell 73: 431–435PubMedCrossRefGoogle Scholar
  9. Baumgärtner KH (1830) Beobachtungen über die Nerven und das Blut. Groos, FreiburgGoogle Scholar
  10. Bernal JD, Crowfoot D (1934) X-ray photographs of crystalline pepsin. Nature 133: 794–795CrossRefGoogle Scholar
  11. Bernhardt R (1995) Cytochrome P450: structure, function, and generation of reactive oxygen species. Rev Physiol Pharmocol 127: 137–221CrossRefGoogle Scholar
  12. Bloch F (1946) Nuclear induction. Phys Rev 70:460–474 Blundell TL, Mizuguchi K (2000) Structural genomics: an overview. Prog Biophys Mol Biol 73: 289–295Google Scholar
  13. Böhm H-J, Klebe G, Kubinyi H (1996) Wirkstoffdesign. Spektrum Akademischer Verlag, Heidelberg Berlin, OxfordGoogle Scholar
  14. Boriack-Sjodin PA, Margarit SM, Bar-Sagi D, Kuriyan J (1998) The structural basis of the activation of Ras by Sos. Nature 394: 337–343PubMedCrossRefGoogle Scholar
  15. Böttcher C, Ludwig K, Herrmann A, Heel M van, Stark H (1999) Structure of influenza haemagglutinin at neutral and at fusogenic pH by electron cryo-microscopy. FEBS Letters 463: 255–259PubMedCrossRefGoogle Scholar
  16. Bragg WH, Bragg WL (1913) The structure of the diamond. Nature 91: 557CrossRefGoogle Scholar
  17. Branden C, Tooze J (1999) Introduction to protein structure, 2nd edn. Garland Publishing, New YorkGoogle Scholar
  18. Braun W, Wagner G, Wörgötter E, Vasâk M, Kägi JHR, Wüthrich K (1986) Polypeptide fold in the two metal clusters of metallothionein-2 by nuclear magnetic resonance in solution. J Mol Biol 187: 125–129PubMedCrossRefGoogle Scholar
  19. Brenner SE (2000) Target selection for structural genomics. Nature Struct Biol 7: 967–969PubMedCrossRefGoogle Scholar
  20. Brünger AT, Kuriyan J, Karplus M (1987) Crystallographic R-factor refinement by molecular dynamics. Science 235: 458–460PubMedCrossRefGoogle Scholar
  21. Bryngelson JD, Onuchic JN, Socci ND, Wolynes PG (1995) Funnels, pathways, and the energy landscape of protein folding: a synthesis. Proteins Struct Funct Genet 21: 167195Google Scholar
  22. Burley SK (2000) An overview of structural genomics. Nat Struct Biol 7: 932–934PubMedCrossRefGoogle Scholar
  23. Christendat D, Yee A, Dharamsi A et al. (2000) Structural proteomics of an archaeon. Nat Struct Biol 7:903–909 Clore GM, Gronenborn AM (1995) Three-dimensional structures of rz and /t chemokines. FASEB J 9: 57–62Google Scholar
  24. Cramer P, Bushnell DA, Fu J et al. (2000) Architecture of RNA polymerase II and implications for the transcription mechanism. Science 288: 640–649PubMedCrossRefGoogle Scholar
  25. Cupp-Vickery JR, Poulos TL (1995) Structure of cytochrome P450eryF involved in erythromycin biosynthesis. Nat Struct Biol 2: 144–153PubMedCrossRefGoogle Scholar
  26. Davisson C, Germer LH (1927) The scattering of electrons by a single crystal of nickel. Nature 119: 558–560CrossRefGoogle Scholar
  27. Decanniere K, Babu AM, Sandman K, Reeve JN, Heinemann U (2000) Crystal structures of recombinant histones HMfA and HMfB from the hyperthermophilic archaeon Methanothermus fervidus. J Mol Biol 303: 35–47PubMedCrossRefGoogle Scholar
  28. Deisenhofer J, Epp O, Miki K, Huber R, Michel H (1985) Structure of the protein subunits in the photosynthetic reaction centre of Rhodopseudomonas viridis at 3 A resolution. Nature 318: 618–624PubMedCrossRefGoogle Scholar
  29. De la Fortelle E, Bricogne G (1997) Maximum-likelihood heavy-atom parameter refinement for multiple isomorphous replacement and multiwavelength anomalous diffraction methods. Methods Enzymol 276: 472–494CrossRefGoogle Scholar
  30. De Vos AM, Ultsch M, Kossiakoff AA (1992) Human growth hormone and extracellular domain of its receptor: structure of the complex. Science 225: 306–312CrossRefGoogle Scholar
  31. Dinner AR, Sali A, Smith LJ, Dobson CM, Karplus M (2000) Understanding protein folding via free-energy surfaces from theory and experiment. Trends Biochem Sci 25: 331–339PubMedCrossRefGoogle Scholar
  32. Dobson CM (1999) Protein misfolding, evolution and disease. Trends Biochem Sci 24: 329–332PubMedCrossRefGoogle Scholar
  33. Dobson CM, Karplus M (1999) The fundamentals of protein folding: bringing together theory and experiment. Curr Opin Struct Biol 9: 92–101PubMedCrossRefGoogle Scholar
  34. Duan Y, Kollman PA (1998) Pathways to a protein folding intermediate observed in a 1-microsecond simulation in aqueous solution. Science 282: 740–744PubMedCrossRefGoogle Scholar
  35. Ellenberger TE, Brandi CJ, Struhl K, Harrison SC (1992) The GCN4 basic region leucine zipper binds DNA as a dimer of uninterrupted a-helices: crystal structure of the protein-DNA complex. Cell 71: 1223–1237PubMedCrossRefGoogle Scholar
  36. Ellis RJ, Hemmingsen SM (1989) Molecular chaperones: protein essential for the biogenesis of some macromolecular structures. Trends Biochem Sci 14: 339–342PubMedCrossRefGoogle Scholar
  37. Ernst RR, Anderson WA (1966) Application of Fourier transform spectroscopy to magnetic resonance. Rev Sci Instrum 37: 93–102CrossRefGoogle Scholar
  38. Ernst RR, Bodenhausen G, Wokaun A (1987) Principles of nuclear magnetic resonance in one and two dimensions. Clarendon, OxfordGoogle Scholar
  39. Fischer G, Schmid FX (1990) The mechanism of protein folding. Implications of in vitro refolding models for de novo protein folding and translocation in the cell. Biochemistry 29: 2205–2212Google Scholar
  40. Freedman RB (1989) Protein disulfide isomerase: multiple roles in the modification of nascent secretory proteins. Cell 57: 1069–1072PubMedCrossRefGoogle Scholar
  41. Friedrich W, Knipping P, Laue M (1912) Interferenz-Erscheinungen bei Röntgenstrahlen. Sitzungsberichte der mathematisch-physikalischen Klasse der Königlichen Bayerischen Akademie der Wissenschaften zu München, 303–322Google Scholar
  42. Gaasterland T (1998) Structural genomics taking shape. Trends Genet 14: 135PubMedCrossRefGoogle Scholar
  43. Geyer M, Wittinghofer A (1997) GEFs, GAPs, GDIs and effectors: taking a closer (3D) look at the regulation of Ras-related GTP-binding proteins. Curr Opin Struct Biol 7: 786–792PubMedCrossRefGoogle Scholar
  44. Grimes JM, Burroughs JN, Gouet P et al. (1998) The atomic structure of the bluetongue virus core. Nature 395: 470–478PubMedCrossRefGoogle Scholar
  45. Grishkovskaya I, Avvakumov GV, Sklenar G, Dales D, Hammond GL, Muller YA (2000) Crystal structure of human sex hormone-binding globulin: steroid transport by a laminin G-like domain. EMBO J 19: 504–512PubMedCrossRefGoogle Scholar
  46. Groll M, Ditzel L, Löwe J et al. (1997) Structure of the 20 S proteasome from yeast at 2.4 A resolution. Nature 386: 463–471PubMedCrossRefGoogle Scholar
  47. Harrison SC, Olson AJ, Schutt CE, Winkler FK, Bricogne G (1978) Tomato bushy stunt virus at 2.9 A resolution. Nature 276: 368–373PubMedCrossRefGoogle Scholar
  48. Hasemann CA, Ravichandran KG, Peterson JA, Deisenhofer J (1994) Crystal structure and refinement of cytochrome P450terp at 2.3 A resolution. J Mol Biol 236: 1169–1185PubMedCrossRefGoogle Scholar
  49. Heinemann U (2000) Structural genomics in Europe: Slow start, strong finish? Nat Struct Biol 7: 940–942PubMedCrossRefGoogle Scholar
  50. Heinemann U, Frevert J, Hofmann K-P et al. (2000) An integrated approach to structural genomics. Prog Biophys Mol Biol 73: 347–362PubMedCrossRefGoogle Scholar
  51. Helliwell JR (1997) Overview of synchrotron radiation and macromolecular crystallography. Methods Enzymol 276: 203–217CrossRefGoogle Scholar
  52. Hendrickson WA, Horton JR, LeMaster DM (1990) Selenomethionyl proteins produced for analysis by multiwavelength anomalous diffraction (MAD): a vehicle for direct determination of three-dimensional structure. EMBO J 9: 1665–1672PubMedGoogle Scholar
  53. Hoffman GR, Nassar N, Cerione RA (2000) Structure of the Rho family GTP-binding protein Cdc42 in complex with the multifunctional regulator RhoGDI. Cell 100: 345–356PubMedCrossRefGoogle Scholar
  54. Hol WG, Duijnen PT van, Berendsen HJ (1978) The a-helix dipole and the properties of proteins. Nature 273: 443–446PubMedCrossRefGoogle Scholar
  55. Holtzhauer M (Hrsg) (1996) Methoden in der Proteinanalytik. Springer, Berlin Heidelberg New YorkGoogle Scholar
  56. Hope H (1990) Crystallography of biological macromolecules at ultra-low temperature. Annu Rev Biophys Chem 19: 107–126CrossRefGoogle Scholar
  57. Jeener J (1971) Lecture. Ampère Summer School, Basko Polje, YugoslaviaGoogle Scholar
  58. Karplus M, Petsko GA (1990) Molecular dynamics simulations in biology. Nature 347: 631–639PubMedCrossRefGoogle Scholar
  59. Karshikoff A, Ladenstein R (1998) Proteins from thermophilic and mesophilic organisms essentially do not differ in packing. Protein Eng 11: 867–872PubMedCrossRefGoogle Scholar
  60. Kauzmann W (1959) Some factors in the interpretation of protein denaturation. Adv Protein Chem 14: 1–63PubMedCrossRefGoogle Scholar
  61. Kendrew JC, Dickerson RE, Strandberg BE et al. (1960) Structure of myoglobin. A three-dimensional Fourier synthesis at 2 A resolution. Nature 185: 422–427PubMedCrossRefGoogle Scholar
  62. Kim SH, Suddath FL, Quigley GJ et al. (1974) Three-dimensional tertiary structure of yeast phenylalanine transfer RNA. Science 185: 435–439PubMedCrossRefGoogle Scholar
  63. Kirsch T, Sebald W, Dreyer MK (2000) Crystal structure of the BMP-2-BRIA ectodomain complex. Nat Struct Biol 7: 492–496PubMedCrossRefGoogle Scholar
  64. Kline AD, Braun W, Wüthrich K (1986) Studies by ‘H nuclear magnetic resonance and distance geometry of the solution conformation of the a-amylase inhibitor tendamistat. J Mol Biol 189: 377–382PubMedCrossRefGoogle Scholar
  65. Koonin EV, Tatusov RL, Galperin MY (1998) Beyond complete genomes: from sequence to structure and function. Curr Opin Struct Biol 8: 355–363PubMedCrossRefGoogle Scholar
  66. Kraulis PJ (1991) MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J Appl Crystallogr 24: 946–950CrossRefGoogle Scholar
  67. Krauss G (1997) Biochemie der Regulation und Signaltransduktion. Wiley-VCH, New YorkGoogle Scholar
  68. Kühlbrandt W, Williams KA (1999) Analysis of macromolecular structure and dynamics by electron cryo-microscopy. Curr Opin Chem Biol 3: 537–543PubMedCrossRefGoogle Scholar
  69. Kühlbrandt W, Wang DN, Fujiyoshi Y (1994) Atomic model of plant light-harvesting complex by electron crystallography. Nature 367: 614–621PubMedCrossRefGoogle Scholar
  70. Lamzin VS, Perrakis A (2000) Current state of automated crystallographic data analysis. Nat Struct Biol 7: 978–981PubMedCrossRefGoogle Scholar
  71. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) Procheck: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26: 283–291CrossRefGoogle Scholar
  72. Linial M, Yona G (2000) Methodologies for target selection inGoogle Scholar
  73. structural genomics. Prog Biophys Mol Biol 73:297–320 Lonsdale K (1928) The structure of the benzene ring. Nature 122: 810Google Scholar
  74. Luger K, Mäder AW, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389: 251–260PubMedCrossRefGoogle Scholar
  75. Matadeen R, Patwardhan A, Gowen B et al. (1999) The Escherichia coli large ribosomal subunit at 7.5 A resolution. Structure Fold Des 7: 1575–1583PubMedCrossRefGoogle Scholar
  76. McDonald NQ, Hendrickson WA (1993) A structural super-family of growth factors containing a cystine knot motif. Cell 73: 421–424PubMedCrossRefGoogle Scholar
  77. Meissner U, Dube P, Harris JR, Stark H, Markl J (2000) Structure of a molluscan hemocyanin didecamer (HtH1 from Haliotis tuberculata) at 12 A resolution by cryoelectron microscopy. J Mol Biol 298: 21–34PubMedCrossRefGoogle Scholar
  78. Merritt EA, Murphy MEP (1994) Raster3D version 2.0, a program for photorealistic molecular graphics. Acta Crystallogr D 50: 869–873PubMedCrossRefGoogle Scholar
  79. Montelione GT, Anderson S (1999) Structural genomics: Keystone for a human proteome project. Nat Struct Biol 6: 11–12Google Scholar
  80. Montelione GT, Zheng D, Huang YJ, Gunsalus KC, Szyperski T (2000) Protein NMR spectroscopy in structural genomics. Nat Struct Biol 7: 982–985PubMedCrossRefGoogle Scholar
  81. Müller A, Müller JJ, Muller YA, Uhlmann H, Bernhardt R, Heinemann U (1998) New aspects of electron transfer revealed by the crystal structure of a truncated bovine adrenodoxin, Adx(4–108). Structure 6: 269–280PubMedCrossRefGoogle Scholar
  82. Müller JJ, Müller A, Rottmânn M, Bernhardt R, Heinemann U (1999) Vertebrate-type and plant-type ferredoxins: crystal structure comparison and electron transfer pathway modelling. J Mol Biol 294: 501–513PubMedCrossRefGoogle Scholar
  83. Müller JJ, Lapko A, Bourenkov G, Ruckpaul K, Heinemann U (2001) Adrenodoxin reductase–adrenodoxin complex structure suggests electron transport path in steroid biosynthesis. J Biol Chem 276: 2786–2789PubMedCrossRefGoogle Scholar
  84. Nassar N, Horn G, Herrmann C, Scherer A, McCormick F, Wittinghofer A (1995) The 2.2 A crystal structure of the Ras-binding domain of the serine/threonine kinase c-Rafl in complex with Rapl A and a GTP analogue. Nature 375: 554–560PubMedCrossRefGoogle Scholar
  85. Navia MA, Fitzgerald PMD, McKeever BM. (1989) Three-dimensional structure of aspartyl protease from human immunodeficiency virus HIV-1. Nature 337: 615620Google Scholar
  86. Ortiz de Montellano PR (Hrsg) (1995) Cytochrome P450: structure, mechanism and biochemistry. Plenum Press, New YorkGoogle Scholar
  87. Pace CN (2000) Single surface stabilizer. Nat Struct Biol 7: 345–346PubMedCrossRefGoogle Scholar
  88. Pace CN, Heinemann U, Hahn U, Saenger W (1991) Ribonuclease Tl: structure, function, and stability. Angew Chem Int Ed Engl 30: 343–360CrossRefGoogle Scholar
  89. Park SY, Shimizu H, Adachi S et al. (1997) Crystal structure of nitric oxide reductase from denitrifying fungus Fusarium oxysporum. Nat Struct Biol 4: 827–832PubMedCrossRefGoogle Scholar
  90. Pauling L, Corey RB, Branson HR (1951) The structure of proteins: two hydrogen-bonded helical configurations of the polypeptide chain. Proc Natl Acad Sci USA 37: 205–211PubMedCrossRefGoogle Scholar
  91. Perl D, Mueller U, Heinemann U, Schmid FX (2000) Two exposed amino acid residues confer thermostability on a cold shock protein. Nat Struct Biol 7: 380–383PubMedCrossRefGoogle Scholar
  92. Perrakis A, Morris R, Lamzin VS (1999) Automated protein model building combined with iterative structure refinement. Nat Struct Biol 6: 458–463PubMedCrossRefGoogle Scholar
  93. Perutz MF, Muirhead H, Cox JM, Goaman LC (1968) Three-dimensional Fourier synthesis of horse oxyhaemoglobin at 2.8 A resolution: the atomic model. Nature 219: 131–139PubMedCrossRefGoogle Scholar
  94. Perutz M, Fermi G, Luisi B, Shaanan B, Liddington RC (1987) Stereochemistry of cooperative mechanisms in hemoglobin. Cold Spring Harbor Symp Quant Biol 52: 555–565PubMedCrossRefGoogle Scholar
  95. Peterson JA, Graham SE (1998) A close family resemblance: the importance of structure in understanding cytochromes P450. Structure 6: 1079–1085PubMedCrossRefGoogle Scholar
  96. Pflugrath J, Wiegand E, Huber R, Vértesy L (1986) Crystal structure determination, refinement and the molecular model of the a-amylase inhibitor Hoe-467 A. J Mol Biol 189: 383–386PubMedCrossRefGoogle Scholar
  97. Poulos TL, Finzel BC, Gunsalus IC, Wagner GC, Kraut J (1985) The 2.6-A crystal structure of Pseudomonas putida cytochrome P-450. J Biol Chem 260: 16122–16130PubMedGoogle Scholar
  98. Purcell EM, Torrey HC, Pound RV (1946) Resonance absorption by nuclear magnetic moments in a solid. Phys Rev 69: 37–38CrossRefGoogle Scholar
  99. Ramachandran GN, Sasisekharan V (1968) Conformation of polypeptides and proteins. Adv Protein Chem 23: 283–437PubMedCrossRefGoogle Scholar
  100. Ravichandran KG, Boddupalli SS, Hasemann CA, Peterson JA, Deisenhofer J (1993) Crystal structure of a hemoprotein domain of P450, BM3, a prototype for microsomal P-450s. Science 261: 731–736PubMedCrossRefGoogle Scholar
  101. Riek R, Pervushin K, Wüthrich K (2000) TROSY and CRINEPT: NMR with large molecular and supramolecular structures in solution. Trends Biochem Sci 25: 462–468Google Scholar
  102. Robertus JD, Ladner JE, Finch JT et al. (1974) Structure of yeast phenylalanine tRNA at 3 A resolution. Nature 250: 546–551PubMedCrossRefGoogle Scholar
  103. Röntgen WC (1895) Über eine neue Art von Strahlen. Sitzungsberichte der Würzburger Physikalisch-Medizinischen Gesellschaft, 132–141Google Scholar
  104. Sali A (1998) 100,000 protein structures for the biologist. Nat Struct Biol 5:1029–1032Google Scholar
  105. Sandstrom E, Oberg B (1993) Antiviral therapy in human immunodeficiency virus infections. Current status ( Part I ). Drugs 45: 488–508Google Scholar
  106. Scheffzek K, Ahmadian MR, Kabsch W et al. (1997) The Ras-RasGAP complex: structural basis for GTPase activation and its loss in oncogenic Ras mutants. Science 277: 333–338PubMedCrossRefGoogle Scholar
  107. Schluenzen F, Tocilj A, Zarivach R et al. (2000) Structure of functionally activated small ribosomal subunit at 3.3 A resolution. Cell 102: 615–623PubMedCrossRefGoogle Scholar
  108. Schulz GE, Schirmer RH (1979) Principles of protein structure. In: Cantor CR (ed) Springer advanced texts in chemistry. Springer, Berlin Heidelberg New YorkGoogle Scholar
  109. Schumacher MA, Hurlburt BK, Brennan RG (2001) Crystal structures of SarA, a pleiotropic regulator of virulence genes in S. aureus. Nature 409: 215–219PubMedCrossRefGoogle Scholar
  110. Shakhnovich EI (1998) Folding nucleus: specific or multiple? Insights from lattice models and experiments. Fold Des 3: 108–111CrossRefGoogle Scholar
  111. Shapiro L, Lima CD (1998) The Argonne Structural Genomics Workshop: Lamaze class for the birth of a new science. Structure 6: 265–267Google Scholar
  112. Sheldrick GM (1997) Patterson superposition and ab initio phasing. Methods Enzymol 276: 628–641CrossRefGoogle Scholar
  113. Sprang SR (1997) G proteins, effectors and GAPs: structure and mechanism. Curr Opin Struct Biol 7: 849–886PubMedCrossRefGoogle Scholar
  114. Stanley WM (1935) Isolation of a crystalline protein possessing the properties of tobacco-mosaic virus. Science 81: 644–645PubMedCrossRefGoogle Scholar
  115. Starich MR, Sandman K, Reeve JN, Summers MF (1996) NMR structure of HMfB from the hyperthermophile, Methanothermus fervidus, confirms that this archaeal protein is a histone. J Mol Biol 255: 187–203PubMedCrossRefGoogle Scholar
  116. Sun PD, Davies DR (1995) The cystine-knot growth-factor superfamily. Annu Rev Biophys Biomol Struct 24: 269–291PubMedCrossRefGoogle Scholar
  117. Terwilliger TC, Berendzen J (1999) Automated structure solution for MIR and MAD. Acta Crystallogr D 55: 849–861PubMedCrossRefGoogle Scholar
  118. Terwilliger TC, Waldo G, Peat TS, Newman JM, Chu K, Berendzen J (1998) Class-directed structure determination: foundation for a protein structure initiative. Protein Sci 7: 1851–1856PubMedCrossRefGoogle Scholar
  119. Tong LA, Vos AM de, Milburn MV, Kim SH (1991) Crystal structures at 2.2 A resolution of the catalytic domains of normal ras protein and an oncogenic mutant complexed with GDP. J Mol Biol 217: 503–516PubMedCrossRefGoogle Scholar
  120. Venkatachalam CM (1968) Stereochemical criteria for polypeptides and proteins. V. Conformation of a system of three linked peptide units. Biopolymers 6: 1425–1436PubMedCrossRefGoogle Scholar
  121. Vondrasek J, Wlodawer A (1996) New database. Science 272: 337–338CrossRefGoogle Scholar
  122. Wada A (1975) The a-helix as an electric macro-dipole. Adv Biophys 9: 1–63Google Scholar
  123. Watson JD, Crick FHC (1953) Molecular structure of nucleic acids. Nature 171: 737–738PubMedCrossRefGoogle Scholar
  124. Weeks CM, Miller R (1999) Optimizing shake-and-bake for proteins. Acta Crystallogr D 55: 492–500PubMedCrossRefGoogle Scholar
  125. Wells JA, Vos AM de (1996) Hematopoietic receptor complexes. Annu Rev Biochem 65: 609–634PubMedCrossRefGoogle Scholar
  126. Wemmer DE (1991) The applicability of NMR methods to solution structure of nucleic acids. Curr Opin Struct Biol 1: 452–458CrossRefGoogle Scholar
  127. West M, Fairlie D (1995) Targeting HIV-1 protease: a test of drug-design methodologies. Trends Pharmacol Sci 16: 6775CrossRefGoogle Scholar
  128. Wiesmann C, Vos AM de (2000) Variations on ligand-receptor complexes. Nat Struct Biol 7: 440–442PubMedCrossRefGoogle Scholar
  129. Wiesmann C, Fuh G, Christinger HW, Eigenbrot C, Wells JA, Vos AM de (1997) Crystal structure at 1.7 A resolution of VEGF in complex with domain 2 of the Flt-1 receptor. Cell 91: 695–704PubMedCrossRefGoogle Scholar
  130. Wiesmann C, Ultsch MH, Bass SH, Vos AM de (1999) Crystal structure of nerve growth factor in complex with the ligand-binding domain of the TrkA receptor. Nature 401: 184–188PubMedCrossRefGoogle Scholar
  131. Williams PA, Cosme J, Sridhar V, Johnson EF, McRee DE (2000) Mammalian microsomal cytochrome P450 monooxygenase: structural adaptations for membrane binding and functional diversity. Mol Cell 5: 121–131PubMedCrossRefGoogle Scholar
  132. Williamson MP, Havel TF, Wüthrich K (1985) Solution conformation of proteinase inhibitor IIA from bull seminal plasma by ‘H nuclear magnetic resonance and distance geometry. J Mol Biol 182: 295–315PubMedCrossRefGoogle Scholar
  133. Wimberly BT, Brodersen D, Clemons WM et al. (2000) Structure of the 30 S ribosomal subunit. Nature 407: 327–339PubMedCrossRefGoogle Scholar
  134. Wing R, Drew H, Takano T et al. (1980) Crystal structure analysis of a complete turn of B-DNA. Nature 287: 755–758PubMedCrossRefGoogle Scholar
  135. Wlodawer A, Vondrasek J (1998) Inhibitors of HIV-1 protease: a major success of structure-assisted drug design. Annu Rev Biophys Biomol Struct 27: 249–284PubMedCrossRefGoogle Scholar
  136. Wlodawer A, Miller M, Jaskoiski M et al. (1989) Conserved folding in retroviral proteases: crystal structure of a synthetic HIV-1 protease. Science 245: 616–621PubMedCrossRefGoogle Scholar
  137. Wrighton NC, Farrell FX, Chang R et al. (1996) Small peptides as potent mimetics of the protein hormone erythropoietin. Science 273: 458–464PubMedCrossRefGoogle Scholar
  138. Wüthrich K (1995) NMR–This other method for protein and nucleic acid structure determination. Acta Crystallogr D 51: 249–270PubMedCrossRefGoogle Scholar
  139. Yano JK, Koo LS, Schuller DJ, Li H, Ortiz de Montellano PR, Poulos TL (2000) Crystal structure of a thermophilic cytochrome P450 from the archaeon Sulfolobus solfataricus. J Biol Chem 275: 31086–31092PubMedCrossRefGoogle Scholar
  140. Zhou Y, Karplus M (1999) Interpreting the folding kinetics of helical proteins. Nature 401: 400–403PubMedGoogle Scholar
  141. Zhu X, Komiya H, Chirino A et al. (1991) Three-dimensional structures of acidic and basic fibroblast growth factors. Science 251: 90–93PubMedCrossRefGoogle Scholar
  142. Ziegler G, Schulz GE (2000) Crystal structures of adrenodoxin reductase in complex with NAPD+ and NADPH suggesting a mechanism for the electron transfer of an enzyme family. Biochemistry 36: 10986–10995CrossRefGoogle Scholar
  143. Ziegler G, Vonrhein C, Hanukoglu I, Schulz GE (1999) The structure of adrenodoxin reductase of mitochondrial P450 systems: electron transfer for steroid biosynthesis. J Mol Biol 289: 981–990PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Yves A. Muller
  • Udo Heinemann

There are no affiliations available

Personalised recommendations