Skip to main content

Access to Surface Properties up to Order Two for Visualization Algorithms

  • Conference paper
Geometric Modeling for Scientific Visualization

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

  • 905 Accesses

Summary

Elaborated visualization techniques which are based on surfaces often are independent from the origin of the surface data. Nevertheless, many of the previously presented visualization methods were developed for a specific type of surface, although principally applicable to generic surfaces. In this paper we discuss a model for a general access to surface properties up to order two, i.e., surface-point locations, normals, and curvature properties, (almost) regardless of the origin of the surface. Surface types and access algorithms are compared and summarized. At the end of this paper we shortly present an implementation of this model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. James Arvo and David Kirk. A survey of ray tracing acceleration techniques. In Andrew Glassner, editor, An introduction to ray tracing, pages 201–262. Academic Press, 1989.

    Google Scholar 

  2. James Beck, Rida Farouki, and John Hinds. Surface analysis methods. IEEE Computer Graphics and Applications, 6 (12): 18–36, 1986.

    Article  Google Scholar 

  3. Mark Bentum, Barthold Lichtenbelt, and Tom Malzbender. Frequency Analysis of Gradient Estimators in Volume Rendering. IEEE Transactions on Visualization and Computer Graphics, 2 (3): 242–254, 1996.

    Article  Google Scholar 

  4. John Dill. An application of color graphics to the display of surface curvature. Computer Graphics, 15 (3): 153–161, August 1981.

    Article  Google Scholar 

  5. Gerald Farin. Curves and Surfaces for Computer Aided Geometric Design. Morgan Kaufmann, 4th edition, 1997.

    Google Scholar 

  6. Thomas Gerstner. Multiresolution extraction and rendering of transparent isosurfaces. Computers and Graphics, 26 (2): 219–228, April 2002.

    Article  Google Scholar 

  7. Andrew Glassner, editor. An Introduction to Ray Tracing. Acad. Press, 1989.

    Google Scholar 

  8. Hans Hagen, Stefanie Hahmann, Thomas Schreiber, Yasuo Nakajima, Burkard Wordenweber, and Petra Hollemann-Grundstedt. Surface interrogation algorithms. IEEE Computer Graphics and Applications, 12 (5): 53–60, Sept. 1992.

    Article  Google Scholar 

  9. Vlastimil Havran. Heuristic Ray Shooting Algorithms. PhD thesis, Czech Technical University, Praha, Czech Republic, April 2001. Available from http://www.cgg.cvut.cz/“havran/phdthesis.html.

    Google Scholar 

  10. Josef Hoschek and Franz-Josef Schneider. Spline conversion for trimmed rational Bézier-and B-spline surfaces. Computer Aided Design, 22 (9): 580–590, 1990.

    Article  MATH  Google Scholar 

  11. Andreas Hubeli and Markus Gross. Fairing of non-manifolds for visualization. In Proceedings IEEE Visualization, pages 407–414, 2000.

    Google Scholar 

  12. Jeff Hultquist. Constructing stream surfaces in steady 3D vector fields. In Proceedings IEEE Visualization, pages 171–177, 1992.

    Chapter  Google Scholar 

  13. Victoria Interrante. Illustrating surface shape in volume data via principal direction-driven 3D line integral convolution. Computer Graphics, 31 (Annual Conference Series): 109–116, August 1997.

    Google Scholar 

  14. Victoria Interrante, Henry Fuchs, and Stephen Pizer. Conveying the 3D shape of smoothly curving transparent surfaces via texture. IEEE Transactions on Visualization and Computer Graphics, 3 (1): 98–117, 1997.

    Article  Google Scholar 

  15. Victoria Interrante, Henry Fuchs, and Steven Pizer. Illustrating transparent surfaces with curvature-directed strokes. In Proceedings IEEE Visualization, pages 211–218, 1996.

    Google Scholar 

  16. Helwig Löffelmann, Lukas Mroz, Eduard Gröller, and Werner Purgathofer. Stream arrows: Enhancing the use of streamsurfaces for the visualization of dynamical systems. The Visual Computer, 13: 359–369, 1997.

    Article  Google Scholar 

  17. William Lorensen and Harvey Cline. Marching cubes: A high resolution 3D surface construction algoritm. Computer Graphics, 21 (4): 163–168, July 1987.

    Article  Google Scholar 

  18. Torsten Möller, Raghu Machiraju, Klaus Müller, and Roni Yagel. Evaluation and Design of Filters Using a Taylor Series Expansion. IEEE Transactions on Visualization and Computer Graphics, 3 (2): 184–199, 1997.

    Article  Google Scholar 

  19. Gregory Nielson and Bernd Hamann. The asymptotic decider: Removing the ambiguity in marching cubes. In Proceedings IEEE Visualization, pages 83–91, 1991.

    Chapter  Google Scholar 

  20. Gregory Nielson, Bruce Shriver, and Lawrence Rosenblum. Visualization in Scientific Computing. IEEE Computer Society Press, 1990.

    Google Scholar 

  21. Bui-Tuong Phong. Illumination for computer generated pictures. Communications of the ACM, 18 (6): 311–317, 1975.

    Article  Google Scholar 

  22. Martin Rumpf, Alfred Schmidt, and Kunibert Siebert. Functions defining arbitrary meshes–A flexible interface between numerical data and visualization. Computer Graphics Forum, 15 (2): 129–142, 1996.

    Article  Google Scholar 

  23. Georgios Sakas, Marcus Grimm, and Alexandros Savopoulos. Optimized maximum intensity projection (MIP). In Proceedings EUROGRAPHICS Rendering Workshop, pages 51–63, 1995.

    Google Scholar 

  24. Hanan Samet. Applications of Spatial Data Structures: Computer Graphics, Image Processing, and GIS. Addison-Wesley, 1989.

    Google Scholar 

  25. Lee Seidenberg, Robert Jerad, and John Magewick. Surface curvature analysis using color. In Proceedings IEEE Visualization, pages 260–267, 1992.

    Chapter  Google Scholar 

  26. Gabriel Taubin. A signal processing approach to fair surface design. Computer Graphics, 29 (Annual Conference Series): 351–358, November 1995.

    Google Scholar 

  27. Philip Todd and Robin McLeod. Numerical estimation of the curvature of surfaces. Computer-Aided Design, 18 (1): 33–37, January 1986.

    Article  Google Scholar 

  28. Jarke van Wijk. Implicit stream surfaces. In Proceedings IEEE Visualization, pages 245–252, 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hauser, H., Theußl, T., Gröller, E. (2004). Access to Surface Properties up to Order Two for Visualization Algorithms. In: Brunnett, G., Hamann, B., Müller, H., Linsen, L. (eds) Geometric Modeling for Scientific Visualization. Mathematics and Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-07443-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-07443-5_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07263-5

  • Online ISBN: 978-3-662-07443-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics