Selective Refinement on Nested Tetrahedral Meshes

  • Leila De Floriani
  • Michael Lee
Conference paper
Part of the Mathematics and Visualization book series (MATHVISUAL)

Summary

We consider a multi-resolution representation based on a decomposition of the field domain into nested tetrahedral cells generated by recursive tetrahedron bisection, that we call a Hierarchy of Tetrahedra (HT) We describe our implementation of an HT, and discuss how to extract conforming meshes from an HT so as to avoid discontinuities in the approximation of the associated scalar field. We describe algorithms for selective refinement, which either extract a variable-resolution mesh from scratch through a depth-first, or through a priority-based traversal technique, or which locally refine and coarsen a previously-extracted adaptive mesh through an incremental approach. We show experimental results in connection with a set of basic queries for performing analysis and visualization of a volume data set at different levels of detail.

Keywords

Expense Pyramid Univer Buckyball 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Cignoni, L. De Floriani, P. Magillo, E. Puppo, and R. Scopigno. Interactive visualization of large tetrahedral meshes through selective refinement. IEEE Transactions on Visualization and Computer Graphics,2003 (to appear).Google Scholar
  2. 2.
    E. Danovaro, L. De Floriani, M. Lee, H. Samet. Multi-resolution tetrahedral meshes: an analysis and a comparison In Proceedings Shape Modeling International 2002,Banff, Canada, May 2002.Google Scholar
  3. 3.
    L. De Floriani and P. Magillo. Multi-resolution Mesh Representation: Models and Data Structures. In Principles of Multi-resolution in Geometric Modeling,M.Floater, A.Iske, E. Quak (editors), Lecture Notes in Mathematics, Springer Verlag, Berlin (D), 2002.Google Scholar
  4. 4.
    M. Duchaineau, M. Wolinsky, D. E. Sigeti, M. C. Miller, C. Aldrich, and M. B. Mineev-Weinstein. ROAMing terrain: Real-time optimally adapting meshes. In Proceedings IEEE Visualization’97, R. Yagel and H. Hagen, eds., pages 81–88, Phoenix, AZ, October 1997.Google Scholar
  5. 5.
    W. Evans, D. Kirkpatrick, and G. Townsend. Right-triangulated irregular networks. Algorithmica, 30 (2): 264–286, March 2001.MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    S.F. Frisken, R.N. Perry, A.P. Rockwood and T.R. Jones. Adaptive sampled distance fields: a general representation of shape for Computer Grpahics. In Proceedings SIGGRAPH 2000, pages 249–254, 2000.Google Scholar
  7. 7.
    T. Gerstner and M. Rumpf. Multiresolutional parallel isosurface extraction based on tetrahedral bisection. In Proceedings 1999 Symposium on Volume Visualization, ACM Press, 1999.Google Scholar
  8. 8.
    B. Gregorski, M. Duchaineau, P. Lindstrom, V. Pascucci and K. Joy. Interactive View-Dependent Rendering of Large Isosurfaces. In Proceedings IEEE Visualization 2002, San Diego, CA, October 2002.Google Scholar
  9. 9.
    G. Greiner and R. Grosso. Hierachical tetrahedral-octahedral subdivision for volume visualization. The Visual Computer, 16, pages 357–369, 2000.MATHCrossRefGoogle Scholar
  10. 344.
    Leila De Floriani and Michael LeeGoogle Scholar
  11. 10.
    R. Grosso, C. Luerig, and T. Ertl. The multilevel finite element method for adaptive mesh optimization and visualization of volume data. In Proceedings IEEE Visualization ‘87, pages 387–394, Phoenix, AZ, October 1997.Google Scholar
  12. 11.
    D. J. Hebert. Symbolic local refinement of tetrahedral grids. Journal of Symbolic Computation, 17: 457–472, 1994.MathSciNetMATHCrossRefGoogle Scholar
  13. 12.
    M. Lee, L. De Floriani and H. Samet. Constant-time neighbor finding in hierarchical tetrahedral meshes. In Proceedings Shape Modeling International 2001, pages 286–295, Genova, Italy, May 2001.Google Scholar
  14. 13.
    P. Lindstrom, D. Koller, W. Ribarsky, L. F. Hodges, N. Faust, and G. A. Turner. Real-time continuous level of detail rendering of height fields. In Proceedings of the SIGGRAPH’96 Conference, pages 109–118, New Orleans, August 1996.Google Scholar
  15. 14.
    P. Lindstrom and V. Pascucci. Visualization of Large Terrains Made Easy. In Proceedings IEEE Visualization 2001, pages 363–370, San Diego, CA, October 2001.Google Scholar
  16. 15.
    J. M. Maubach. Local bisection refinement for n-simplicial grids generated by reflection. SIAM Journal on Scientific Computing, 16 (1): 210–227, January 1995.MathSciNetMATHCrossRefGoogle Scholar
  17. 16.
    M. Ohlberger and M. Rumpf. Hierarchical and adaptive visualization on nested grids. Computing, 56 (4): 365–385, 1997.MathSciNetCrossRefGoogle Scholar
  18. 17.
    R. Pajarola. Large scale terrain visualization using the restricted quadtree triangulation. In Proceedings IEEE Visualization’98, D. Ebert, H. Hagen, and H. Rushmeier, eds., pages 19–26, Research Triangle Park, NC, October 1998.Google Scholar
  19. 18.
    V. Pascucci. Slow Growing Subdivision (SGS) in any dimension: towards removing the curse of dimensionality. Computer Graphics Forum, Volume 21, Number 3, 2002.Google Scholar
  20. 19.
    V. Pascucci Multi-resolution indexing for hierarchical out-of-core traversal of rectilinear grids. In Hierarchical and Geometrical Methods for Scientific Visualization,G.Farin, H.Hagen, B. Hamann (editors), Springer Verlag, Heidelberg, Germany, 2003 (to appear).Google Scholar
  21. 20.
    V. Pascucci and C. L. Bajaj. Time critical isosurface refinement and smoothing. In Proceedings IEEE Symposium on Volume Visualization, pages 33–42, Salt Lake City, UT, October 2000.Google Scholar
  22. 21.
    M. Rivara and C. Levin. A 3D refinement algorithm for adaptive and multigrid techniques. Communications in Applied Numerical Methods, 8: 281–290, 1992.MATHCrossRefGoogle Scholar
  23. 22.
    T. Roxborough, G. Nielson Tetrahedron-based, laest-squares, progressive volume models with application to freehand ultrasound data In Proceedings IEEE Visualization 2000, pages 93–100, 2000.Google Scholar
  24. 23.
    H. Samet. Applications of Spatial Data Structures: Computer Graphics, Image Processing, and GIS. Addison-Wesley, Reading, MA, 1990.Google Scholar
  25. 24.
    Y. Zhou, B. Chen, and A. Kaufman. A multi-resolution tetrahedral framework for visualizing regular volume data. In Proceedings IEEE Visualization ‘87, pages 135–142, Phoenix, AZ, October 1997.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Leila De Floriani
    • 1
  • Michael Lee
    • 2
  1. 1.Department of Computer and Information Sciences (DISI)University of GenovaGenovaItaly
  2. 2.Department of Computer ScienceUniversity of MarylandCollege ParkUSA

Personalised recommendations