Advertisement

Tree-based Data Structures for Triangle Mesh Connectivity Encoding

  • Ioannis Ivrissimtzis
  • Christian Rössl
  • Hans-Peter Seidel
Conference paper
Part of the Mathematics and Visualization book series (MATHVISUAL)

Abstract

Triangle meshes have recently emerged as the de facto standard in many Computer Graphics applications, generating a research interest in finding data structures able to represent them efficiently. This is not a trivial task given that the size of a typical meshes can vary from few hundreds triangles, up to hundreds of millions of triangles for some very detailed models.

Keywords

Compression Ratio Binary Tree Directed Edge Triangle Mesh Arithmetic Code 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Alliez and M. Desbrun. Valence-Driven connectivity encoding for 3D meshes. In EUROGRAPHICS 01 Conference Proceedings, pages 480 - 489, 2001.Google Scholar
  2. 2.
    Pierre Alliez and Mathieu Desbrun. Progressive compression for lossless transmission of triangle meshes. In SIGGRAPH 01, Conference Proceedings, pages 195 - 202, 2001.Google Scholar
  3. 3.
    Alfs Berztiss. A taxonomy of binary tree traversals. BIT, 26: 266 - 276, 1986.MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    W.G. Brown. Enumeration of triangulations of the disk. Proc. Lond. Math. Soc., III. Ser., 14: 746 - 768, 1964.zbMATHCrossRefGoogle Scholar
  5. 5.
    M. Denny and C. Sohler. Encoding a triangulation as a permutation of its point set. In Proceedings of the 9th Canadian Conference on Computational Geometry, pages 39-43, May 15 - 17 1997.Google Scholar
  6. 6.
    N. Deo and B. Litow. A structural approach to graph compression. In MFCS Workshop on Communications, pages 91 - 101, 1998.Google Scholar
  7. 7.
    Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete mathematics: a foundation for computer science.2nd ed. Addison-Wesley, 1994.Google Scholar
  8. 8.
    Stefan Gumhold. Improved cut-border machine for triangle mesh compression. In Erlangen Workshop ’99 on Vision, Modeling and Visualization, IEEE Signal Processing Society, 1999.Google Scholar
  9. 9.
    Stefan Gumhold. New bounds on the encoding of planar triangulations. Technical Report WSI-2000-1, Wilhelm-Schikard-Institut für Informatik, Tübingen, March 2000.Google Scholar
  10. 10.
    Stefan Gumhold and Wolfgang Straßer. Real time compression of triangle mesh connectivity. In SIGGRAPH 98 Conference Proceedings, pages 133 - 140, July 1998.CrossRefGoogle Scholar
  11. 11.
    Isenburg and Snoeyink. Spirale reversi: Reverse decoding of the edgebreaker encoding. CGTA: Computational Geometry: Theory and Applications, 20, 2001.Google Scholar
  12. 12.
    I. Ivrissimtzis, C. Rössl, and H-P. Seidel. A divide and conquer algorithm for triangle mesh connectivity encoding. In Pacific Graphics 02, Conference Proceedings, 2002.Google Scholar
  13. 13.
    Jyrki Katajainen and Erkki Mäkinen. Tree compression and optimization with applications. Int. J. Found. Comput. Sci., 1 (4): 425 - 447, 1990.zbMATHCrossRefGoogle Scholar
  14. 14.
    Andrei Khodakovsky, Pierre Alliez, Mathieu Desbrun, and Peter Schröder. Near-optimal connectivity encoding of 2-manifold polygon meshes. Graphical Models, special issue on compression, 2002.Google Scholar
  15. 15.
    Davis King and Jarek Rossignac. Guaranteed 3.67V bit encoding of planar triangle graphs. In Proceedings of the 11th Canadian Conference on Computational Geometry, pages 146 - 149, 1999.Google Scholar
  16. 16.
    E. Mäkinen. A survey in binary tree codings. Comput. J., 34 (5): 438 - 443, 1991.MathSciNetCrossRefGoogle Scholar
  17. 17.
    Moffat, Neal, and Witten. Arithmetic coding revisited. ACMTOIS: ACM Transactions on (Office) Information Systems, 16, 1998.Google Scholar
  18. 18.
    Rossignac and Szymczak. Wrapandzip decompression of the connectivity of triangle meshes compressed with edgebreaker. CGTA: Computational Geometry: Theory and Applications, 14, 1999.Google Scholar
  19. 19.
    Jarek Rossignac. Edgebreaker: Connectivity compression for triangle meshes. In IEEE Transactions on Visualization and Computer Graphics, volume 5 (1), pages 47 - 61. 1999.Google Scholar
  20. 20.
    Szymczak, King, and Rossignac. An edgebreaker-based efficient compression scheme for regular meshes. CGTA: Computational Geometry: Theory and Applications, 20, 2001.Google Scholar
  21. 21.
    Gabriel Taubin and Jarek Rossignac. Geometric compression through topological surgery. ACM Transactions on Graphics, 17 (2): 84 - 115, April 1998.CrossRefGoogle Scholar
  22. 22.
    Costa Touma and Craig Gotsman. Triangle mesh compression. In Proceedings of the Nth Conference on Graphics Interface (GI-98), pages 26-34, June 18 - 20 1998.Google Scholar
  23. 23.
    W.T. Tutte. A census of planar triangulations. Can. J. Math., 14: 21 - 38, 1962.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Ioannis Ivrissimtzis
    • 1
  • Christian Rössl
    • 1
  • Hans-Peter Seidel
    • 1
  1. 1.Max-Planck-Institut für InformatikSaarbrückenGermany

Personalised recommendations