Skip to main content

Molekulare Grundlagen der Vererbung

  • Chapter
Genetik

Part of the book series: Springer-Lehrbuch ((SLB))

  • 119 Accesses

Überblick

Mit der Bestätigung der Chromosomentheorie war die Frage nach der zellulären Grundlage der Vererbung beantwortet. Die Aufklärung ihrer molekularen Grundlage hatte jedoch noch nahezu ein halbes Jahrhundert zu warten. Zugang zur Entdeckung der chemischen Verbindung, die die Erbanlagen enthält, erhielt man durch die Beobachtung, daß es möglich ist, erbliche Eigenschaften durch Infektion von Mäusen mit abgetöteten Erregern zu übertragen. Eine solche Übertragung von Erbinformation wird als Transformation bezeichnet. Die chemische Analyse der transformierenden Substanz ließ erkennen, daß es sich um Desoxyribonukleinsäure (DNA) handelt.

Der chemische Aufbau der DNA ist sehr einfach. Sie besteht aus einem Rückgrat aus Zucker- (Desoxyribose-) Molekülen, die durch Phosphodiesterbrücken miteinander verknüpft sind. An der Ribose befinden sich heterozyklische Basen. Insgesamt kommen in der DNA nur vier verschiedene Basen (Adenin, Thymin, Guanin und Cytosin) vor.

Die DNA ist der Grundbestandteil der Chromosomen. In jeder Chromatide kommt sie in Form einer DNA-Doppelhelix vor, die aus zwei antiparallel umeinander gewundenen DNA-Strängen besteht. Die beiden DNA-Stränge der Doppelhelix werden durch Wasserstoffbrücken zwischen den Basen zusammengehalten. Bei dieser Verknüpfung der Basen durch Wasserstoffbrücken bestehen nur zwei verschiedene Möglichkeiten. Es kann entweder Guanin mit Cytosin oder Adenin mit Thymin verbunden werden. Man bezeichnet solche miteinander verbundenen Basen als Basenpaare und die durch Basenpaare verknüpften DNA-Stränge als komplementäre Stränge.

Nach den Vorstellungen Mendels muß sich die Erbsubstanz identisch duplizieren können. Aufgrund ihrer Struktur ist die DNA hierzu sehr einfach in der Lage. Trennen sich die beiden Stränge der Doppelhelix einer Chromatide, so kann an jedem der beiden Stränge ein neuer, komplementärer Strang synthetisiert werden, da seine Struktur durch die Basenfolge in dem alten Strang vollständig festgelegt ist. Man bezeichnet diesen Vorgang der Verdoppelung der DNA als Replikation. Durch Replikation entsteht eine zweite DNA-Doppelhelix, die die zweite Chromatide des Chromosoms formt. Während der Mitose können die beiden Chromatiden auf die Tochterzellen verteilt werden und die Kontinuität des genetischen Materials ist damit gesichert. Da bei der Replikation in beiden neu gebildeten DNA-Doppelhelices jeweils ein Strang der ursprünglichen DNA-Doppelhelix erhalten bleibt, wird die Replikation als semikonservativ bezeichnet.

Neben der identischen Verdoppelung des genetischen Materials muß auch seine Fähigkeit zur Rekombination erklärt werden können. Die DNA bietet auch hierfür eine einfache Erklärung. Durch Brüche in je einer Chromatide jedes homologen Chromosoms in gleichen Positionen und deren Verheilung in umgekehrter Ordnung, d.h. jeweils mit der gebrochenen Chromatide des homologen Chromosoms, läßt sich Rekombination erklären. Es erfolgt also ein physikalischer Stückaustausch zwischen den Chromatiden homologer Chromosomen.

In einigen Organismen, insbesondere bei Schimmelpilzen, kann man alle Meiosepro-dukte genetisch analysieren. Hierbei zeigt es sich, daß die genetische Konstitution der haploiden Zellen von der erwarteten Konstitution abweicht. Bei einem Stückaustausch zwischen den Prophasechromatiden dürfte ja die Häufigkeit der verschiedenen Allele nicht verändert werden, selbst wenn ihre Koppelungsbeziehungen verändert sind. Die Abweichungen von den erwarteten Häufigkeiten lassen sich durch den molekularen Mechanismus der Rekombination erklären. Im Bereich der DNA-Brüche entstehen während der Rekombination DNA-Moleküle, die aus den beiden ursprünglich getrennten Chromatiden entstanden sind. Da diese ungepaarte Basenbereiche aufgrund abweichender DNA-Sequenzen enthalten können, werden Reparaturprozesse erforderlich, die im Bereich des Rekombinationsereignisses in der DNA die vollständige Basenpaarung der beiden gepaarten DNA-Stränge wiederherstellen. Die Angleichung der beiden Stränge aneinander erfolgt unter willkürlicher Verwendung eines der beiden DNA-Stränge als Matrize für die Korrektur des zweiten DNA-Stranges. Als Folge dieser Korrekturvorgänge kann es zu Verschiebung in den Allelenhäufigkeiten kommen. Solche Abweichungen (nichtreziproke Rekombination genannt) werden auch als Genkonversion bezeichnet.

Das Gemälde „Laokoon 1977“ von Hans Erni könnte als Voraussicht der Fragen gesehen werden, die sich durch die Fortschritte der Molekularbiologie stellen. Es drückt aber auch die Abhängigkeit des Menschen von seinem genetischen Material aus. (Mit freundlicher Genehmigung von & Erni, Luzern)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

Weiterführende Literatur

  • Kornberg A, Baker TA (1992) DNA synthesis. 2nd edn. Freemann, San Francisco

    Google Scholar 

  • Kucherlapati R, Smith GR (eds) (1988) Genetic recombination. American Society for Microbiology, Washington, DC

    Google Scholar 

  • Taylor JH (1965) Selected papers on molecular Genetics. Academic Press, New York London

    Google Scholar 

Originalarbeiten und Übersichtsartikel

  • Avery OT, MacLeod CM, McCarthy M (1944) Studies on the chemical nature of the substance introducing transformation of pneumococcal types. Introduction of transformation by a desoxyribonucleic acid fraction isolated from Pneumococcus Type III. J Exptl Med 79: 137–158

    Article  CAS  Google Scholar 

  • Bishop DK, Park D, Xu L, Kleckner N (1992) DMC1: A meiosis-specific yeast homolog of E. coli recA required for recombination, synaptonemal complex formation, and cell cycle progression. Cell 69: 439–456

    Article  PubMed  CAS  Google Scholar 

  • Blumenthal AB, Kriegstein HJ, Hogness DS (1973) The Units of DNA replication in Drosophila melanogaster chromosomes. Cold Spring Harbor Symp Quant Biol 38: 205–223

    Article  Google Scholar 

  • Bramhill C, Kornberg A (1988) Duplex opening by dnaA protein at novel sequences in initiation of replication at the origin of the E. coli chromosome. Cell 52: 743–755

    Article  PubMed  CAS  Google Scholar 

  • Broker T (1973) An electron microscopy analysis of pathways for bacteriophage T4 DNA recombination. J Mol Biol 81: 1–16

    Article  PubMed  CAS  Google Scholar 

  • Callan HG (1972) Replication of DNA in the chromosomes of eukaryotes. Proc Roy Soc London B 181: 19–41

    Article  CAS  Google Scholar 

  • Chargaff E, Vischer E, Doniger R, Green C, Misani F (1949) The composition of the desoxypentose nucleic acids of thymus and spleen. J Biol Chem 177: 405–416

    PubMed  CAS  Google Scholar 

  • Hershey AD, Chase M (1965) Independent functions of viral protein and nucleic acid in growth of bacteriophage. J Gen Physiol 36: 39–56

    Article  Google Scholar 

  • Holliday R (1964) A mechanism for gene conversion in fungi. Genet Res 5: 282–304

    Article  Google Scholar 

  • Howard-Flanders P, West SC, Stasiak A (1984) Role of RecA protein spiral filaments in genetic recombination. Nature 309: 215–220

    Article  PubMed  CAS  Google Scholar 

  • Huberman JA, Riggs AD (1968) On the mechanism of DNA replication in mammalian chromosomes. J Mol Biol 32: 327–341

    Article  PubMed  CAS  Google Scholar 

  • Meselson M, Radding C (1975) A general model for genetic recombination. Proc Natl Acad Sci USA 72: 358–361

    Article  PubMed  CAS  Google Scholar 

  • Meselson M, Stahl FW (1958) The replication of DNA in Escherichia coli. Proc Natl Acad Sci USA 44: 671–682

    Article  PubMed  CAS  Google Scholar 

  • Meselson M, Weigle JJ (1961) Chromosome breakage accompanying genetic recombination in bacteriophage. Proc Natl Acad Sci USA 47: 857–868

    Article  PubMed  CAS  Google Scholar 

  • Okazaki T, Okazaki R (1969) Mechanism of DNA chain growth. IV Direction of synthesis of T4 short DNA chains as revealed by exonucleolytic degradation. Proc Natl Acad Sci USA 64: 1242–1248

    Article  PubMed  CAS  Google Scholar 

  • Padmore R, Cao L, Kleckner N (1991) Temporal comparison of recombination and synaptonemal complex formation during meiosis in S. cerevisiae. Cell 66: 1239–1256

    Article  PubMed  CAS  Google Scholar 

  • Potter H, Dressler D (1976) On the mechanism of genetic recombination: Electron microscopic observations of recombination intermediates. Proc Natl Acad Sci USA 73: 3000–3004

    Article  PubMed  CAS  Google Scholar 

  • Rich A, Nordheim A, Wang AH-J (1984) The chemistry and biology of left-handed Z-DNA. Ann Rev Biochem 53: 791–846

    Article  PubMed  CAS  Google Scholar 

  • Shinohara A, Ogawa H, Ogawa T (1992) Rad51 protein involved in repair and recombination in S. cerevisiae is a recA-like protein. Cell 69: 457–470

    Article  PubMed  CAS  Google Scholar 

  • Szostak JW, Orr-Weaver TL, Rothstein RJ, Stahl F (1983) The double-strand-break repairmodel for recombination. Cell 33: 25–35

    Article  PubMed  CAS  Google Scholar 

  • Taylor AF (1992) Movement and resulution of Holiday junctions by enzymes from E. coli. Cell 69: 1063–1065

    CAS  Google Scholar 

  • Taylor JH, Woods PS, Hughes WL (1957) The organization and duplication of chromosomes as revealed by autoradiographic studies using tritium-labeled thymidine. Proc Natl Acad Sci USA 43, 122–128

    Article  PubMed  CAS  Google Scholar 

  • Watson JD, Crick FHC (1953a) Moleculare structure of nucleic acids. A structure for deoxyribose nucleic acid. Nature 171: 737–738

    Article  PubMed  CAS  Google Scholar 

  • Watson JD, Crick FHC (1953b) Genetical implications of the structure of deoxyribonucleic acid. Nature 171: 964–967

    Article  PubMed  CAS  Google Scholar 

  • West SC, Cassuto E, Howard-Flanders P (1982) Postrepli-cation repair in E. coli: strand-exchange reactions of gapped DNA by RecA protein. Molec Gen Genet 187: 209–217

    Article  PubMed  CAS  Google Scholar 

  • Wilkins MHF, Stokes AR, Wilson HR (1953) Molecular structure of desoxypentose nucleic acid. Nature 171: 738–740

    Article  PubMed  CAS  Google Scholar 

  • Worcel A, Strogatz S, Riley D (1981) Structure of chromatin and the linking number of DNA. Proc Natl Acad Sci USA 78: 1461–1465

    Article  PubMed  CAS  Google Scholar 

  • Wu HM, Crothers DM (1984) The locus of sequence-directed and protein-induced DNA bending. Nature 308: 509–513

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hennig, W. (1998). Molekulare Grundlagen der Vererbung. In: Genetik. Springer-Lehrbuch. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-07430-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-07430-5_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-07431-2

  • Online ISBN: 978-3-662-07430-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics