Skip to main content

Gene Regulation in Yeast

  • Chapter
  • 1022 Accesses

Part of the book series: The Mycota ((MYCOTA,volume 2))

Abstract

The regulation of gene expression is vital for all organisms and is required in microorganisms in particular, in order to adapt quickly to changing environmental conditions. This regulation may involve adaptation to different carbon sources, the ability to use alternative metabolic pathways to overcome nutrient-limiting conditions or to respond to stress factors. Regulation is further required in both microorganisms and higher eukaryotes to realize developmental programs. These are as simple as mating or sporulation in yeast or as complex as the development of a multicellular organism from a single cell.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Belotserkovskaya R, Sterner DE, Deng M, Sayre MH, Lieberman PM, Berger SL (2000) Inhibition of TATA-binding protein function by SAGA subunits Spt3 and Spt8 at Gcn4-activated promoters. Mol Cell Biol 20: 634 – 647

    Article  PubMed  CAS  Google Scholar 

  • Berk AJ (1999) Activation of RNA polymerase II transcription. Curr Opin Cell Biol 11: 330 – 335

    Article  PubMed  CAS  Google Scholar 

  • Bhat PJ, Murthy TV (2001) Transcriptional control of the GAL/MEL regulon of yeast Saccharomyces cerevisiae: mechanism of galactose-mediated signal transduction. Mol Microbiol 40: 1059 – 1066

    Article  PubMed  CAS  Google Scholar 

  • Bhoite LT, Yu Y, Stillman DJ (2001) The Swi5 activator recruits the Mediator complex to the HO promoter without RNA polymerase II. Genes Dev 15: 24572469

    Google Scholar 

  • Burke LJ, Baniahmad A (2000) Co-repressors 2000. FASEB J 14: 1876 – 1888

    Google Scholar 

  • Chang M, Jaehning JA (1997) A multiplicity of mediators: alternative forms of transcription complexes communicate with transcriptional regulators. Nucleic Acids Res 25: 4861 – 4865

    Article  PubMed  CAS  Google Scholar 

  • Chiang YC, Komarnistky P, Chase D, Denis CL (1996) ADR1 activation domains contact the histone acetyltransferase GCN5 and the core transcriptional factor TFIIB. J Biol Chem 271: 32359 – 32365

    Article  PubMed  CAS  Google Scholar 

  • Chiang DY, Brown PO, Eisen MB (2001) Visualizing associations between genome sequences and gene expression data using genome-mean expression profiles. Bioinformatics 17: S49 – S55

    Article  PubMed  Google Scholar 

  • Coghlan A, Wolfe KH (2000) Relationship of codon bias to mRNA concentration and protein length in Saccharomyces cerevisiae. Yeast 16: 1131 – 1145

    Article  PubMed  CAS  Google Scholar 

  • Day DA, Tuite MF (1998) Post-transcriptional gene regulatory mechanisms in eukaryotes: an overview. J Endocrinol 157: 361 – 371

    Article  PubMed  CAS  Google Scholar 

  • DeRisi JL, Iyer VR, Brown PO (1997) Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278: 680 – 686

    Article  PubMed  CAS  Google Scholar 

  • Devaux F, Marc P, Jacq C (2001) Transcriptomes, transcription activators and microarrays. FEBS Lett 498: 140 – 144

    Article  PubMed  CAS  Google Scholar 

  • Drysdale CM, Jackson BM, McVeigh R, Klebanow ER, Kobuko T, Swanson M, Nakatani Y, Weil A, Hinnebusch AG (1998) The Gcn4 activation domain interacts specifically in vitro with RNA polymerase II enzyme, TFIID and the Adap-Gcn5p coactivator complex. Mol Cell Biol 18: 1711 – 1724

    PubMed  CAS  Google Scholar 

  • Dudley AM, Rougeulle C, Winston F (1999) The Spt components of SAGA facilitate TBP binding to a promoter at a post-activator-binding step in vivo. Genes Dev 13: 2940 – 2945

    Article  PubMed  CAS  Google Scholar 

  • Durrin LK, Mann RK, Kayne PS, Grunstein M (1991) Yeast histone H4 N-terminal sequence is required for promoter activation in vivo. Cell 65: 1023 – 1031

    Article  PubMed  CAS  Google Scholar 

  • Eberharter A, Sterner DE, Schieltz D, Hassan A, Yates JR, Berger SL, Workman JL (1999) The ADA complex is a distinct histone acetyltransferase complex in Saccharomyces cerevisiae. Mol Cell Biol 19: 6621 – 6631

    PubMed  CAS  Google Scholar 

  • Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95: 14863 – 14868

    Article  PubMed  CAS  Google Scholar 

  • Faitar SL, Brodie SA, Ponticelli AS (2001) Promoter-specific shifts in transcription initiation conferred by yeast TFIIB mutations are determined by the sequence in the immediate vicinity of the start sites. Mol Cell Biol 21: 4427 4440

    Google Scholar 

  • Futcher B (2000) Microarrays and cell cycle transcription in yeast. Curr Opin Cell Biol 12: 710 – 715

    Article  PubMed  CAS  Google Scholar 

  • Gasch AP, Spellman PT, Kao CM, Carmel-Harel 0, Eisen MB, Storz G, Botstein D, Brown PO (2000) Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 11: 4241 – 4257

    Google Scholar 

  • Grant PA, Berger SL (1999) Histone acetyltransferase complexes. Semin Cell Dev Biol 10: 169 – 177

    Article  PubMed  CAS  Google Scholar 

  • Grant PA, Sterner DE, Duggan LJ, Workman JL, Berger SL (1998) The SAGA unfolds: convergence of transcription regulators in chromatin-modifying complexes. Trends Cell Biol 8: 193 – 197

    Article  PubMed  CAS  Google Scholar 

  • Gregory PD (2001) Transcription and chromatin converge: lessons from yeast genetics. Curr Opin Genet Dev 11: 142 – 147

    Article  PubMed  CAS  Google Scholar 

  • Gross C, Kelleher M, Iyer VR, Brown P0, Winge DR (2000) Identification of the copper regulon in Saccharomyces cerevisiae by DNA microarrays. J Biol Chem 275: 32310 – 32316

    Article  PubMed  CAS  Google Scholar 

  • Guarente L (1992) Messenger RNA transcription and its control in Saccharomyces cerevisiae. In: Jones EW, Pringle JR, Broach JR (eds) The molecular and cellular biology of the yeast Saccharomyces, vol 2. Cold Spring Harbor Press, Cold Spring Harbor, NY, pp 49 – 98

    Google Scholar 

  • Gustafsson CM, Samuelsson T (2001) Mediator – a niversal complex in transcriptional regulation. Mol Microbiol 41: 1 – 8

    Article  PubMed  CAS  Google Scholar 

  • Hampsey M (1998) Molecular genetics of the RNA polymerase II general transcriptional machinery. Microbiol Mol Biol Rev 62: 465 – 503

    PubMed  CAS  Google Scholar 

  • Herrick D, Parker R, Jacobson A (1990) Identification and comparison of stable and unstable mRNAs in Saccharomyces cerevisiae. Mol Cell Biol 10: 2269 – 2284

    Google Scholar 

  • Hinnebusch AG (1997) Translational regulation of yeast GCN4. J Biol Chem 272: 21661 – 21664

    Article  PubMed  CAS  Google Scholar 

  • Holstege FC, Jennings EG, Wyrick JJ, Lee TI, Hengartner CJ, Green MR, Golub TR, Lander ES, Young RA (1998) Dissecting the regulatory circuitry of a eukaryotic genome. Cell 95: 717 – 728

    Article  PubMed  CAS  Google Scholar 

  • Hong L, Schroth GP, Matthews HR, Yau P, Bradbury EM (1993) Studies of the DNA binding properties of histone H4 amino terminus. Thermal denaturation studies reveal that acetylation markedly reduces the binding constant of the H4 “tail” to DNA. J Biol Chem 268: 305 – 314

    PubMed  CAS  Google Scholar 

  • Jacobs Anderson JS, Parker R (2000) Computational identification of cis-acting elements affecting post-transcriptional control of gene expression in Saccharomyces cerevisiae. Nucleic Acids Res 28: 1604 – 1617

    Article  Google Scholar 

  • Johnson AD (1995) The price of repression. Cell 81: 655 – 658

    Article  PubMed  CAS  Google Scholar 

  • Johnston M, Carlson M (1992) Regulation of carbon and phosphate utilization. In: Jones EW, Pringle JR, Broach JR (eds) The molecular and cellular biology of the yeast Saccharomyces, vol 2. Cold Spring Harbor Press, Cold Spring Harbor, NY, pp 193 – 281

    Google Scholar 

  • Kaufmann RJ (1999) Stress signalling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls. Genes Dev 13: 1211 – 1233

    Article  Google Scholar 

  • Keegan L, Gill G, Ptashne M (1986) Separation of the DNA binding from the transcription-activation function of a eukaryotic regulatory protein. Science 231: 699704

    Google Scholar 

  • Komeili A, O’Shea EK (2000) Nuclear transport and transcription. Curr Opin Cell Biol 12: 355 – 360

    Article  PubMed  CAS  Google Scholar 

  • Krebs JE, Kuo MH, Allis CD, Peterson CL (1999) Cell cycle-regulated histone acetylation required for expression of the yeast HO gene. Genes Dev 13: 1412 – 1421

    Article  PubMed  CAS  Google Scholar 

  • Kuo MH, Allis CD (1998) Roles of histone acetyltransferases and deacetylases in gene regulation. BioEssay 20: 615 – 626

    CAS  Google Scholar 

  • Kuras L, Struhl K (1999) Binding of TBP to promoters in vivo is stimulated by activators and requires pol II holoenzyme. Nature 399: 609 – 613

    Article  PubMed  CAS  Google Scholar 

  • Kurland CG (1991) Codon bias and gene expression. FEBS Lett 285: 165 – 169

    Article  PubMed  CAS  Google Scholar 

  • Lee TI, Young RA (2000) Transcription of eukaryotic protein-coding genes. Annu Rev Genet 34: 77137

    Article  Google Scholar 

  • Lee TI, Causton HC, Holstege FCP, Shen WC, Hannett N, Jennings EG, Winston F, Green MR, Young RA (2000) Redundant roles for the TFIID and SAGA complexes in global transcription. Nature 405: 701 – 704

    Article  PubMed  CAS  Google Scholar 

  • Li XY, Virbasius A, Zhu X, Green MR (1999) Enhancement of TBP binding by activators and general transcription factors. Nature 399: 605 – 609

    Article  PubMed  CAS  Google Scholar 

  • Lohr D, Venkov P, Zlatanova J (1995) Transcriptional regulation in the yeast GAL gene family: a complex genetic network. FASEB J 9: 777 – 787

    Google Scholar 

  • Malik S, Roeder RG (2000) Transcriptional regulation through mediator-like coactivators in yeast and metazoan cells. Trends Biochem Sci 25: 277 – 283

    Article  PubMed  CAS  Google Scholar 

  • Marc P, Devaux F, Jacq C (2001) yMGV: a database for visualization and data mining of published genome-wide yeast expression data. Nucleic Acids Res 29: E63

    Google Scholar 

  • McCarthy JE (1998) Posttranscriptional control of gene expression in yeast. Microbiol Mol Biol Rev 62: 1492 – 1553

    PubMed  CAS  Google Scholar 

  • Moskvina E, Schuller C, Maurer CTC, Mager WH, Ruis H (1998) A search in the genome of Saccharomyces cerevisiae for genes regulated via stress response elements. Yeast 14: 1041 – 1050

    Article  PubMed  CAS  Google Scholar 

  • Myers LC, Kornberg RD (2000) Mediator of transcriptional regulation. Annu Rev Biochem 69: 729 – 749

    Article  PubMed  CAS  Google Scholar 

  • Näär AM, Lemon BD, Tjian R (2001) Transcriptional co-activator complexes. Annu Rev Biochem 70: 475 – 501

    Article  PubMed  Google Scholar 

  • Neigeborn L, Carlson M (1984) Genes affecting the regulation of SUC2 gene expression by glucose repression in Saccharomyces cerevisiae. Genetics 108: 845 – 858

    PubMed  CAS  Google Scholar 

  • Ng HH, Bird A (2000) Histone deacetylases: silencers for hire. Trends Biochem Sci 25: 121 – 126

    Article  PubMed  CAS  Google Scholar 

  • Orphanides GT, Lagrange T, Reinberg D (1996) The general transcription factors of RNA polymerase II. Genes Dev 10: 2657 – 2683

    Article  PubMed  CAS  Google Scholar 

  • Patil C, Walter P (2000) Intracellular signalling from the endoplasmic reticulum to the nucleus: the unfolded protein response in yeast and mammals. Curr Opin Cell Biol 13: 349 – 355

    Article  Google Scholar 

  • Pazin MJ, Kadonaga JT (1997) What’s up and down with histone deacetylation and transcription? Cell 89: 325 – 328

    Article  PubMed  CAS  Google Scholar 

  • Pérez-Martin J (1999) Chromatin and transcription in Saccharomyces cerevisiae. FEMS Microbiol Rev 23: 503 – 523

    PubMed  Google Scholar 

  • Peterson CL, Herskowitz I (1992) Characterization of the yeast SWI1, SWI2, SWI3 genes, which encode a global activator of transcription. Cell 68: 573 – 583

    Article  PubMed  CAS  Google Scholar 

  • Peterson CL, Workman JL (2000) Promoter targeting and chromatin remodelling by the SWI/SNF complex. Curr Opin Genet Dev 10: 187 – 192

    Article  PubMed  CAS  Google Scholar 

  • Peterson CL, Dingwall A, Scott MP (1994) Five SWI/SNF gene products are components of a large multisubunit complex required for transcriptional enhancement. Proc Natl Acad Sci USA 91: 2905 – 2908

    Article  PubMed  CAS  Google Scholar 

  • Pilpel Y, Sudarsanam P, Church GM (2001) Identifying regulatory networks by combinatorial analysis of promoter elements. Nat Genet 29: 153 – 159

    Article  PubMed  CAS  Google Scholar 

  • Preiss T, Hentze MW (1998) Dual function of the messenger RNA cap structure in poly(A)-tail-promoted translation in yeast. Nature 392: 516 – 520

    Article  PubMed  CAS  Google Scholar 

  • Ranish JA, Yudkovsky N, Hahn S (1999) Intermediates in formation and activity of the RNA polymerase II preinitiation complex: holoenzyme recruitment and postrecruitment role for the TATA box and TFIIB. Genes Dev 13: 49 – 63

    Article  PubMed  CAS  Google Scholar 

  • Raue HA (1994) Metabolic stability of mRNA in yeast – a potential target for modulating productivity? Trends Biotechnol 12: 444 449

    Google Scholar 

  • Ren B, Robert F, Wyrick JJ, Aparicio 0, Jennings EG, Simon I, Zeitlinger J, Schreiber J, Hannett N, Kanin E, Volkert TL, Wilson CJ, Bell SP, Young RA (2000) Genome-wide location and function of DNA binding proteins. Science 290: 2306 – 2309

    Article  PubMed  CAS  Google Scholar 

  • Rohde JR, Trinh J, Sadowski I (2000) Multiple signals regulate GAL transcription in yeast. Mol Cell Biol 20: 3880 – 3886

    Article  PubMed  CAS  Google Scholar 

  • Ruis H, Schuller C (1995) Stress signalling in yeast. BioEssay 17: 959 – 965

    CAS  Google Scholar 

  • Ruiz-Echevarria MJ, Munshi R, Tomback J, Kinzy TG, Peitz SW (2001) Characterization of a general stabilizer element that blocks deadenylation-dependent mRNA decay. J Biol Chem 276: 30995 – 31003

    Article  PubMed  CAS  Google Scholar 

  • Sakurai H, Ohishi T, Fukasawa T (1996) Core promoter elements are essential as selective determinants for function of the yeast transcription factor GALL 1. FEBS Lett 398: 113 – 119

    Article  PubMed  CAS  Google Scholar 

  • Scheffler IE, de la Cruz BJ, Prieto S (1998) Control of mRNA turnover as a mechanism of glucose repression in Saccharomyces cerevisiae. Int J Biochem Cell Biol 30: 1175 – 1193

    Article  PubMed  CAS  Google Scholar 

  • Schulze A, Downward J (2001) Navigating gene expression using microarrays – a technology review. Nat Cell Biol 3: E190 – E195

    Article  PubMed  CAS  Google Scholar 

  • Sidrauski C, Chapman R, Walter P (1998) The unfolded protein response: an intracellular signalling pathway with many surprising features. Trends Cell Biol 8: 245 – 249

    Article  PubMed  CAS  Google Scholar 

  • Smith RL, Johnson AD (2000) Turning genes off by Ssn6-Tupl: a conserved system of transcriptional repression in eukaryotes. Trends Biochem Sci 25: 325 – 330

    Article  PubMed  CAS  Google Scholar 

  • Spellman PT, Sherlock G, Zhang MQ, Iyer VR, Anders K, Eisen MB, Brown P0, Botstein D, Futcher B (1998) Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell 9: 3273 – 3297

    PubMed  CAS  Google Scholar 

  • Stern M, Jensen R, Herskowitz I (1984) Five SWI genes are required for expression of the HO gene in yeast. J Mol Biol 178: 853 – 868

    Article  PubMed  CAS  Google Scholar 

  • Sterner DE, Berger SL (2000) Acetylation of histones and transcription-related factors. Microbiol Mol Biol Rev 64: 435 – 459

    Article  PubMed  CAS  Google Scholar 

  • Stewart JJ, Stargell LA (2001) The stability of the TFIIATBP-DNA complex is dependent on the sequence of the TATAAA element. J Biol Chem 276: 3007830084

    Google Scholar 

  • Struhl K (1995) Yeast transcriptional regulatory mechanisms. Annu Rev Genet 29: 651 – 674

    Article  PubMed  CAS  Google Scholar 

  • Struhl K (1998) Histone acetylation and transcriptional regulatory mechanisms. Genes Dev 12: 599 – 606

    Article  PubMed  CAS  Google Scholar 

  • Struhl K (1999) Fundamentally different logic of gene reg- ulation in eukaryotes and prokaryotes. Cell 98: 1 – 4

    Article  PubMed  CAS  Google Scholar 

  • Sudarsanam P, Winston F (2000) The Swi/Snf family: nudeosome-remodelling complexes and transcriptional control. Trends Genet 16: 345 – 350

    Article  PubMed  CAS  Google Scholar 

  • Sudarsanam P, Iyer VR, Brown PO, Winston F (2000) Whole-genome expression analysis of snf/swi mutants of Saccharomyces cerevisiae. Proc Natl Acad Sci USA 97: 3364 – 3369

    Article  PubMed  CAS  Google Scholar 

  • Thuriaux P, Sentenac A (1992) Yeast nuclear RNA polymerases. In: Jones EW, Pringle JR, Broach JR (eds) The molecular and cellular biology of the yeast Saccharomyces, vol 2. Cold Spring Harbor Press, Cold Spring Harbor, NY, pp 1 – 48

    Google Scholar 

  • Tsukiyama T, Wu C (1997) Chromatin remodelling and transcription. Curr Opin Genet Dev 7: 182 – 191

    Article  PubMed  CAS  Google Scholar 

  • Vasudevan S, Peltz SW (2001) Regulated ARE-mediated mRNA decay in Saccharomyces cerevisiae. Mol Cell 7: 1191 – 1200

    Article  PubMed  CAS  Google Scholar 

  • Veenstra GJC, Wolffe AP (2001) Gene-selective developmental roles of general transcription factors. Trends Biochem Sci 26: 665 – 671

    Article  PubMed  CAS  Google Scholar 

  • Vignali M, Hassan AH, Neely KE, Workman JL (2000) ATP-dependent chromatin-remodelling complexes. Mol Cell Biol 20: 1899 – 1910

    Article  PubMed  CAS  Google Scholar 

  • Vilela C, Ramirez CV, Linz B, Rodrigues-Pousada C, McCarthy JE (1999) Post-termination ribosome interactions with the 5’UTR modulate yeast mRNA stability. EMBO J 18: 3139 – 3152

    Article  CAS  Google Scholar 

  • Vilo J, Kivinen K (2001) Regulatory sequence analysis: application to the interpretation of gene expression. Eur Neuropsychopharmacol 11: 399 – 411

    Article  PubMed  CAS  Google Scholar 

  • Wade PA, Wolffe AP (1997) Histone acetyltransferases in control. Curr Biol 7: R82 – R84

    Article  PubMed  CAS  Google Scholar 

  • Wade PA, Wolffe AP (1999) Transcriptional regulation: switching circuitry. Curr Biol 9: R221 – R224

    Article  PubMed  CAS  Google Scholar 

  • Welihinda AA, Kaufman RJ (1996) The unfolded protein response pathway in Saccharomyces cerevisiae. J Biol Chem 271: 18181 – 18187

    Article  PubMed  CAS  Google Scholar 

  • Winston F, Carlson M (1992) Yeast SNF/SWI transcriptional activators and the SPT/SIN chromatin connection. Trends Genet 8: 387 – 391

    PubMed  CAS  Google Scholar 

  • Yamaguchi Y, Narita T, Inukai N, Wada T, Handa H (2001) SPT genes: key players in the regulation of transcription, chromatin structure and other cellular processes. J Biochem (Tokyo) 129: 185 – 191

    Article  CAS  Google Scholar 

  • Yano K, Fukasawa T (1997) Galactose-dependent reversible interaction of Gal3p with Ga180p in the induction pathway of Gal4p-activated genes of Saccharomyces cerevisiae. Proc Natl Acad Sci USA 94: 1721 – 1726

    Article  PubMed  CAS  Google Scholar 

  • Zhang MQ (1999) Large-scale gene expression data analysis: a new challenge to computational biologists. Genome Res 9: 681 – 688

    PubMed  CAS  Google Scholar 

  • Zhu J, Zhang MQ (1999) SCPD: a promoter database of the yeast Saccharomyces cerevisiae. Bioinformatics 15: 607 – 611

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Prinz, B., Lang, C. (2004). Gene Regulation in Yeast. In: Kück, U. (eds) Genetics and Biotechnology. The Mycota, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-07426-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-07426-8_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07667-1

  • Online ISBN: 978-3-662-07426-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics