Skip to main content

Lipids in Fungal Biotechnology

  • Chapter
Genetics and Biotechnology

Part of the book series: The Mycota ((MYCOTA,volume 2))

Abstract

Since most fungi are capable of degrading a wide diversity of readily available substrates, there has been much interest in their exploitation for the production of lipids. Several molds were shown to produce lipids whose fatty acid composition was similar to edible oils (Azeem et al. 1999). Even on inexpensive carbon sources, the conversion efficiency of substrate to fungal lipid is currently unable to compete in price with the plant oils widely used as human food. For example, approximately 5 t of substrate are needed to produce 1 t of fungal oil (Ratledge 1988). Lipid production from fungi becomes economically viable, however, when it either yields special metabolites not available more cheaply from other sources, such as polyunsaturated fatty acids (PUFAs), or offers easy conversion to products of biochemical and pharmaceutical importance. This is especially true when utilizing waste products from other processes, particularly if direct disposal of such materials is environmentally hazardous.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abou HNAA (1994) Production of fats and lipids by yeast utilizing whey. Egyptian J Microbiol 29 (1): 73–80

    Google Scholar 

  • Adam O (1990) Stoffwechselwirkungen and Nebenwirkungen der n-3 Fettsäuren (DGF abstract). Fat Sci Technol 92: 423

    Google Scholar 

  • Aggelis G, Sourdis J (1997) Prediction of lipid accumulation-degradation in oleaginous microorganisms growing on vegetable oils. Antonie van Leeuwenhoek 72: 159–165

    Article  PubMed  CAS  Google Scholar 

  • Aggelis G, Komaitis M, Papanikolaou S, Papadopoulos G (1995a) A mathematical model for the study of lipid accumulation in oleaginous microorganisms. I. Lipid accumulation during growth of Mucor circinelloides CBS 172–27 on a vegetable oil. Grasas Aceites 46 (3): 169–173

    Article  CAS  Google Scholar 

  • Aggelis G, Komaitis M, Papanikolaou S, Papadopoulos G (1995b) A mathematical model for the study of lipid accumulation in oleaginous microorganisms. II. Study of cellular lipids of Mucor circinelloides during growth on a vegetable oil. Grasas Aceites 46 (4–5): 245–250

    Article  CAS  Google Scholar 

  • Aggelis G, Stathas D, Tavoularis N, Komaitis M (1996) Composition of lipids produced by some strains of Candida species. Production of single-cell oil in a chemostat culture. Folia Microbiol 41 (4): 299–302

    Article  CAS  Google Scholar 

  • Aki T, Matsumoto Y, Morinaga T, Kawamoto S, Shigeta S, Ono K, Suzuki 0 (1998) Lipid composition of a newly isolated polyunsaturated fatty acid producing fungus, Achlya sp. Ma-2801. J Ferment Bioeng 86 (5): 504–507

    CAS  Google Scholar 

  • Aki T, Nagahata Y, Ishihara K, Tanaka Y, Morinaga T, Higashiyama K, Akimoto K, Fujikawa S, Kawamoto S, Shigeta S, Ono K, Suzuki 0 (2001) Production of arachidonic acid by the filamentous fungus, Mortierella alliacea strain YN-15. J Am Oil Chem Soc 78 (6): 599–604

    CAS  Google Scholar 

  • Akoh C, Moussata CO (1998) Lipase-catalyzed modification of borage oil: Incorporation of capric and eicosapentaenoic acids to form structured lipids. J Am Oil Chem Soc 75 (6): 697–701

    Article  CAS  Google Scholar 

  • Akoh C, Cooper C, Nwosu CV (1992) Lipase G catalysed synthesis of monoglycerides in organic solvent and analysis by HPLC. J Am Oil Chem Soc 69 (3): 257–260

    Article  CAS  Google Scholar 

  • Alhir S, Markakis P, Chandan RC (1990) Lipase of Penicil- lium caseicolum. J Agric Food Chem 38 (3): 598–601

    Article  CAS  Google Scholar 

  • Arbige MV, Freund PR, Silver SC, Zeiko JT (1986) Novel lipase for cheddar cheese flavor development. Food Technol 40 (4): 91–96

    CAS  Google Scholar 

  • Auberger B, Lamberet C, Lenoir J (1985) Enzymatic activities of Penicillium camemberti. Sci Aliments 5 (5): 239–244

    Google Scholar 

  • Azeem A, Neelagund YF, Rathod V (1999) Biotechnological production of oil: Fatty acid composition of microbial oil. Plant Food Hum Nutr Dordrecht 53 (4): 381–386

    Article  CAS  Google Scholar 

  • Baillargeon MW (1990) Purification and specificity of lipases from Geotrichum candidum. Lipids 25 (12): 841–848

    Article  CAS  Google Scholar 

  • Baillargeon MW, McCarthy SG (1991) Geotrichum candidum NRRL Y-553 lipase: purification, characterization and fatty acid specificity. Lipids 26(10):831936

    Google Scholar 

  • Baillargeon MW, Sonnet PE (1991) Selective lipid hydrolysis by Geotrichum candidum NRRL Y-553 lipase. Biotechnol Lett 13 (12): 871–874

    Article  CAS  Google Scholar 

  • Bajpai P, Bajpai PK (1993) Eicosapentaenoic acid (EPA) production from microorganisms: a review. J Biotechnol 30 (2): 161–183

    Article  PubMed  CAS  Google Scholar 

  • Bajpai P, Bajpai PK, Ward OP (1991a) Production of docosahexaenoic acid by Thraustochytrium aureum. Appl Microbiol Biotechnol 35 (6): 706–710

    Article  CAS  Google Scholar 

  • Bajpai PK, Bajpai P, Ward OP (1991b) Arachidonic acid production by fungi. Appl Environ Microbiol 57 (4): 1255–1258

    PubMed  CAS  Google Scholar 

  • Bajpai P, Bajpai PK, Ward OP (1991c) Effect of aging Mortierella mycelium on production of arachidonic and eicosapentaenoic acids. J Am Oil Chem Soc 68 (10): 775–780

    Article  CAS  Google Scholar 

  • Bajpai PK, Bajpai P, Ward OP (1991d) Optimization of production of docosahexaenoic acid (DHA) by Thraustochytrium aureum ATCC 34304. J Am Oil Chem Soc 68 (7): 509–514

    Article  CAS  Google Scholar 

  • Bajpai P, Bajpai PK, Ward OP (1991e) Eicosapentaenoic acid (EPA) production by Mortierella alpina ATCC 32222. Appl Biochem Biotechnol 31 (3): 267–272

    Article  PubMed  CAS  Google Scholar 

  • Bajpai P, Bajpai PK, Ward OP (1991f) Eicosapentaenoic acid (EPA) formation: comparative studies with Mortierella strains and production by Mortierella elongata. Mycol Res 95 (11): 1294–1298

    Article  CAS  Google Scholar 

  • Beakes GW (1980) Electron microscopic study of oospore maturation and germination in an emasculate isolate of Saprolegnia ferax 3. Changes in organelle status and association. Can J Bot 58: 208–227

    Google Scholar 

  • Berger M, Laumen K, Schneider MP (1992) Enzymatic esterification of glycerol I. Lipase catalyzed synthesis of regioisometrically pure 1,3-sn-diacylglycerols. J Am Oil Chem Soc 69 (10): 955–960

    Article  CAS  Google Scholar 

  • Bhalerao UT, Dasaradhi L, Neelakantan P, Fadnavis NW (1991) Lipase catalyzed regio selectives and enantio selectives hydrolysis, molecular recognition phenomenon and synthesis of R dimorphecolic acid. J Chem Soc Chem Commun 17: 1197–1198

    Article  Google Scholar 

  • Bilyk A, Bislime RG Jr, Haas MJ, Feairheller SH (1991) Lipase catalyzed triglyceride hydrolysis in organic solvent. J Am Oil Chem Soc 68 (5): 320–323

    Article  CAS  Google Scholar 

  • Bistline RG Jr. Bilyk A, Feairheller SH (1991) Lipase catalyzed formation of fatty amines. J Am Oil Chem Soc 68(2):95–98

    Google Scholar 

  • Blignault E, Senekal R, Kock JLF, Botha A, Van Der Westhuizen PJ (1996) The value of cellular fatty acid analysis in the identification of oral yeasts. Syst Appl Microbiol 19: 381–387

    Article  Google Scholar 

  • Bloomer S, Adlercreutz P, Mattiasson B (1992) Facile synthesis of fatty acid esters in high yields. Enzyme Microb Technol 14 (7): 546–552

    Article  CAS  Google Scholar 

  • Börgstrom B, Brockman HL (1984) Lipases. Elsevier, New York

    Google Scholar 

  • Botha A, Kock JLF (1993) Application of fatty acid profiles in the identification of Yeasts. Int J Food Microbiol 19: 39–51

    Article  PubMed  CAS  Google Scholar 

  • Botha A, Strauss T, Kock JLF, Pohl CH, Coetzee DJ (1997) Carbon source utilization and gamma-linolenic acid 412 M. Sancholle production by mucoralean fungi. Syst Appl Microbiol 20 (1): 165–170

    Article  CAS  Google Scholar 

  • Botha A, Paul I, Roux C, Kock JLF, Coetzee DJ, Strauss T, Maree C (1999) An isolation procedure for arachidonic acid producing Mortierella species. Microbiology 75 (3): 253–256

    CAS  Google Scholar 

  • Boulton CA, Ratledge C (1984) The physiology of hydrocarbon-utilizing microorganisms. In: Wiseman A (ed) Topics in fermentation and enzyme technology, vol 9. Ellis Horwood, Chichester, pp 11–77

    Google Scholar 

  • Brakemeier A, Wullbrandt D, Lang S (1998) Candida bombicola: production of novel alkyl glycosides based on glucose/2-dodecanol. Appl Microbiol Biotechnol 50: 161–166

    Google Scholar 

  • Brennan PJ, Lösel DM (1978) Physiology of fungal lipids: selected topics. Adv Microbial Physiol 17: 47–179

    Article  CAS  Google Scholar 

  • Brockerhoff H, Jensen R (1974) Lipolytic enzymes. Academic Press, New York

    Google Scholar 

  • Brown DE, Hasan M, Lepe-Casillas M, Thornton AJ (1990) Effect of temperature and pH on lipid accumulation by Trichoderma reesei. Appl Microbiol Biotechnol 34 (3): 335–339

    Article  CAS  Google Scholar 

  • Brzozowski AM, Derewenda U, Derewenda ZS, Dodson GC, Lawson DM, Turkenburg JP, Bjorkling F, Huge-Jensen B, Patkar SA, Thim L (1991) A model for interfacial activation in lipases from the structure of the fungal lipase inhibitor complex. Nature 351 (6326): 491–494

    Article  PubMed  CAS  Google Scholar 

  • Budziszewski GJ, Croft KPC, Hildebrand DF (1996) Uses of biotechnology in modifying plant lipids. Lipids 31 (6): 557–569

    Article  PubMed  CAS  Google Scholar 

  • Bühler M, Schindler J (1984) Aliphatic hydrocarbons. In: Rehm HJ, Reed G (eds) Biotechnology, vol 6a. Verlag Chemie, Weinheim, pp 329–385

    Google Scholar 

  • Burnanova L, Rezanka T, Jandera A (1990) Screening for strains of the genus Mortierella showing elevated production of highly unsaturated fatty acids. Folia Microbiol 35 (6): 578–582

    Article  Google Scholar 

  • Casey WM, Rolph CE, Tomeo ME, Parks LW (1993) Effects of unsaturated fatty acid supplementation on phospholipid and triacylglycerol biosynthesis in Saccharomyces cerevisiae. Biochem Biophys Res Commun 193 (3): 1297–1303

    Article  PubMed  CAS  Google Scholar 

  • Carta G, Gainer JL, Gibson ME (1992) Synthesis of esters using a nylon immobilized lipase in batch and continuous reactors. Enzyme Microb Technol 14 (11): 904–910

    Article  PubMed  CAS  Google Scholar 

  • Carvalho PO, Oliveira JG, Pastore GM (1999) Effects of culture conditions on the production of gammalinolenic acid by Mucor sp. LB-54. Biotechnology (NY) 13 (2): 169–181

    CAS  Google Scholar 

  • Celligoi MAPC, Angelis DFD, Buzato JB (1997) Application of sugar-cane molasses in the production of lipids by yeast. Arquivos Biol Technol Curitiba 40 (3): 693–698

    CAS  Google Scholar 

  • Certik M, Shimizu S (1999) Biosynthesis and regulation of microbial polyunsaturated fatty acid production. J Biosc Bioeng 87(1):l-14

    Google Scholar 

  • Certik M, Sajbidor J, Stredanska S (1993a) Effect of carbon and nitrogen sources on growth lipid production and fatty acid composition of Mucor mucedo F-1384. Microbios 74: 7–15

    CAS  Google Scholar 

  • Certik M, Sereke Berhan S, Sajbidor J (1993b) Lipid production and fatty acid composition of selected strains belonging to Mucorales. Acta Biotechnol 13 (2): 193–196

    Article  CAS  Google Scholar 

  • Certik M, Balteszova L, Sajbidor J (1997) Lipid formation and gamma-linolenic acid production by Mucorales fungi grown on sunflower oil. Lett Appl Microbiol 25 (2): 101–105

    Article  CAS  Google Scholar 

  • Certik M, Sakuradani E, Shimizu S (1998) Desaturasedefective fungal mutants: useful tools for the regulation and overproduction of polyunsaturated fatty acids. Trends Biotechnol 16 (12): 500–505

    Article  CAS  Google Scholar 

  • Certik M, Megova J, Horenitzky R (1999) Effect of nitrogen sources on the activities of lipogenic enzymes in oleaginous fungus Cunninghamella echinulata. J Gen Appl Microbiol 4/5(6): 289–293

    Google Scholar 

  • Charton E, Macrae AR (1992) Substrate specificities of lipases A and B from Geotrichum candidum. CMICC 335426. Biochim Biophys Acta 1123 (1): 59–64

    Article  PubMed  CAS  Google Scholar 

  • Charton E, Macrae AR (1993) Specificities of immobilized Geotrichum candidum CMICC 335426. Enzyme Microb Technol 15 (6): 489–493

    Article  CAS  Google Scholar 

  • Chen HC, Chang CC (1994) Screening of microbes for the production of polyunsaturated fatty acids. J Chinese Agric Chem Soc 32 (1): 33–46

    CAS  Google Scholar 

  • Chen HC, Liu TM (1997) Inoculum effects on the production of y-linolenic acid by the shake culture of Cunninghamella echinulata CCRC 31840. Enzyme Microb Technol 21: 137–142

    Article  CAS  Google Scholar 

  • Chen JP, McGill SD (1992) Enzymatic hydrolysis of triglycerides by Rhizopus delemar immobilized on biomass support particles. Food Biotechnol (NY) 6 (1): 1–8

    Article  Google Scholar 

  • Chen JP, Yang B (1992) Enhancement of release of short chain fatty acids from milk fat with immobilized microbial lipase. J Food Sci 57 (3): 781–782

    Article  CAS  Google Scholar 

  • Chen JP, Ishii T, Shimura S, Kirimura K, Usami S (1992) Lipase production by Trichosporum fermentans WU-C12, a newly isolated yeast. J Ferment Bioeng 73 (5): 412–414

    Article  CAS  Google Scholar 

  • Chen JP, Shimura S, Kirimura K, Usami S (1993) Enhancement of lipase production from hydrocarbons by mutation of Trichosporum fermentans. Appl Microbiol Biotechnol 38 (6): 714–718

    Article  CAS  Google Scholar 

  • Cheng MH, Walker TH, Hulbert GJ, Raman DR (1999) Fungal production of eicosapentaenoic and arachidonic acids from industrial waste streams and crude soybean oil. Bioresource Technol 67 (2): 101–110

    Article  CAS  Google Scholar 

  • Cho SW, Rhee JS (1993) Immobilization of lipase for effective interesterification of fats and oils in organic solvent. Biotechnol Bioeng 41 (2): 204–210

    Article  PubMed  CAS  Google Scholar 

  • Cirigliano MC, Carman GM (1984) Isolation of a bioemulsifier from Candida lipolytica. Appl Environ Microbiol 48: 747–750

    PubMed  CAS  Google Scholar 

  • Cirigliano MC, Carman GM (1985) Purification and characterization of liposan, a bioemulsifier from Candida lipolytica. Appl Environ Microbiol 50: 846–850

    PubMed  CAS  Google Scholar 

  • Coetzee DJ, Kock JLF, Botha A, van Dyk MS, Smit EJ, Botes EJ, Augustyn OPH (1992) Yeast eicosanoids (III) the distribution of arachidonic acid metabolites in the life cycle of Dipodascopsis uninucleatus. Syst Appl Microbiol 15: 311–318

    Article  CAS  Google Scholar 

  • Commenil P, Belingheri L, Dehorter B, Sancholle M (1992) Partial purification of a lipase from Botrytis cinerea. In: Cherif A, Daoud DBM, Marzouk B, Smaoui A, Zarrouk M (eds) Metabolism, structure and utilization of plant lipids. National Institute of Scientific and Technical Research, Hammam-Lif, Tunisia

    Google Scholar 

  • Conti E, Stredansky M, Stredanska S, Zanetti F (2001) Gamma-linolenic acid production by solid-state fermentation of Mucorales strains on cereals. Biore-source Technol 78 (3): 283–286

    Article  Google Scholar 

  • Davila A-M, Marchal R, Vandecasteele J-P (1997) Sophorose lipid fermentation with differentiated substrate supply for growth and production phases. Appl Microbiol Biotechnol 47: 496–501

    Article  CAS  Google Scholar 

  • Davranov KD, Meerov GI, Bezborodov AM, Trosko UI, Sergeev AG (1985) The use of Oospora lactis lipase for the hydrolysis of vegetable oils. Prikl Biokhim Mikrobiol 1 (2): 199–202

    Google Scholar 

  • De Baets S, Vandedrinck S, Vandamme EJ (2000) Vitamins and related biofactors, Microbial production. In: Ledeberg J (ed) Encyclopedia of microbiology, vol 4, 2nd edn. Academic Press, San Diego

    Google Scholar 

  • de Laborde de Monpezat T (1990) Production de lipases fongiques spécifiques. Etude par fluorométrie. Thèse Doctorat Université Paul Sabatier, Toulouse no 747

    Google Scholar 

  • de Laborde de Monpezat T, Sancholle M (1989) Detection of fungal lipases using a new fluorimetric method. Actes du congres international Chevreul pour l’etude des corps gras. Tome íl: 1051–1058

    Google Scholar 

  • de Laborde de Monpezat T, de Jeso B, Butour JL, Chavant L, Sancholle M (1990) A fluorimetric method for measuring lipase activity based on umbelliferyl esters. Lipids 25 (10): 661–664

    Article  Google Scholar 

  • Del Rio JL, Serra P, Valero F, Poch M, Sota C (1990) Reaction scheme of lipase production by Candida rugosa growing on olive oil. Biotechnol Lett 12 (11): 835–838

    Article  Google Scholar 

  • Deshpande M, Daniels L (1995) Evaluation of sophorolipid biosurfactant production by Candida bombicola using animal fat. Bioresource Technol 54: 143–150

    Article  CAS  Google Scholar 

  • Dimou DM, Georgala A, Komaitis M, Aggelis G (2002) Mycelial fatty acid composition of Pleurotus spp. and its application in the intragenic differentiation. Mycol Res 106 (8): 925–929

    Article  CAS  Google Scholar 

  • Dooijewaard-Klosterziel AMP, Wouters JTM (1976) Some properties of the lipase of Geotrichum candidum evaluated by a fluorimetric assay technique. J Appl Bacteriol 40: 93–299

    Google Scholar 

  • Dostalek M (1986) Production of lipid from starch by a nitrogen-controlled mixed culture of Saccharomycopsis fibuliger and Rhodosporidium toruloides. Appl Microbiol Biotechnol 4 (1): 19–23

    Google Scholar 

  • Druet D, El Abbadi N, Comeau LC (1992) Purification and characterization of the extracellular and cell-bound lipases from a Penicillium cyclopium variety. Appl Microbiol Biotechnol 37 (6): 745–749

    Article  CAS  Google Scholar 

  • du Preez JC, Immelman M, Kock JLF, Kilian SG (1995) Production of gamma-linolenic acid by Mucor circinelloides and Mucor rouxii with acetic acid as carbon substrate. Biotechnol Lett 17 (9): 933–938

    Article  Google Scholar 

  • du Preez JC, Immelman M, Kilian SG (1996) The utilization of short-chain monocarboxylic acids as carbon sources for the production of gamma-linolenic acid by Mucor strains in fed-batch culture. World J Microbiol Biotech 12 (1): 68–72

    Article  Google Scholar 

  • du Preez JC, Immelman M, Kock JLF, Kilian SG (1997) The effect of acetic acid concentration on the growth and production of gamma-linolenic acid by Mucor circinelloides CBS 203.28 in fed-batch culture. World J Microbiol Biotechnol 13: 81–87

    Article  Google Scholar 

  • Dyerberg 1 (1986) Linolenate derived polyunsaturated fatty acids and prevention of atherosclerosis. Nutr Rev 44: 123–134

    Google Scholar 

  • Einsele A (1983) Biomass from higher n-alkanes. In: Rehm HJ, Reed G (eds) Biotechnology, vol 3. Verlag Chemie, Weinheim, pp 43–81

    Google Scholar 

  • Elkady IA, Mostafa M, Zohri AA (1995) Utilization of cheese whey for lipid and sterol production by some isolates of xerophilous fungi. Folia Microbiol 40 (2): 209–212

    Article  CAS  Google Scholar 

  • Elwan SH, Ammar MS, Mohawed SM (1986a) Lipases from Aspergillus sydowii. Zentralbl Mikrobiol 141 (3): 233–239

    CAS  Google Scholar 

  • Elwan SH, Ammar MS, Mohawed SM (1986b) Production of Aspergillus sydowii lipases under bench and large scale fermentation. Zentralbl Mikrobiol 141 (3): 241–246

    CAS  Google Scholar 

  • Elwan SH, Ammar MS, EI-Moussallamy MK (1986c) Identity and lipases productivity of Penicillium chrysogenum. Egypt J Microbiol 21 (2): 143–154

    CAS  Google Scholar 

  • Elwan SH, Ammar MS, EI-Moussallamy MK (1988) Partial purification and properties of Penicillium chrysogenum lipase. Egypt J Microbiol 22 (1): 11–26

    Google Scholar 

  • Emel’yanova EV, Eroshin VK (1996) Polyunsaturated fatty acids of the fungus Mucor IBFM. Mikrobiologiya 65 (4): 462–466

    Google Scholar 

  • Engel KM, Bohnen M, Dobe M (1991) Lipase catalyzed reactions of chiral hydroxyacid esters: competition of esterification on transesterification. Enzyme Microb Technol 13(81: 654–660

    Google Scholar 

  • Ergan F, Trani M (1991) Effect of lipase specificity on triglyceride synthesis. Biotechnol Lett 13 (1): 19–24

    Article  CAS  Google Scholar 

  • Eroshin VK, Dedyukhina EG, Chistyakova TI, Zhelifonova VP, Kurtzman CP; Bothast RJ (1996) Arachidonic-acid production by species of Mortierella. World J Microbiol Biotechnol 12 (1): 91–96

    Article  CAS  Google Scholar 

  • Eroshin VK, Satroutdinov AD, Dedyukhina EG, Chistyakova TI (2000) Arachidonic acid production by Mortierella alpina with growth-coupled lipid synthesis. Proc Biochem 35 (10): 1171–1175

    Article  CAS  Google Scholar 

  • Espinosa E, Sanchez S, Farres A (1990) Nutritional factors affecting lipase production by Rhizopus delemar CDBB M313. Biotechnol Lett 12 (3): 209–214

    Article  CAS  Google Scholar 

  • Farag AA, Aly ME, El Alfy MB (1992) Enhancement of blue cheese flavor using sodium dodecylsulfate and lipase. Nahrung 36 (1): 1–7

    Article  CAS  Google Scholar 

  • Farahat SM, Rabie AM, Farag AA (1990) Evaluation of the proteolytic and lipolytic activity of different Penicillium roqueforti strains. Food Chem 36 (3): 169–180

    Article  CAS  Google Scholar 

  • Feofilova EP, Daragan-Sushchova MV, Volokhova MV, Velichko BA, Shirokova EA, Sinitsin AP (1988) Changes in the chemical composition of Aspergillus japonicus cells in the course of their growth. Microbiologiya 57: 778–784

    CAS  Google Scholar 

  • Ferrer P, Sola C (1992) Lipase production by immobilized Candida rugosa cells. Appl Microbiol Biotechnol 37 (6): 737–741

    Article  CAS  Google Scholar 

  • Finnerty WR (1989) Microbial lipid metabolism. In: Ratledge C, Wilkinson SG (eds) Microbial lipids. Academic Press, London, pp 525–566

    Google Scholar 

  • Fox PJ, Law 1 (1991) Enzymology of cheese ripening. Food Biotechnol 5 (3): 239–262

    Article  CAS  Google Scholar 

  • Fukuda H, Morikawa H (1987) Enhancement of y-linolenic acid production by Mucor ambiguus with nonionic surfactants. Appl Microbiol Biotechnol 27: 15–20

    Article  CAS  Google Scholar 

  • Funtikova NS, Mysyakina IS (1997) Synthesis of gammalinolenic acid by mucoraceous fungi utilizing exogenous fatty acids. Mikrobiologie 66 (1): 90–94

    Google Scholar 

  • Funtikova NS, Pan’kina 01; Mysyakina ES, Konova IV (1998) Synthesis of gamma-linolenic acid and carotenoids by fungi Mucorale. Mikrobiologie 67 (3): 345–348

    Google Scholar 

  • Funtikova NS, Mysyakina IS, Konova IV (1999a) Utilization of fat from wastewater and synthesis of gammalinolenic acid by fungi of the genus Mucor. Prikladnaya Biokhim Mikrobiol 35 (3): 345–348

    CAS  Google Scholar 

  • Funtikova NS, Mysyakina IS, Poglazova MN (1999b) Morphogenesis and lipid composition of Mucor fungi grown in the presence of chloroanilines in submerged culture. Mikrobiologiya 68 (4): 467–472

    Google Scholar 

  • Furtado MM, Chandan RC (1985) Ripening changes in a blue mold surface ripened cheese from goat milk. J Food Sci 50 (2): 545–546

    Article  CAS  Google Scholar 

  • Galanina LA, Konova IV (1999) Synthesis of eicosapolyenoic acids in microscopic fungi of the genus Saprolegnia. Mikrobiologie 68 (4): 480–484

    Google Scholar 

  • Galanina LA, Solov’eva NL, Konova IV (1999) Synthesis of eicosapolyenoic acids in Pythium debaryanum grown in various media. Microbiology 68 (4): 412–417

    CAS  Google Scholar 

  • Gancet C, Guignard C, Fourmentraux P (1987) Catalysis by a lipase bearing Rhizopus arrhizus mycelium in fluorinated and halogeno-fluorinated hydrocarbons. J Am Oil Chem Soc 64 (9): 1263

    Google Scholar 

  • Gandhi SR, Weete JD (1991) Production of the polyunsaturated fatty acids arachidonic acid and eicosapentaenoic acid by the fungus Pythium ultimum. J Gen Microbiol 137 (8): 1825–1830

    Article  PubMed  CAS  Google Scholar 

  • Garcia MS, Amundson CH, Hill CG Jr (1991) Partial characterization of the action of an Aspergillus niger lipase on butteroil emulsions. J Food Sci 56 (5): 1233–1237

    Article  CAS  Google Scholar 

  • Garcia MS, Malcata FX, Hill CG Jr, Amundson CM (1992) Use of Candida rugosa lipase immobilized in a spiral wound membrane reactor for the hydrolysis of milkfat. Enzyme Microb Technol 14 (7): 535–545

    Article  CAS  Google Scholar 

  • Gatfield IL (1986) The enzymatic synthesis of esters in nonaqueous systems. Lebensm Wiss Technol 19 (1): 87–88

    CAS  Google Scholar 

  • Geluk MA, Norde W, van Kalsbeek MKAI, van Riet K (1992) Adsorption of lipase from Candida rugosa on cellulose and its influence on lipolytic activity. Enzyme Microb Technol 14 (9): 748–754

    Article  CAS  Google Scholar 

  • Giuseppin MLF (1984) Effect of dissolved oxygen concentration on lipase production by Rhizopus delemar. Appl Microbiol Biotechnol 20 (3): 161–165

    Article  CAS  Google Scholar 

  • Goh SM,Yeong SK, Wang CW (1993) Transesterification of cocoa butter by fungal lipases: effect of solvent on 1,3 specificity. J Am Oil Chem Soc 70 (6): 567–570

    Article  CAS  Google Scholar 

  • Granger LM, Perlot P, Goma G, Pareilleux A (1992) Kinetics of growth and fatty acid production of Rhodotorula glutinis. Appl Microbiol Biotechnol 37 (1): 13–17

    Article  CAS  Google Scholar 

  • Granger LM, Perlot P, Goma G, Pareilleux A (1993) Effect of various nutrient limitations on fatty acid production by Rhodotorula glutinis. Appl Microbiol Biotechnol 38 (6): 784–789

    Article  CAS  Google Scholar 

  • Gray CJ, Narang JS, Barker SA (1990) Immobilization of lipase from Candida cylindracea and its use in the synthesis of menthol esters by transesterification. Enzyme Microb Technol 12 (10): 800–807

    Article  PubMed  CAS  Google Scholar 

  • Guilbaut CG, Kramer DN (1966) Lipolysis of fluorescein and eosin esters. Kinetics of hydrolysis. Anal Biochem 14: 28–40

    Google Scholar 

  • Guilbaut CG, Hierserman J (1969) Fluorometric substrate for sulfatase and lipase. Anal Chem 41: 2006–2009

    Article  Google Scholar 

  • Guilmanov V, Ballistreri A, Ipallomeni G, Gross RA (2002) Oxygen transfer rate and sophorose lipid production by Candida bombicola. Biotechnol Bioeng 77: 489–494

    Article  PubMed  CAS  Google Scholar 

  • Guit RPM, Kloosterman M, Meindersma GW, Mayer M, Meijer EM (1991) Lipase kinetics: hydrolysis of triacetin by lipase from Candida cylindracea in a hollow fiber membrane reactor. Biotechnol Bioeng 38 (7): 727–732

    Article  PubMed  CAS  Google Scholar 

  • Gulomova K, Ziomek E, Schrag JD, Davranov K, Cygler M (1996) Purification and characterization of a Penicilhum sp. lipase which discriminates against diglycerides. Lipids 31 (4): 379–384

    Article  PubMed  CAS  Google Scholar 

  • Gunstone FD (1999) What else besides commodity oils and fats? Fett/Lipid 101 (4S): 124–131

    Article  CAS  Google Scholar 

  • Gunstone FD (2001) Oilseed crops with modified fatty acid composition. J Oleo Sci 50 (5): 269–279

    Article  CAS  Google Scholar 

  • Haas MJ, Allen J, Berka TR (1991) Cloning expression and characterization of a cDNA encoding lipase from Rhizopus delemar. Gene (AMST) 109(1): 107114

    Google Scholar 

  • Haas MJ, Cichowicz DJ, Bailey DG (1992) Purification and characterization of an extracellular lipase from the fungus Rhizopus delemar. Lipids 27: 571–576

    Article  CAS  Google Scholar 

  • Haas MJ, Cichowicz DJ, Phillips J, Moreau R (1993) The hydrolysis of phosphatidylcholine by an immobilized lipase: optimization of hydrolysis in organic solvents. J Am Oil Chem Soc 70 (2): 111–117

    Article  CAS  Google Scholar 

  • Haferburg D, Hommel RK, Claus R, Kleber HP (1986) Extracellular microbial lipids as biosurfactants. Adv Biochem Eng Biotechnol 33: 53–93

    CAS  Google Scholar 

  • Hamanaka T, Higashiyama K, Fujikawa S, Park EY (2001) Mycelial pellet intrastructure and visualization of mycelia and intracellular lipid in a culture of Mortierella alpina. Appl Microbiol Biotechnol 56 (l/2): 233–238

    Article  PubMed  CAS  Google Scholar 

  • Hamid S, Khan SA, Iqbal MZ (1995) Lipid production by Lipomyces lipoferus. Fett Wissenschaft Technol 97 (12): 449–452

    CAS  Google Scholar 

  • Hansson L, Dostalek M (1986) Effect of culture conditions on fatty-acid composition in lipids produced by the yeast Cryptococcus albidus. J Am Oil Chem Soc 63 (9): 1179–1184

    Article  CAS  Google Scholar 

  • Hansson L, Dostalek M, Sorenby B (1989) Production of ylinolenic acid by the fungus Mucor rouxii in fed-batch and continuous culture. Appl Microbiol Biotechnol 3l (3): 223–227

    Google Scholar 

  • Hayes DG, Gulari E (1991) 1-Monoglyceride production from lipase catalysed esterification of glycerol and fatty acid in reverse micelles. Biotechnol Bioeng 38(5):507–517

    Google Scholar 

  • Healy MG, Devine CM, Murphy R (1996) Microbial production of biosurfactants. Resources Consery Recycl 18: 41–57

    Article  Google Scholar 

  • Hedrich MC, Spener F, Menge U, Hecht MJ, Schmid RDI (1991) Large scale purification enzymatic characterization and crystallization of the lipase from Geotrichum candidum. Enzyme Microb Technol 13 (10): 840–847

    Article  CAS  Google Scholar 

  • Hedström G, Backlund M, Stotte JP (1993) Enantioselective synthesis of ibuprofen esters in AOT/isooctane microemulsions by Candida cylindracea lipase. Biotechnol Bioeng 42: 618–624

    Article  PubMed  Google Scholar 

  • Heisler A, Rabiller C, Hublin L (1991) Lipase catalyzed isomerization of 1,2 (2,3) diglyceride into 1,3 diglyceride: the crucial role of water. Biotechnol Lett 13 (5): 327–332

    Article  CAS  Google Scholar 

  • Hering L, Bisping B, Rehm MJ (1991) Patterns and formation of fatty acids in tempe fermentation by several strains of Rhizopus sp. Fett Wiss Technol 93 (8): 303–308

    CAS  Google Scholar 

  • Hertzberg S, Kvittingen L, Anthonsen T, Skjak-Braek G (1992) Alginate as immobilization matrix and stabilizing agent in a two phase liquid system: application in lipase catalyzed reactions. Enzyme Microb Technol 14 (1): 42–47

    Article  PubMed  CAS  Google Scholar 

  • Higashiyama K, Yaguchi T, Akimoto K, Fujikawa S, Shimizu S (1998a) Enhancement of arachidonic acid production by Mortierella alpina 15–4. J Am Oil Chem Soc 75 (11): 1501–1505

    Article  CAS  Google Scholar 

  • Higashiyama K, Toshiaki Y, Kengo A, Shigeaki F, Sakayu S (1998b) Effects of mineral addition on the growth morphology of an arachidonic acid production by Mortierella alpina 15–4. J Am Oil Chem Soc 75 (12): 1815–1819

    Article  CAS  Google Scholar 

  • Hiruta O, Kamisaka Y, Yokochi T, Futamura T, Takebe H, Satho A, Nakahara T, Suzuki O (1996a) Gammalinolenic acid production by a low temperature-resistant mutant of Mortierella ramanniana. J Ferment Bioeng 82 (2): 119–123

    Article  CAS  Google Scholar 

  • Hiruta O, Futamura T, Takebe H, Satoh A, Kamisaka Y, Yokochi T, Nakahara T, Suzuki 0 (1996b) Optimization and scale-up of gamma-linolenic acid production by Mortierella ramanniana MM 15–1 a high gammalinolenic acid producing mutant. J Ferment Bioeng 82 (4): 366–370

    CAS  Google Scholar 

  • Hoehfeld J, Kunau WM (1990) PAS-3 a gene of Saccharomyces cerevisiae essential for peroxisome biogenesis cloning sequence and identification of the gene product. Yeast 6: S350

    Google Scholar 

  • Holdsworth JE, Ratledge C (1991) Triacylglycerol synthesis in the oleaginous yeast Candida curvata. Lipids 26 (2): 111–118

    Article  PubMed  CAS  Google Scholar 

  • Hommel RK (1991) Formation and physiological role of biosurfactants produced by hydrocarbon-utilizing microorganisms. In: Ratledge C (ed) Physiology of biodegradative microorganisms VIII. Kluwer, Dordrecht, pp 107–120

    Google Scholar 

  • Hommel RK, Stegner S, Weber L, Kleber HP (1994) Effect of ammonium ions on glycolipid production by Candida (Torulopsis) apicola. Appl Microbiol Biotechnol 42 (2/3): 192–197

    CAS  Google Scholar 

  • Hoq MM, Tagami M, Yamane T, Shimizu S (1985) Some characteristics of continuous glyceride synthesis by lipase in a microporous hydrophobic membrane bioreactor. Agric Biol Chem 49 (2): 335–342

    Article  CAS  Google Scholar 

  • Hosono K (1992) Effect of salt stress on lipid composition and membrane fluidity of the salt-tolerant yeast Zygosaccharomyces rouxii. J Gen Microbiol 138 (1): 91–96

    Article  CAS  Google Scholar 

  • Huang KH, Akoh C, Erickson M (1994) Enzymatic modification of melon seed oil: incorporation of eicosapentaenoic acid. J Agric Food Chem 42 (11): 2646–2648

    Article  CAS  Google Scholar 

  • Huang FC, Ju YH, Huang CW (1997) Enrichment in gamma-linolenic acid of acylglycerols by the selective hydrolysis of borage oil. Appl Biochem Biotechnol 67 (3): 227–236

    Article  CAS  Google Scholar 

  • Huang J, Aki T, Hachida K, Yokochi T, Kawamoto S, Shigeta S, Ono K, Suzuki 0 (2001) Profile of polyunsaturated fatty acids produced by Thraustochytrium sp. KK17–3. J Am. Oil Chem Soc 78 (6): 605–610

    CAS  Google Scholar 

  • Huang SY, Stukey J, Martin CE (1991) Unsaturated fatty acid regulation of the yeast 4–9 fatty acid desaturase gene. Fed Am Soc Exp Biol J 5: A1160

    Google Scholar 

  • Huang YS, Chaudhary S, Thurmond JM, Bobik EG Jr, Yuan LCGM, Kirchner SJ, Mukerji P, Immelman M, du Preez JC, Kilian SG (1997) Effect of C:N ratio on gammalinolenic acid production by Mucor circinelloides grown on acetic acid. Syst Appl Microbiol 20 (1): 158–164

    Article  Google Scholar 

  • Huang YS, Chaudhary S, Thurmond JM, Bobik EG Jr, Yuan L, Chan GM, Kirchner SJ, Mukerji P, Knutzon DS (1999) Cloning of 412-and 46-desaturases from Mortierella alpina and recombinant production of oc-linolenic acid in Saccharomyces cerevisiae. Lipids 4 (7): 649–659

    Article  CAS  Google Scholar 

  • Huene K, Schweizer M, Schweizer E (1990) Genetic manipulation of the fatty acid chain length pattern in yeast. Fett Wiss Technol 92: 232–236

    Google Scholar 

  • Huge-Jensen B, Galluzzo DR, Jensen RG (1987) Partial purification and characterization of free and immobilized lipases from Mucor miehei. Lipids 22 (8): 559–565

    Article  CAS  Google Scholar 

  • Immelman M, du Preez JC, Kilian SG (1997) Effect of C:N ratio on gamma-linolenic acid production by Mucor circinelloides grown on acetic acid. Syst Appl Microbiol 20: 158–164

    Article  CAS  Google Scholar 

  • Isobe K, Nokihara K, Yamaguchi S, Mase T, Schmid RD (1992) Crystallization and characterization of monoacylglycerol and diacylglycerol lipase from Penicillium camemberti. Eur J Biochem 203 (1/2): 233–238

    Article  PubMed  CAS  Google Scholar 

  • Jacks TJ, Kircher MW (1967) Fluorimetric assay for the hydrolytic activity of lipase using fatty acyl esters of 4-methylumbelliferone. Anal Biochem 21: 279–285

    Article  PubMed  CAS  Google Scholar 

  • Jackson MA, Lanser AC (1993) Glucose and zinc concentration influence fusarin C synthesis, ethanol synthesis and lipid composition in Fusarium moniliforme submerged cultures. FEMS Microbiol Lett 108 (1): 69–74

    PubMed  CAS  Google Scholar 

  • Jackson FM, Michaelson L, Fraser TCM, Stobart AK, Griffith G (1998) Biosynthesis of triacylglycerol in the filamentous fungus Mucor circinelloides. Microbiol Reading 144 (9): 2639–2645

    Article  CAS  Google Scholar 

  • Jacobsen T, Poulsen OM, Hau J (1989a) Enzyme activity electrophoresis and rocket immunoelectrophoresis for the qualitative and quantitative analysis of Geotrichum candidum lipase activity. Electrophoresis 10 (1): 49–52

    Article  PubMed  CAS  Google Scholar 

  • Jacobsen T, Olsen J, Allermann K, Poulsen OM, Hau J (1989b) Production partial purification and immunochemical characterization of multiple forms of lipase from Geotrichum candidum. Enzyme Microb Technol 11 (2): 90–95

    Article  CAS  Google Scholar 

  • Jacobsen T, Olsen J, Allermann K (1990) Substrate specificity of Geotrichum candidum lipase preparations. Biotechnol Lett 12 (10): 121–126

    Article  CAS  Google Scholar 

  • Jambhulkar V, Shankhapal KV (1992) Effect of minerals on lipid production by Rhizopus nigricans on tamarind kernel powder. J Food Sci Technol 29 (5): 333–335

    CAS  Google Scholar 

  • Jansen Van Vuuren D, Kock JLF, Botha A, Botes PJ (1994) Changes in lipid composition during the life cycle of Dipodascopsis tóthii. System Appl Microbiol 17: 346–351

    Article  Google Scholar 

  • Jansen Van Rensburg EL, Kock JLF, Coetzee DJ, Botha A, Botes PJ (1995) Lipid composition and DNA band patterns in the yeast family Lipomycetaceae. Syst Appl Microbiol 18: 410–424

    Article  Google Scholar 

  • Janssen AEM, Lefferts AG, van Riet K (1990) Enzymatic synthesis of carbohydrate esters in aequeous media. Biotechnol Lett 12 (10): 711–716

    Article  CAS  Google Scholar 

  • Jareonkitmongkol S, Kawashima H, Shirasaka N, Shimizu S, Yamada H (1992a) Production of dihomo-y linolenic acid by a 45-desaturase-defective mutant of Mortierella alpina 1S-4. Appl Environ Microbiol 58 (7): 2196–2200

    PubMed  CAS  Google Scholar 

  • Jareonkitmongkol S, Shimizu S, Yamada H (1992b) Fatty acid desaturation-defective mutants of an arachidonic acid-producing fungus Mortierella alpina IS-4. J Gen Microbiol 138 (5): 997–1002

    Article  CAS  Google Scholar 

  • Jareonkitmongkol S, Shimizu S, Yamada H (1993) Production of an eicosapentaenoic acid-containing oil by a Al 2-desaturase-defective mutant of Mortierella alpina 1S-4. J Am Oil Chem Soc 70 (2): 119–123

    Article  CAS  Google Scholar 

  • Jareonkitmongkol S, Sakuradani E, Sakayu S (1994) Isolation and characterization of an omega-3-desaturation defective mutant of an arachidonic acid-producing fungus, Mortierella alpina 1S-4. Arch Microbiol 161 (4): 316–319

    Article  CAS  Google Scholar 

  • Jarl K (1969) Symba yeast process. Food Technol 23: 1009–1012

    Google Scholar 

  • Jeffery J, Kock JLF, Botha A, Coetzee DJ, Botes PJ, Nigam S (1997) Enhanced sunflower oil utilization and gamma-linolenic acid production by Mucor circinelloides f. circinelloides CBS 108.16 in the presence of acetate. World J Microbiol Biotechnol 13 (3): 357–358

    Article  CAS  Google Scholar 

  • Jeffery J, Kock JLF, du Preez JC, Bareetseng AS, Coetzee DJ, Botes PJ, Botha A, Schewe T, Nigam S (1999) Effect of acetate and pH on sunflower oil assimilation by Mucor circinelloides f circinelloides. Syst Appl Microbiol 22: 156–160

    Article  CAS  Google Scholar 

  • Jennings BH, Akoh CC (1999) Enzymatic modification of triacylglycerols of high eicosapentaenoic and docosahexaenoic acids content to produce structured lipids. J Am Oil Chem Soc 76 (10): 1133–1137

    Article  CAS  Google Scholar 

  • Jennings BH, Akoh C (2001) Lipase catalysed modification of fish oil to incorporate capric acid. Food Chem 72 (3): 273–278

    Article  CAS  Google Scholar 

  • Jensen RG (1983) Detection and determination of lipase (acylglycerol hydrolase) activity from various sources. Lipids 18: 650–657

    Article  PubMed  CAS  Google Scholar 

  • Jensen GL, Daggy B, Bensadoun A (1982) Triacylglycerol lipase, monoglycerol lipase and phospholipase activities of highly purified rat hepatic lipase. Biochem Biophys Acta 710: 464–470

    Article  PubMed  CAS  Google Scholar 

  • Jernejc K, Vendramin M, Cimerman A (1989) Lipid composition of Aspergillus niger in citric acid accumulating and nonaccumulating conditions. Enzyme Microb Technol 11 (7): 452–456

    Article  CAS  Google Scholar 

  • Johnson V, Singh M, Saini VS, Sista VR, Yadav NK (1992a) Effect of pH on lipid accumulation by an oleaginous yeast: Rhodotorula glutinis IIP-30. World J Microbiol Biotechnol 8 (4): 382–384

    Article  CAS  Google Scholar 

  • Johnson V, Singh M, Yadav NK (1992b) Transformation of vegetable oils by an oleaginous yeast: Rhodotorula glutinis IIP-30. Biotechnol Lett 14 (9): 801–804

    Article  CAS  Google Scholar 

  • Johnson VW, Singh M, Saini VS, Adhikari DK, Sista V, Yadav NK (1995) Utilization of molasses for the production of fat by an oleaginous yeast, Rhodotorula glutinis IIP 30. J Industr Microbiol 14 (1): 1–4

    Article  CAS  Google Scholar 

  • Johri BN, Alurralde JD, Klein J (1990) Lipase production by free and immobilized protoplasts of Sporotrichum thermophile alpinis. Appl Microbiol Biotechnol 33 (4): 367–371

    Article  PubMed  CAS  Google Scholar 

  • Kalo P, Perttila M, Kemppinen A, Antila M (1988) Modification of butter fat by interesterification catalyzed by Aspergillus niger and Mucor miehei lipases. Meijeritiet Aikak 46 (1): 36–47

    CAS  Google Scholar 

  • Kamada N, Kawashima H, Sakuradami E, Akimoto K, Ogawa J, Shimizu S (1999) Production of 8,11cis-eicosadienoic acid by a DELTA5 and DELTAl2 desaturase-defective mutant derived from the arachidonic-producing fungus Mortierella alpina. J Am Oil Chem Soc76(11): 1269–1274

    Google Scholar 

  • Karahadian C, Josephson DB, Lindsay RC (1985) Contribution of Penicillium sp. to the flavors of Brie and Camembert cheese. J Dairy Sci 68 (8): 1865–1877

    Article  CAS  Google Scholar 

  • Karanth NG, Sattur AP (1991) Mathematical modeling of production of microbial lipids: part II. Kinetics of lipid accumulation. Bioproc Eng 6 (6): 241–248

    Article  CAS  Google Scholar 

  • Kates M (1990) Glycolipids of higher plants, algae, yeasts and fungi. In: Kates M (ed) Handbook of lipid research, vol 6. North-Holland, Amsterdam, pp 235–320

    Google Scholar 

  • Kavadia A, Komaitis M, Chevalot I, Blanchard F, Marc I, Aggelis G (2001) Lipid and gamma-linolenic acid accumulation in strains of Zygomycetes growing on glucose. J Am Oil Chem Soc 78 (4): 341–346

    Article  CAS  Google Scholar 

  • Kawashima H, Nishihara M, Hirano Y, Kamada N, Akimoto K, Konishi K, Shimizu S (1997) Production of 5,8,11eicosatrienoic acid (Mead acid) by a DELTA-6 desaturation activity enhanced mutant derived from a DELTA-12 desaturase-defective mutant of an arachidonic acid-producing fungus, Mortierella alpina 154. Appl Environ Microbiol 63 (5): 1820–1825

    PubMed  CAS  Google Scholar 

  • Kawashima H, Sakuradani E, Kamada N, Akimoto K, Konishi K, Ogawa J, Shimizu S (1998) Production of 8,11,14,17 cis-eicosatetraenoic acid (20:4 omega-3) by a DELTA5 and DELTAl2 desaturase-defective mutant of an arachidonic acid-producing fungus Mortierella alpina 1S-4. J Am Oil Chem Soc 75 (l1): 1495–1500

    Article  CAS  Google Scholar 

  • Kawashima H, Akimoto K, Higashiyama K, Fujikawa S, Shimizu S (2000) Industrial production of dihomo-ylinolenic acid by a 45 desaturase-defective mutant of Mortierella alpina 1S-4 fungus. J Am Oil Chem Soc 77 (11): 1135–1138

    Article  CAS  Google Scholar 

  • Kelder B, Mukerji P, Kirchner S, Hovanec G, Leonard A, Chuang LT, Kopchick JJ, Huang YS (2001) Expression of fungal desaturase genes in cultured mammalian cells. Mol Cell Biochem 219 (l/2): 7–11

    Article  PubMed  CAS  Google Scholar 

  • Kendrick A, Ratledge C (1990) Microbial lipid technology: microbial formation of polyunsaturated fatty acids. Lipid Technol 2: 62–66

    Google Scholar 

  • Kendrick A, Ratledge C (1992a) Lipids of selected molds grown for production of n-3 and n-6 polyunsaturated fatty acids. Lipids 27 (1): 15–20

    Article  PubMed  CAS  Google Scholar 

  • Kendrick A, Ratledge C (1992b) Lipid formation in the oleaginous mould Entomophthora exitalis grown in continuous culture: effects of growth rate, temperature and dissolved oxygen tension on polyunsaturated fatty acids. Appl Microbiol Biotechnol 37 (1): 18–22

    Article  CAS  Google Scholar 

  • Kendrick A, Ratledge C (1996) Cessation of polyunsaturated fatty acid formation in four selected filamentous fungi when grown on plant oils. J Am Oil Chem Soc 73 (4): 431–435

    Article  CAS  Google Scholar 

  • Kennedy MJ, Reader SL, Davies RJ (1993) Fatty acid production characteristics of fungi with particular emphasis on y-linolenic acid production. Biotechnol Bioeng 42 (5): 625–634

    Article  PubMed  CAS  Google Scholar 

  • Kim HS, Yoon BD, Chuong DH, Oh HM, Katsuragi T, Tani Y (1999) Characterization of a biosurfactant, mannosylerythritol lipid produced from Candida sp. SY16. Appl Microbiol Biotechnol 52 (5): 713–721

    Article  PubMed  CAS  Google Scholar 

  • Kimura M, Hasegawa K, Takamura H, Matoba T (1991) Preparation of triacylglycerol molecular species in esterification using endocellular lipase in hexane. Agric Biol Chem 55 (12): 3039–3043

    Article  CAS  Google Scholar 

  • Kinoshita H, Ota Y (2001) Concentration of docosahexaenoic acid from fish oils using Geotrichum sp. FO347–2. Biosci Technol Biochem 65 (5): 1022–1026

    Article  CAS  Google Scholar 

  • Kitamoto D (1992) Production of surfactants by microorganisms. J Jpn Oil Chem Soc 41: 839–845

    Article  CAS  Google Scholar 

  • Kitamoto D, Nakane T, Nakao N, Nakahara T, Tabuchi T (1992a) Intracellular accumulation of mannosylery- thritol lipids as storage material by Candida antarctica. Appl Microbiol Biotechnol 36: 768–772

    Article  CAS  Google Scholar 

  • Kitamoto D, Fuzishiro T, Yanagishita H, Nakane T, Nakahara T (1992b) Production of mannosylerythritol lipids as biosurfactants by resting cells of Candida antarctica. Biotechnol Lett 14: 305–310

    Article  CAS  Google Scholar 

  • Kitamoto D, Yanagishita H, Shinbo T, Nakane T, Kamisawa C, Nakahara T (1993) Surface active properties and antimicrobial activities of mannosylerythritol lipids as biosurfactants produced by Candida antarctica. J Biotechnol 29: 91–96

    Article  CAS  Google Scholar 

  • Kitamoto D, Yanagishita H, Haraya K, Kitamoto HK (1998) Contribution of a chain-shortening pathway to the biosynthesis of the fatty acids of mannosylerythritol lipid (biosurfactant) in the yeast Candida antarctica: effect of 0-oxidation inhibitors on biosurfactant synthesis. Biotechnol Lett 20: 813–818

    Article  CAS  Google Scholar 

  • Kitamoto D, Ikegami T, Suzuki GT, Sasaki A, Takeyama Y, Idemoto Y, Koura N, Yanagishita H (2001) Microbial conversion of n-alkanes into glycolipid biosurfactants, mannosylerythritol lipid, by Pseudozyma (Candida) antarctica. Biotechnol Lett 23: 17091714

    Google Scholar 

  • Klug MJ, Markovetz AJ (1971) Utilization of aliphatic hydrocarbons by microorganisms. Adv Microbial Physiol 5: 1–43

    Article  CAS  Google Scholar 

  • Knutzon DS, Thurmond J, Huang YS, Chaudary S, Bobik EG Jr, Chan GM, Kirchner SJ, Mukerji P (1998) Identification of a DELTA5-desaturase from Mortierella alpina by heterologous expression in baker’s yeast and canola. J Biol Chem 273 (45): 29360–29366

    Article  PubMed  CAS  Google Scholar 

  • Kock JLF, Botha A (1998) Fatty acids in fungal taxonomy. In: Frisvad JC, Bridge PD, Arora DK (eds) Chemical fungal taxonomy. Dekker, New York, pp 219–246

    Google Scholar 

  • Kock JLF, Ratledge C (1993) Changes in lipid composition and arachidonic acid turnover during the life cycle of the yeast Dipodascopsis uninucleata. J Gen Microbiol 139: 459–464

    Article  PubMed  CAS  Google Scholar 

  • Kohno M, Kugimiya W, Mashimoto Y, Monta Y (1993) Preliminary investigation of crystals of lipase I from Rhizopus niveus. J Mol Biol 229 (3): 785–786

    Article  PubMed  CAS  Google Scholar 

  • Kondo M, Nishimura S, Tanaka N, Flood M (2001) Safety evaluation of phosphodiesterase produced from Penicillium citrinum: summary of toxicological data. Regul Toxicol Pharmacol 33 (1): 2–11

    Article  PubMed  CAS  Google Scholar 

  • Konova IV, Pankina 0 (1997) Effect of exogenous lipids on fatty acid metabolism and accumulation in fungal cells. Microbiology (3): 365–370

    Google Scholar 

  • Kosugi Y, Chang QL, Kanzawa K, Nakanishi H (2000) Changes in hydrolysis specificities of lipase from Rhizomucor miehei to polyunsaturated fatty acyl ethyl esters in different aggregation states. J Am Oil Chem Soc 74 (11): 1395–1399

    Article  Google Scholar 

  • Kouker G,]aeger KE (1987) Specific and sensitive plate assay for bacterial lipases. Appl Environ Microbiol 53: 211–213

    PubMed  CAS  Google Scholar 

  • Krylova NI, Dedyukhina EG, Eroshin VK (1984) Lipid synthesis by the yeast Cryptococcus albidus during growth. Prikl Biokhim Microbiol 20 (6): 781–786

    CAS  Google Scholar 

  • Kundu M, Basu J, Guchhait M, Chakrabarti P (1987) Isolation and characterization of an extracellular lipase from the conidia of Neurospora crassa. J Gen Microbiol 133 (1): 149–154

    PubMed  CAS  Google Scholar 

  • Kurtzman CP (1983) Fungi sources of food, fuel, and biochemicals. Mycologia 75 (2): 374–382

    Article  CAS  Google Scholar 

  • Kyotani S, Nakashima T, Izumoto E, Fukuda H (1991) Continuous interesterification of oils and fats using dried fungus immobilized in biomass support particles. J Ferment Bioeng 71 (4): 286–288

    Article  CAS  Google Scholar 

  • Lakshmanan A, Venkata Rao P, Kunthala J, Lakshmanan CM (1992) Lipase catalysed deacidification of high free acid rice bran oil. Biotechnol Tech 6 (2): 169–172

    Article  CAS  Google Scholar 

  • Lamberet G, Benassa A (1983) Purification and properties of an acid lipase from Penicillium roqueforti. J Dairy Res 50 (4): 459–468

    Article  CAS  Google Scholar 

  • Langholz P, Andersen P, Forskov T, Schmidtsdorff W (1989) Application of a specificity of Mucor miehei lipase to concentrate docosahexaenoic acid DMA. J Am Oil Chem Soc 66 (8): 1120–1123

    Article  CAS  Google Scholar 

  • Langrand G, Rondot N, Triantaphylides A, Baratti J (1990) Short chain flavor esters synthesis by microbial lipases. Biotechnol Lett 12 (8): 581–586

    Article  CAS  Google Scholar 

  • Law SWT, Burton DN (1974a) Lipid metabolism in Achlya: studies on lipid turnover during development. Can J Microbiol 22: 1710–1715

    Article  Google Scholar 

  • Law SWT, Burton DN (1974b) Lipid metabolism in Achlya: changes in lipid composition during development. Can J Microbiol 22: 1716–1719

    Article  Google Scholar 

  • Lechavalier LI, Lechavalier MP (1988) Chemotaxonomic use of lipids–an overview. In: Ratledge C, Wilkinson SG (eds) Microbial lipids, vol 1. Academic Press, London, pp 869–902

    Google Scholar 

  • Lee KT, Akoh C (1997) Effects of selected substrate forms on the synthesis of structured lipids by two immobilized lipases. J Am Oil Chem Soc 74 (5): 579–584

    Article  CAS  Google Scholar 

  • Lee CH, Parkin KL (2001) Effect of water activity and immobilization on fatty acid selectivity for esterification reactions mediated by lipases. Biotechnol Bioeng 75 (2): 219–227

    Article  PubMed  CAS  Google Scholar 

  • Leman J (1997) Production of lipids containing gammalinolenic acid by batch culturing of Mortierella ramanniana. Mededelingen Faculteit Landbouwkundige en Toegepaste Biologische Wetenschappen Universiteit Gent 62 (4A-B): 1369–1372

    CAS  Google Scholar 

  • Lestan D, Strancar A, Perdih A (1990) Influence of some oils and surfactants on ligninolytic activity growth and lipid fatty acids of Phanerochaete chrysosporium. Appl Microbiol Biotechnol 34 (3): 426–428

    CAS  Google Scholar 

  • Lie E, Molin G (1992) Esterification of polyunsaturated fatty acids with lipases from different sources. Int J Food Sci Technol 27 (1): 73–76

    Article  CAS  Google Scholar 

  • Lindberg AM, Hansson L (1991) Production of y-linolenic acid by the fungus Mucor rouxii on cheap nitrogen and carbon sources. Appl Microbiol Biotechnol 36 (1): 26–28

    Article  CAS  Google Scholar 

  • Lindberg AM, Mohr’ G (1993) Effect of temperature and glucose supply on the production of polyunsaturated fatty acids by the fungus Mortierella alpina CBS 343.66 in fermentor cultures. Appl Microbiol Biotechnol 39 (4/5): 450–455

    Article  CAS  Google Scholar 

  • Liodakis A, Drew J, Chan RYS, Sawyer WM (1991) Spectrofluorometric determination of lipase activity. Biochem Int 23 (5): 825–834

    PubMed  CAS  Google Scholar 

  • Liu JW, Bobik EG Jr, Sheng HY (1998) In vitro hydrolysis of fungal oils: distribution of arachidonic acid-containing triacylglycerol molecular species. J Am Oil Chem Soc 75 (4): 507–510

    Article  CAS  Google Scholar 

  • Lobyreva LV, Marchenkova AI (1983) Lipolytic activity of the fungus Penicillium roqueforti. Prikl Biokhim Mikrobiol 19 (1): 78–82

    CAS  Google Scholar 

  • Lodewyk J, Kock F, Ratledge C (1993) Changes in lipid composition and arachidonic acid turnover during the life cycle of the yeast Dipodascopis uninucleata. J Gen Microbiol 139: 459–464

    Article  Google Scholar 

  • Lortie R, Trani M, Ergan F (1993) Kinetic studies of the lipase catalyzed synthesis of triolein. Biotechnol Bioeng 41: 1021–1026

    Article  PubMed  CAS  Google Scholar 

  • Lösel DM (1988) Fungal lipids. In: Ratledge C, Wilkinson SG (eds) Microbial lipids, vol 1. Academic Press, London, pp 699–806

    Google Scholar 

  • Lösel DM (1989) Functions of lipids: specialized roles in fungi and algae. In: Ratledge C, Wilkinson SG (eds) Microbial lipids, vol 2. Academic Press, London, pp 367–438

    Google Scholar 

  • Malcata FX, Garcia MS, Hill CG Jr, Amundson CM(1992a) Hydrolysis of butteroil by immobilized lipase using a hollow fibre reactor, part I. Lipase absorption studies. Biotechnol Bioeng 39(6):647–657

    Google Scholar 

  • Malcata FX, Hill CG Jr, Amundson CM (1992b) Hydrolysis of butteroil by immobilized lipase using a hollow fibre reactor, part II. Uniresponse kinetic studies. Biotechnol Bioeng 39 (10): 984–1001

    Article  PubMed  CAS  Google Scholar 

  • Maliszewska I, Mastalerz P (1992) Production and some properties of lipase from Penicillium citrinum. Enzyme Microb Technol 14 (3): 190–193

    Article  CAS  Google Scholar 

  • Manjon A, Iborra JL, Arocas A (1991) Short chain flavor ester synthesis by immobilized lipase in organic media. Biotechnol Lett 13 (5): 339–344

    Article  CAS  Google Scholar 

  • Marx JL (1982) The leucotrienes in allergy and inflammation. Science 215: 1380–1383

    Article  PubMed  CAS  Google Scholar 

  • Matyashova RN, Kuvichkina TN, Romanova IB (1987) The effect of oxygen concentration on the content of lipids during the growth of Candida lipolytica in a medium with hexadecane and glucose. Mikrobiologiya 56 (6): 991–994

    CAS  Google Scholar 

  • McNeill PG (1997) Enzymatic process for isolation of erucic acid from vegetable oils. US patent 005633151A

    Google Scholar 

  • Meesters PAEP, Huijberts GNM, Eggink G (1996) High-celldensity cultivation of the lipid accumulating yeast Cryptococcus curvatus using glycerol as a carbon source. Appl Microbiol Biotechnol 45 (5): 575–579

    Article  CAS  Google Scholar 

  • Mevvedeva TN, Matyashova RN, Lenskikh GV, Romanova IB (1985) Production of exocellular higher fatty acids by Candida yeasts growing on hexadecane. Mikrobiologiya 54 (1): 17–21

    Google Scholar 

  • Michaelson LV, Lazarus CM, Griffith G, Napier JA, Stobart AK (1998) Isolation of a DELTAS-fatty acid desaturase gene from Mortierella alpina. J Biol Chem 273 (30): 19055–19059

    Article  PubMed  CAS  Google Scholar 

  • Miyazima M, Iida M, Iizuka M (1985a) Phospholipid derived from hydrocarbons by fungi. J Ferment Technol 63 (3): 219–224

    CAS  Google Scholar 

  • Miyazima M, Iida M, Izuka M (1985b) Effect of n-alkanes on compositions of cellular non-polar lipids in Aspergillus sp. isolated from soils. J Ferment Technol 63 (3): 225–230

    CAS  Google Scholar 

  • Mojovic L, Siler-Marinkovic S, Kukic G, Vunjak-Novakovic G (1993) Rhizopus arrhizus lipase catalyzed interesterification of the midfraction of palm oil to a cocoa butter equivalent fat. Enzyme Microb Technol 15(5):438–443

    Google Scholar 

  • Monot F, Paccard E, Borzeix F, Bardin M, Vandecasteele JP (1993) Effect of lipase conditioning on its activity in organic media. Appl Microbiol Biotechnol 39 (4/5): 483–486

    Article  CAS  Google Scholar 

  • Montant C, Sancholle M (1969) Evolution des lipides du Trichothecium roseum au cours des premiers stades de la croissance en fonction des variations de la source nutritive carbonée. CR Acad Sci Sér D 269: 886–889

    CAS  Google Scholar 

  • Montero S, Blanco A, Virto MD, Landeta LC, Agud I, Solozabal R, Lascaray JM, Mertxe de Renobales, Llama MJ, Serra JL (1993) Immobilization of Candida rugosa lipase and some properties of the immobilized enzyme. Enzyme Microb Technol 15 (3): 239–247

    Article  PubMed  CAS  Google Scholar 

  • Montet D, Ratomahenina R, Galzy P, Pina M, Graille J (1985a) A study of the influence of the growth media on the fatty-acid composition in Candida lipolytica. Biotechnol Lett 7 (10): 733–736

    Article  CAS  Google Scholar 

  • Montet D, Ratomahenina R, Pina M, Graille J, Galzy P (1985b) Purification and characterization of a lipase from Candida curvata CBS-570. Fette Seifen Anstreichm 87 (5): 181–184

    Article  CAS  Google Scholar 

  • Montet D, Pina M, Graille J, Renard G, Grimaud J (1989) Synthesis of n-lauryleoylamide by the Mucor miehei lipase in an organic medium. Fett Wiss Technol 91 (1): 14–18

    CAS  Google Scholar 

  • Moreau RA, Nagahashi G (1987) Glycoprotein nature of lipolytic acyl hydrolases in potato tubers and leaves. In: Stumpf PK, Mudd JB, Nes WD (eds) The metabolism, structure, and function of plant lipids. Plenum Press, New York, pp 369–371

    Chapter  Google Scholar 

  • Moreau RA, Rawa D (1984) Phospholipase activity in cultures of Phytophthora infestans and in infected potato leaves. Physiol Plant Pathol 24: 187–199

    Article  CAS  Google Scholar 

  • Moreton RS (1985) Modification of fatty acid composition of lipid accumulating yeasts with cyclopropene fatty acid desaturase inhibitors. Appl Microbiol Biotechnol 22: 41–45

    Article  CAS  Google Scholar 

  • Morquer R (1931) Recherches morphogénétiques sur le Dactylium macrosporum. Thèse Doctorat ès Sciences, Toulouse

    Google Scholar 

  • Mosmuller EWJ, Franssen MCR, Engbersen JFJ (1993) Lipase activity in vesicular systems: characterization of Candida cylindracea lipase and its activity in polymerizable dialkylammonium surfactant vesicles. Biotechnol Bioeng 42 (2): 196–204

    Article  PubMed  CAS  Google Scholar 

  • Muderhwa JM, Ratomahenina R, Pina M, Graille J, Galzy P (1985) Purification and properties of the lipase from Candida deformans. J Am Oil Chem Soc 62 (6): 1031–1036

    Article  CAS  Google Scholar 

  • Mukherjee KD, Kiewitt L (1991) Enrichment of 7-linolenic acid from fungal oil by lipase catalysed reactions. Appl Microbiol Biotechnol 35 (5): 579–584

    Article  CAS  Google Scholar 

  • Mustranta A, Forssell P, Poutanen K (1993) Applications of immobilized lipases to transesterification and esterification reactions in nonaqueous systems. Enzyme Microb Technol 15 (2): 133–139

    Article  PubMed  CAS  Google Scholar 

  • Mutua LN, Akoh CC (1993) Synthesis of alkyl glycoside fatty acid esters in nonaqueous media by Candida sp. lipase. J Am Oil Chem Soc 70 (1): 43–46

    Article  CAS  Google Scholar 

  • Naganuma T, Uzuka Y, Tanaka K (1985a) Physiological factors affecting total cell number and lipid content of the yeast Lipomyces starkeyi. J Gen Appl Microbiol 31 (1): 29–38

    Article  CAS  Google Scholar 

  • Naganuma T, Uzuka Y, Tanaka K (1985b) Medium for enhancing lipid accumulation and cell proliferation of Lipomyces starkeyi. Nippon Nogeikagaku Kaishi 59 (12): 1263–1266

    Article  CAS  Google Scholar 

  • Nagao T, Shimada Y, Sugihara A, Murata A, Komemushi S, TominagaY (2001) Use of thermostable Fusarium heterosporum lipase for production of structured lipid containing oleic and palmitic acids in organic solvent-free system. J Am Oil Chem Soc 78 (2): 167–172

    CAS  Google Scholar 

  • Nahas E (1988) Control of lipase production by Rhizopus oligosporus under various growth conditions. J Gen Microbiol 134 (1): 227–234

    CAS  Google Scholar 

  • Nakano M, Kitahata S, Tominaga Y, Takenishi S (1991) Esterification of glycosides with glycerol and trimethylpropane moieties by Candida cylindracea lipase. Agric Biol Chem 55 (8): 2083–2090

    Article  CAS  Google Scholar 

  • Nakashima T, Fukuda H (1990) Effects of aeration rate on intracellular lipase production by Rhizopus chinensis immobilized within biomass support particles in a circulating bed fermentor. Ferment Bioeng 70 (5): 355–358

    Article  CAS  Google Scholar 

  • Nakashima T, Fukuda H, Kyotami S, Morikawa H (1988) Culture conditions for intracellular production by Rhizopus chinensis and its immobilization within biomass support particles. J Ferment Technol 66 (4): 441–448

    Article  CAS  Google Scholar 

  • Negre A, Salvayre R, Dagan A, Gatt S (1989) Pyrene-methyl laurate: a new fluorescent substrate for continuous kinetic determination of lipase activity. Biochim Biophys Acta 1006 (1): 84–88

    Article  PubMed  CAS  Google Scholar 

  • Nelson NA, Kelly R, Johnson RA (1982) Prostaglandin and the arachidonic cascade. Chem Eng News 60: 1–15

    Article  Google Scholar 

  • Nielsen T (1985) Industrial application possibilities for lipase. Fette Seifen Anstrichm 87 (1): 15–19

    Article  CAS  Google Scholar 

  • Nieto S, Gutierrez J, Sanhueza J, Valenzuela A (1999) Synthesis of structured triacylglycerols containing medium-chain and long-chain fatty acids by interesterification with a stereoespecific lipase from Mucor miehei. Grasas Aceites 50 (3): 199–202

    Article  CAS  Google Scholar 

  • NojimaY, Kibayashi A, Matsuzaki H, Hatano T, Fukui S (1999) Isolation and characterization of triacylglycerol-secreting mutant strain from yeast, Saccharomyces cerevisiae. J Gen Appl Microbiol 45 (l): 1–6

    Article  PubMed  CAS  Google Scholar 

  • Obradors N, Montesinos JL, Valero F, Lafuente FJ, Sola C (1993) Effects of different fatty acids on lipase production by Candida rugosa. Biotechnol Lett 15 (4): 357–360

    Article  CAS  Google Scholar 

  • O’Connor CJ, Aggett AM, Williams DR, Stanley RA (1991) Candida cylindracea lipase catalysed hydrolysis of methyl palmitate in detergentless microemulsion and paraffin water biphasic media. Aust J Chem 44(1):53–60

    Google Scholar 

  • O’Connor CJ, Petricevic SF, Coddington JM, Stanley RA (1992) An NMR assay for quantitating lipase activity in biphasic macroemulsions. J Am Oil Chem Soc 69 (4): 295–300

    Article  Google Scholar 

  • Ogawa J, Sakuridani E, Shimizu S (2002) Production of C20 polyunsaturated fatty acids by an arachidonic acid producing fungus Mortierella alpina 1S-4 and related strains. In: Kuo TM, Gardner HW (eds) Lipid biotechnology. Dekker, New York, pp 563–574

    Google Scholar 

  • Oguntimein GB, Erdmann M, Schmid RD (1993) Lipase catalyzed synthesis of sugar ester in organic solvents. Biotechnol Lett 15 (2): 175–180

    Article  CAS  Google Scholar 

  • Okeke CN, Cugnani MC (1989) Lipases of Fonseca pedrosi and Phialophora verrucosa. Antonie van Leeuwenhoek J Microbiol Serol 55 (4): 313–324

    Article  CAS  Google Scholar 

  • Okeke CN, Okolo BN (1990) The effect of cultural conditions on the production of lipase by Acremonium strictum. Biotechnol Lett 12 (10): 747–750

    Article  CAS  Google Scholar 

  • Olama ZA, El-Sabaeny A (1990) Extracellular lipase activity produced by fungi grown on plant wastes. J Med Res Inst 11 (2): 71–77

    Google Scholar 

  • Osman M, Mohamed YAH, Metwally M (1988) Lipolytic activity of Alternaria alternata and Fusarium oxysporum and certain properties of their lipids. Microbios Lett 39 (155/156): 131–136

    CAS  Google Scholar 

  • Osman M, Mohamed YAH, El-Sayed MA, Metwally M (1991) Effect of various nitrogen sources on growth, biomass and total lipids in Alternaria alternata and Fusarium oxysporum. Egypt J Microbiol 24 (1): 127–141

    Google Scholar 

  • Osorio NM, Ferreira D, Gusmao JH, da Fonseca MMR (2001) Response surface modelling of the production of omega-3 polyunsaturated fatty acids-enriched fats by a commercial immobilized lipase. J Mol Catalysis B Enzymatic 11 (4–6): 677–886

    Article  CAS  Google Scholar 

  • Ota T, Takano S, Hasegawa T (1990) Synthesis of C18 fatty acid esters in organic solvent by lipase from Candida cylindracea. Agric Biol Chem 54 (6): 1571–1572

    Article  CAS  Google Scholar 

  • Pan SM, Kawamoto T, Fukui T, Sonomoto K, Tanaka A (1990) Stereoselective esterification of halogen containing carboxylic acids by lipase in organic solvents: effects of alcohol chain length. Appl Microbiol Biotechnol 34 (1): 47–51

    Article  CAS  Google Scholar 

  • Pan’kina OI, Konova ID (1998) Growth of zygomycetes on hydrocarbon substrates and synthesis of fatty acids. Mikrobiologiya 67 (6): 748–753

    Google Scholar 

  • Paparaskevas D, Christakopoulos P, Kekos D, Macris BJ (1992) Optimizing production of extracellular lipase from Rhodotorula glutinis. Biotechnol Lett 14 (5): 397–402

    Article  Google Scholar 

  • Park WS, Murphy PA, Glatz BA (1990) Lipid metabolism and cell composition of the oleaginous yeast Apiotrichum curvatum grown at different carbon to nitrogen ratios. Can J Microbiol 36: 318–326

    Article  PubMed  CAS  Google Scholar 

  • Pecnik S, Knez Z (1992) Enzymatic fatty ester synthesis. J Am Oil Chem Soc 69 (3): 261–265

    Article  CAS  Google Scholar 

  • Pedrocchi-Fantoni G, Servi S (1992) Regio and chemo selective properties of lipase from Candida cylindracea. J Chem Soc Perkin Trans 10 (8): 1029–1033

    Article  Google Scholar 

  • Pelesane TR, Kock JLF, Joseph M, Pohl CH, Anelich LECM, Roux MP, Botes PJ (2001) Fungal transformation of polymerized lipids present in extensively used frying oils. S Afr J Sci 97 (9/10): 371–373

    CAS  Google Scholar 

  • Petrovic SE, Skrinjar M, Becarevic A, Vujicic IF, Banka L (1990) Effect of various carbon sources on microbial lipases biosynthesis. Biotechnol Lett 12 (4): 299–304

    Article  CAS  Google Scholar 

  • Phillips A, Pretorius GMJ (1991) Purification and characterization of an extracellular lipase of Galactomyces geotrichum. Biotechnol Lett 13 (11): 833–838

    Article  CAS  Google Scholar 

  • Pilkington BJ, Rose AH (1991) Incorporation of unsaturated fatty acids by Saccharomyces cerevisiae: conservation of fatty-acyl saturation in phosphatidylinositol. Yeast 7 (5): 489–494

    Article  PubMed  CAS  Google Scholar 

  • Pohl CH, Botha A, Kock JLF, Coetzee DJ, Botes PJ (1997) The production of gamma-linolenic acid by selected members of the dikaryomycota grown on different carbon sources. Antonie van Leeuwenhoek Int J Gen Mol Microbiol 72 (3): 191–199

    Article  CAS  Google Scholar 

  • Pronk W, Boswinkel G, van Riet K (1992) Parameters influencing hydrolysis kinetics of lipase in a hydrophilic membrane bioreactor. Enzyme Microb Technol 14 (3): 214–220

    Article  CAS  Google Scholar 

  • Rabie AM (1989) Acceleration of blue cheese ripening by cheese slurry and extracellular enzymes of Penicilhum roqueforti. Lait 69 (4): 305–314

    Article  Google Scholar 

  • Radwan SS (1991) Sources of C20 polyunsaturated fatty acids for biotechnological use. Appl Microbiol Biotechnol 35: 421–430

    Article  CAS  Google Scholar 

  • Radwan S, Zreik MM, Mulder JL (1996) Distribution of arachidonic acid among lipid classes during culture ageing of five Zygomycete species. Mycol Research 100 (1): 113–116

    Article  CAS  Google Scholar 

  • Rapp P, Backhaus S (1992) Formation of extracellular lipases by filamentous fungi, yeasts and bacteria. Enzyme Microb Technol 14 (11): 938–943

    Article  CAS  Google Scholar 

  • Ratledge C (1982) Microbial oils and fats: an assessment of their commercial potential. Prog Ind Microbiol 16: 199–206

    Google Scholar 

  • Ratledge C (1986) Lipids. In: Rehm HJ, Reed G (eds) Biotechnology, vol 4. In: Pape H, Rehm HJ (eds) Microbial products II. Verlag Chemie, Weinheim, pp 185–213

    Google Scholar 

  • Ratledge C (1988) Yeasts for lipid production. Biochem Soc Trans 16: 1088–1091

    PubMed  CAS  Google Scholar 

  • Ratledge C (1989) Biotechnology of oils and fats. In: Ratledge C, Wilkinson SG (eds) Microbial lipids, vol 2. Academic Press, London, pp 567–668

    Google Scholar 

  • Ratledge C (1991) Microorganisms for lipids. Acta Biotechnol 11 (5): 429–438

    Article  CAS  Google Scholar 

  • Ratledge C (1992) Microbial lipids: commercial realities or academic curiosities. In: Kyle DJ, Ratledge C (eds) Applied single cell oils. AOCS, Champaign, III, pp 1–15

    Google Scholar 

  • Ratledge C, Gilbert SC (1985) Carnitine acetyl transferase activity in oleaginous yeasts. FEMS Microbiol Lett 27: 273–275

    Article  CAS  Google Scholar 

  • Ratledge C, Wilkinson SG (1988) Fatty acids related and derived lipids. In: Ratledge C, Wilkinson SG (eds) Microbial lipids, vol I. Academic Press, London, pp 23–79

    Google Scholar 

  • Ratledge C, Wynn JP (2000) Understanding microbial obesity. SIM News 50 (4): 181–185

    Google Scholar 

  • Rattray JBM (1988) Yeasts. In: Ratledge C, Wilkinson SG (eds) Microbial lipids, vol 1. Academic Press, London, pp 555–697

    Google Scholar 

  • Rehm HJ, Reed G (eds) (1983–1987) Biotechnology, 8 vols. Verlag Chemie, Weinheim

    Google Scholar 

  • Rehm HJ, Reed G (eds) (1991–1994) Biotechnology, 2nd completely revised edn. Verlag Chemie, Weinheim

    Google Scholar 

  • Renard G, Grimaud J, El Zant A, Pina M, Graille J (1987) An improved method for the colorimetric assay of lipase activity using an optically clear medium. Lipids 22: 539–554

    Article  PubMed  CAS  Google Scholar 

  • Revah S, Lebeault JM (1989) Accelerated production of blue cheese flavors by fermentation on granular curds with lipase addition. Lait 69 (41): 281–290

    Article  Google Scholar 

  • Riaublanc A, Ratomahenina R, Galzy P (1993) Study of a lipase from Candida rugosa Diddens and Lodder. Fat Sci Technol 95 (4): 134–137

    CAS  Google Scholar 

  • Rivera-Munoz G, Tinoco-Valencias JR, Sanchez S, Farres A (1991) Production of microbial lipases in a solid-state fermentation system. Biotechnol Lett 13(4): 277280

    Google Scholar 

  • Roberts IM (1985) Hydrolysis of 4-methylumbelliferyl butyrate: a convenient and sensitive fluorescent assay for lipase activity. Lipids 20: 243–247

    Article  CAS  Google Scholar 

  • Roberts RG, Morisson WH, Robertson JA, Hanlin RT (1987) Extracellular lipase production by fungi from sunflower seed. Mycologia 79 (2): 265–273

    Article  CAS  Google Scholar 

  • Rose DP, Connolly JM, Liu XH (1995) Effects of linolenic acid and gamma-linolenic acid on the growth and metastasis of a human breast cancer cell line in nude mice and on its growth and invasive capacity in vitro. Nutr Cancer 24 (1): 33–45

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg M, Kristofikova L, Proksa B, Magdolen P (1992) The formation of polyols and fatty acids during lactic acid fermentation by Rhizopus arrhizus. Biotechnol Lett 14 (1): 45–48

    Article  CAS  Google Scholar 

  • Roux MP, Kock JLF, du Preez JC, Botha A (1995) The influence of dissolved oxygen tension on the production of cocoa butter equivalents and gamma-linolenic acid by Mucor circinelloides. Syst Appl Microbiol 18 (3): 329–334

    Article  CAS  Google Scholar 

  • Rua M, Luisa M, Diaz-Maurino T, Fernandez VM, Otero C, Ballesteros A (1993) Purification and characterization of two distinct lipases from Candida cylindracea. Biochim Biophys Acta 1156 (2): 181–189

    Article  PubMed  CAS  Google Scholar 

  • Rucka M, Turkiewicz B, Zuk JS, Krystynowicz A, Galas E (1991) Hydrolysis of plant oils by means of lipase from Rhizopus nigricans. Bioproc Eng 7 (3): 133–136

    Article  CAS  Google Scholar 

  • Ruckenstein E, Wang X (1993) A novel support for the immobilization of lipase and the effects of the details of its preparation on the hydrolysis of triacylglycerides. Biotechnol Tech 7 (21): 117–122

    Article  CAS  Google Scholar 

  • Rupèic J, Mesaric M, Maric V (1998) The influence of carbon source on the level and composition of ceramides of the Candida lipolytica yeast. Appl Microbiol Biotechnol 50 (5): 583–588

    Article  Google Scholar 

  • Rydin S, Molin G, Nilsson I (1990) Conversion of fat into yeast biomass in protein-containing waste water. Appl Microbiol Biotechnol 33 (4): 473–476

    Article  CAS  Google Scholar 

  • Sajbidor J, Dobronova S, Certik M (1990) Arachidonic acid production by Mortierella sp. S-17 influence of carbon nitrogen ratio. Biotechnol Lett 12 (6): 455–456

    Article  CAS  Google Scholar 

  • Sajbidor J, Kozelouhova D, Certik M (1992) Influence of some metal ions on the lipid content and arachidonic acid production by Mortierella sp. Folia Microbiol 37 (6): 404–406

    Article  CAS  Google Scholar 

  • Sajbidor J, Lamacka M, Cista J, Certik M (1994) Microbial production and purification of arachidonic acid. Biotechnol Techn 8 (8): 561–564

    Article  CAS  Google Scholar 

  • Sakaguchi K, Takagi M, Horiuchi H, Gomi K (1992) Fungal enzymes used in oriental food and beverage industries. In: Kinghorn JR, Turner G (eds) Applied molecular genetics of filamentous fungi. Blackie, London, pp 54–99

    Chapter  Google Scholar 

  • Sakuradani E, Kobayashi M, Ashikari T, Shimizu S (1999a) Identification of DELTAl2-fatty acid desaturase from arachidonic acid-producing Mortierella fungus by heterologous expression in the yeast Saccharomyces cerevisiae and the fungus Aspergillus oryzae. Eur J Biochem 261 (3): 812–820

    Article  PubMed  CAS  Google Scholar 

  • Sakuradani E, Kobayashi M, Shimizu S (1999b) DELTA9fatty acid desaturase from arachidonic acid-producing fungus: unique gene sequence and its heterologous expression in a fungus Asp ergillus. Eur J Biochem 260 (1): 208–216

    Article  PubMed  CAS  Google Scholar 

  • Samad MYA, Salleh AB, Razak CNA, Ampon K, Yunus WMZW, Basri M (1990) A lipase from a newly isolated thermophilic Rhizopus rhizopodiformis. World J Microbiol Biotechnol 6 (4): 390–394

    Article  CAS  Google Scholar 

  • Sarubbo LA, Porto ALF, Campos TGM (1999) The use of babassu oil as substrate to produce bioemulsifiers by Candida lipolytica. Can J Microbiol 45(5): 423426

    Google Scholar 

  • Sarubbo LA, Marcal M do C, Neves MLC, Silva M da PC, Porto ALF, Campos-Takaki GM (2001) Bioemulsifier production in batch culture using glucose as carbon source by Candida lipolytica. Appl Biochem Biotechnol 95 (1): 59–67

    Article  PubMed  CAS  Google Scholar 

  • Sattur AP, Karanth NG, Divakar S (1988) Regulation of phosphate metabolism during intracellular lipid production in Rhodotorula gracilis. Biotechnol Lett 10 (10): 745–750

    Article  CAS  Google Scholar 

  • Scanlon C (1990) The role of lipids in the physiology of the cultivated mushroom. PhD Thesis, Univ Sheffield

    Google Scholar 

  • Scanlon CH, Fermor TR, Wood DA, Lösel DM (1989) The production of extracellular lipase by mushroom mycelium. Mushroom Sci 12: 261–268

    Google Scholar 

  • Scheuller HJ, Foertsch B, Fleisch A, Meurer G, Schweizer E (1990) Expression of yeast fatty acid synthetase genes. Yeast 6: S245

    Article  Google Scholar 

  • Serra P, del Rio JL, Robuste J, Poch M, Sola C, Cheruy A (1992) A model for lipase production by Candida rugosa. Bioproc Eng 8 (3/4): 145–150

    Article  CAS  Google Scholar 

  • Serrano-Carreon L, Hathout Y, Bensoussan M, Belin JM (1992) Lipid accumulation in Trichoderma spp. Microbiol Lett 93 (2): 181–188

    Article  CAS  Google Scholar 

  • Servat F, Montet D, Pina M, Galzy P, Arnaud A, Ledon H, Marcou L, Graille J (1990) Synthesis of fatty hydroxamic acids catalyzed by the lipase of Mucor miehei. J Am Oil Chem Soc 67 (10): 646–649

    Article  CAS  Google Scholar 

  • Shaw R (1965) The occurrence of y-linolenic acid in fungi. Biochim Biophys Acta 98: 230–237

    Article  PubMed  CAS  Google Scholar 

  • Shigeruko L, Fujio O, Hiroshi K, Keiko Y, Toshiaki N, Kenichi Y, Akihiro K (2000) Oral supplementation with gamma-linolenic acid extracted from Mucor circinelloides improves the deformability of red blood cells in hemodialysis patients. Nephron 86 (2): 122–128

    Article  Google Scholar 

  • Shimada Y, Sugihara A, Nagao T, Tominaga Y (1992) Induction of Geotrichum candidum lipase by long chain fatty acids. J Ferment Bioeng 73 (2): 77–80

    Article  Google Scholar 

  • Shimada Y, Sugihara A, Nakano H, Nagao T, Suenaga M, Nakai S, Tominaga Y (1997) Fatty acid specificity of Rhizopus delemar lipase in acidolysis. J Ferment Bioeng 86 (4): 321–327

    Article  Google Scholar 

  • Shimada Y, Sakai N, Sugihara A, Fujita H, Honda Y, Tominaga Y (1998) Large-scale purification of gamma-linolenic acid by selective esterification using Rhizopus delemar lipase. J Am Oil Chem Soc 75 (11): 1539–1543

    Article  CAS  Google Scholar 

  • Shimizu S, Akimoto K, Kawashima H, Shinmen Y, Jareonkitmongkol S, Yamada H (1989) Stimulatory effect of peanut oil on the production of dihomo-y-linolenic acid by filamentous fungi. Agric Biol Chem 53 (5): 1437–1438

    Article  CAS  Google Scholar 

  • Shimizu S, Jareonkitmongkol S, Kawashima M, Akimoto K, Yamada H (1991) Production of a novel w-eicosapentaenoic acid by Mortierella alpina 1S-4 grown on 1hexadecene. Arch Microbiol 156: 163–166

    Article  CAS  Google Scholar 

  • Shimizu S, Jareonkitmongkol S, Kawashima M, Akimoto K, Yamada H (1992a) Inhibitory effect of curcumin on fatty acid desaturation in Mortierella alpina 1S-4 and rat liver microsomes. Lipids 27 (7): 509–512

    Article  PubMed  CAS  Google Scholar 

  • Shimizu S, Shinmen Y, Akimoto K, Sugano M, Yamada M (1992b) Production of polyunsaturated fatty acids by filamentous fungi. Vitamins (Kyoto) 66 (5/6): 289–299

    CAS  Google Scholar 

  • Shinmen Y, Shimizu S, Akimoto K, Kawashima M, Yamada H (1989) Production of arachidonic acid by Mortierella fungi: selection of a potent producer and optimization of culture conditions for large-scale production. Appl Microbiol Biotechnol 31 (1): 11–16

    Article  CAS  Google Scholar 

  • Shinmen Y, Kawashima H, Shimizu S, Yamada M (1992) Concentration of eicosapentaenoic acid and docosahexaenoic acid in an arachidonic acid-producing fungus, Mortierella alpina 1S-4, grown with fish oil. Appl Microbiol Biotechnol 38 (3): 301–304

    Article  CAS  Google Scholar 

  • Sidebottom CM, Charton E, Dunn PPJ, Mycok G, Davies C, Sutton JL, Macrae AR, Slabas AR (1991) Geotrichum candidum produces several lipases with markedly different substrate specificities. Eur J Biochem 202(2):485–492

    Google Scholar 

  • Siebenlist U, Nix J, Schweizer M, Jaeger D, Schweizer E (1990) Mapping of the trifunctional fatty acid synthetase gene FAS2 on chromosome XVI of Saccharomyces cerevisiae. Yeast 6: 411–416

    Article  PubMed  CAS  Google Scholar 

  • Singer ME, Finnerty WR (1984) Microbial lipid metabolism. In: Aylas RM (eds) Petroleum microbiology. Macmillan, New York, pp 1–50

    Google Scholar 

  • Singer P (1990) Fischreiche Kost und Fischöl-Wirkungen auf ausgewählte Risiko Faktoren von Herz-Kreislauf Krankheiten (DGF abstract). Fac Sci Technol 92: 430

    Google Scholar 

  • Singh A (1991) Lipid production by a cellulolytic strain of Aspergillus niger. Lett Appl Microbiol 12: 200–202

    Article  CAS  Google Scholar 

  • Singh B, Oberoi GK, Sharma SC (1990) Effect of pH stress on lipid composition of Saccharomyces cerevisiae. Indian J Exp Biol 28 (5): 430–433

    PubMed  CAS  Google Scholar 

  • Solomons GL (1975) Submerged culture production of mycelial biomass. In: Smith JE, Berry DR (eds) The filamentous fungi, vol 1. Industrial mycology. Arnold, London

    Google Scholar 

  • Song Y, Wynn JP, Li Y, Grantham D, Ratledge C (2001) A pre-genetic study of the isoforms of malic enzyme associated with lipid accumulation in Mucor circinelloides. Microbiology 147: 1507–1515

    PubMed  CAS  Google Scholar 

  • Sonnet PE, Foglia TA, Feairheller SM (1993) Fatty acid selectivity of lipases: erucic acid from rapeseed oil. J Am Oil Chem Soc 70 (4): 387–391

    Article  CAS  Google Scholar 

  • Sorkhoh NA, Ghannoum MA, Ibrahim AS, Stretton RJ, Radwan SS (1990) Growth of Candida albicans on hydrocarbons: influence on lipids and sterols. Microbios 64 (260/261): 159–172

    PubMed  CAS  Google Scholar 

  • Sridhar R, Lakshminarayana G, Kaimal TNB (1991a) Modifications of selected Indian vegetable fats into cocoa butter substitutes by lipase catalyzed ester interchange. J Am Oil Chem Soc 68 (10): 726–730

    Article  CAS  Google Scholar 

  • Sridhar R, Lakshminarayana G, Kaimal TNB (1991b) Modifications of selected edible vegetable oils to high oleic oils by lipase catalysed ester interchange. J Agric Food Chem 39 (11): 2069–2071

    Article  CAS  Google Scholar 

  • Sridhar R, Lakshminarayana G (1992) Incorporation of eicosapentaenoic and docosahexaenoic acids into groundnut oil by lipase catalyzed ester interchange. J Am Oil Chem Soc 69 (10): 1041–1042

    Article  CAS  Google Scholar 

  • Stamatis H, Xenakis A, Kolisis FN (1993a) Enantiomeric selectivity of a lipase from Penicillium simplicissimum in the esterification of menthol in microemulsions. Biotechnol Lett 15 (5): 471–476

    Article  CAS  Google Scholar 

  • Stamatis H, Xenakis A, Provelegiou M, Kolisis FN (1993b) Esterification reactions catalysed by lipases in microemulsions: the role of enzyme localization in relation of its selectivity. Biotechnol Bioeng 42 (1): 103–110

    Article  PubMed  CAS  Google Scholar 

  • Stillwell W, Ehringer W, Jenski LJ (1993) Docosahexaenoic acid increases permeability of lipid vesicles and tumor cells. Lipids 28 (2): 103–108

    Article  PubMed  CAS  Google Scholar 

  • Stöcklein W, Sztajer H, Menee U, Schmid RD (1993) Purification and properties of a lipase from Penicillium expansum. Biochim Biophys Acta 1168 (2): 181–189

    Article  PubMed  Google Scholar 

  • Stred’Anska S, Sajbidor J (1992) Oligounsaturated fatty acid production by selected strains of micromycetes. Folia Microbiol 37 (5): 357–359

    Article  Google Scholar 

  • Stred’Anska S, Sajbidor J (1993) Influence of carbon and nitrogen sources on the lipid accumulation and arachidonic acid production by Mortierella alpina. Acta Biotechnol 13 (2): 185–191

    Article  Google Scholar 

  • Stredanski M, Conti E, Stredanska S, Zanetti F (2000) Gamma-linolenic acid production with Thamnidium elegans by solid-state fermentation on apple pomace. Bioresource Technol 73 (1): 41–45

    Article  Google Scholar 

  • Streekstra H (1997) On the safety of Mortierella alpina for the production of food ingredients such as arachidonic acid. J Biotechn 56: 153–165

    Article  CAS  Google Scholar 

  • Stroh S, Elmadfa I, Schlotzer E, Weidler B (1990) In vivo und in vitro Untersuchungen zum Einfluss von w-3 Polyenfettsäuren auf die Aggregation von Human-Thrombozyten ( DGF abstract ). Fat Sci Technol 92: 433–434

    Google Scholar 

  • Sugano M, Ishida T, Yoshida K, Tanaka K, Miwa M, Arima N, Monta A (1986) Effect of mold oil containing y-linolenic acid on the blood cholesterol and eicosanoid levels of rats. Agric Biol Chem 50: 2483–2491

    Article  CAS  Google Scholar 

  • Sugihara A, Shimada Y, Tominaga Y (1991) A novel Geotrichum candidum lipase with some preference for the 2-position on a triglyceride molecule. Appl Microbiol Biotechnol 35 (6): 738–740

    Article  CAS  Google Scholar 

  • Suzuki M, Mizugaki M (1987) Comparison of intracellular and extracellular lipases produced by Rhizopus japonicus NR-400. J Pharm Sci 76 (11): 5118

    Google Scholar 

  • Svensson I, Adlercreutz P, Mattiasson B (1990) Interesterification of phosphatidylcholine with lipases in organic media. Appl Microbiol Biotechnol 33 (3): 255–258

    Article  PubMed  CAS  Google Scholar 

  • Sztajer H, Maliszewska I (1989) The effect of culture conditions on lipolytic productivity of Penicillium citrinum. Biotechnol Lett 11 (12): 895–898

    Article  CAS  Google Scholar 

  • Sztajer H, Luensdorf H, Erdmann H, Menge U, Schmid R (1992) Purification and properties of lipase from Penicillium simplicissimum. Biochim Biophys Acta 1124 (3): 253–261

    Article  PubMed  CAS  Google Scholar 

  • Tahoun MK (1986) Fatty acids and position specificities of Rhizopus delemar intracellular lipases. Grasas Aceites 37 (4): 191–193

    CAS  Google Scholar 

  • Tahoun MK, El Kady M, Wahba A (1985) Glyceride synthesis by an intracellular lipase from Aspergillus niger. Microbios Lett 28 (111/112): 133–140

    CAS  Google Scholar 

  • Tahoun M, Shata O, Mashaley R, Abou-Donia S (1986) Influence of selected sugars and temperature on fatty acids composition in Candida lipolytica. Appl Microbiol Biotechnol 24 (3): 235–239

    Article  CAS  Google Scholar 

  • Tahoun MK, Mashaley R, Asmail AA (1988) The mechanism of Rhizopus delemar intracellular lipases inhibition by various chemicals. Microbios 53 (216/217): 139–146

    CAS  Google Scholar 

  • Takhashi I, Kushiro M, Takahashi Y (2001) Dietary mold oil rich in gamma-linolenic acid increases insulin-dependent glucose utilization in isolated rat adipocytes. Comp Biochem Physiol (part B Biochem Mol Biol) 130B (3): 401–409

    Article  Google Scholar 

  • Tanaka Y, Mirano J, Funada T (1992) Concentration of docosahexaenoic acid in glyceride by hydrolysis of fish oil with Candida cylindracea lipase. J Am Oil Chem Soc 69 (12): 1210–1214

    Article  CAS  Google Scholar 

  • Thakur MS, Prapulla SG, Karanth NG (1989) Estimation of intracellular lipids by the measurement of absorbance of yeast cells stained with Sudan Black B. Enzyme Microb Technol 11 (4): 252–254

    Article  CAS  Google Scholar 

  • Tomita M, Yamamoto S, Yamaguchi K, Ohigashi H, Koshimizu K (1997) Physiological characteristics of a film forming strain of Zygosaccharomyces rouxii and its cellular fatty acid synthesis. Biosc Biotechnol Biochem 61 (1): 51–55

    Article  CAS  Google Scholar 

  • Torossian K, Bell AW (1991) Purification and characterization of an acid resistant triacylglycerol lipase from Aspergillus niger. Biotechnol Appl Biochem 13 (2): 205–211

    CAS  Google Scholar 

  • Toskueva EP, Araviiskii RA, Efimova TP (1988) Cytophysiology of Penicillium solitum the producer of lipase. Antibiot Khimioter 33 (9): 647–650

    PubMed  CAS  Google Scholar 

  • Totani Y, Hara S (1991) Preparation of polyunsaturated phospholipids by lipase catalyzed transesterification. J Am Oil Chem Soc 68 (11): 848–851

    Article  CAS  Google Scholar 

  • Totani N, Oba K (1988) A simple method for production of arachidonic acid by Mortierella alpina. Appl Microbiol Biotechnol 28 (2): 135–137

    Article  CAS  Google Scholar 

  • Touraine F, Drapron R (1987) Activity of lipase from Rhizopus arrhizus in water glycerol and water glycol media. Sci Aliments 7 (3): 411–431

    CAS  Google Scholar 

  • Toyoshima T, Hara S, Totani Y (1993) Preparation of polyunsaturated triacylglycerols via transesterification catalysed by immobilised lipase. J Jpn Oil Chem Soc 42 (1): 30–35

    Article  CAS  Google Scholar 

  • Tulloch AP (1990) Glycosides of hydroxy fatty acids. In: Kates M (ed) Handbook of lipid research, vol 6. Plenum Press, New York, pp 463–488

    Google Scholar 

  • Turcotte G, Kosaric N (1988) Biosynthesis of lipids by Rhodosporidium toruloides ATCC 10788. J Biotechnol 8 (3): 221–238

    Article  CAS  Google Scholar 

  • Turcotte G, Kosaric N (1989a) The effect of C/N ratio on lipid production by Rhodosporidium toruloides ATCC 10788. Biotechnol Lett 11 (9): 637–642

    Article  CAS  Google Scholar 

  • Turcotte G, Kosaric N (1989b) Lipid biosynthesis in oleaginous yeasts. Biotechnology 40: 73–92

    CAS  Google Scholar 

  • Tyagi SR, Burnham DN, Lambeth JD (1989) On the biological occurrence and regulation of 1-acyl and 1–0alkyldiacylglycerols in human neutrophils: selective destruction of diacyl species using Rhizopus lipase. J Biol Chem 264 (22): 12977–12982

    PubMed  CAS  Google Scholar 

  • Uyttenbroeck W, Hendriks D, Vriend G, De Baere I, Moens L, Scharpe S (1993) Molecular characterization of an extracellular acid resistant lipase produced by Rhizopus javanicus. Biol Chem Hoppe Seyler 374 (4): 245–254

    Article  PubMed  CAS  Google Scholar 

  • Valenzuela A, Nieto S (1994) Biotechnology of lipids: the use of lipases for the structural modification of fats and oils. Grasas Aceites 45 (5): 337–343

    Article  CAS  Google Scholar 

  • Valero F, del Rio JL, Poch M, Sola C (199la) Fermentation behaviour of lipase production by Candida rugosa growing on different mixtures of glucose and olive oil. J Ferment Bioeng 72(5):399–401

    Google Scholar 

  • Valero F, Poch M, Sola C, Santos Lapa RA, Costa Lima JLF (1991b) On-line monitoring of lipase production in fermentation process. Biotechnol Tech 5 (4): 251–254

    Article  CAS  Google Scholar 

  • Valivety R, Malling PJ, Macrae AR (1992) Rhizomucor miehei lipase remains highly active at water activity below 0.0001. FEBS Lett 301(3):258–260

    Google Scholar 

  • Van der Padt A, Edema MJ, Sewalt JJW, Van’t Riet K (1990) Enzymatic acylglylcerol synthesis in a membrane bioreactor. J Am Oil Chem Soc 67 (6): 347–352

    Article  Google Scholar 

  • Van Dyk MS, Kock JLF, Coetzee DJ, Augustyn OPH, Nigam S (1991) Isolation of a novel arachidonic acid metabolite 3-hydroxy-5,8,11,14-eicosatetraenoic acid (3HETE) from the yeast Dipodascopsis uninucleata UOFs-Y128. FEBS Lett 283 (2/3): 195–198

    PubMed  Google Scholar 

  • Van Dyk MS, Kock JLF, Botha A, Coetzee DJ, Botes PJ, Augustyn OPH, Nigam S (1993) 3-Hydroxy-5,8,11,14 (11 cis)-eicosatetraenoic acid (3-HETE): a new aspirin-sensitive arachidonic acid metabolite from yeast. Dev Oncol 71: 67–70

    Google Scholar 

  • Vasel B, Hecht HJ, Dieter R, Schomburg SD (1993) 3D-structures of the lipase from Rhizomucor miehei at different

    Google Scholar 

  • Veeraragavan K (1990) A simple and sensitive method for the estimation of microbial lipase activity. Anal Biochem 186 (2): 301–305

    Article  PubMed  CAS  Google Scholar 

  • Viljoen BC, Kock JLF, Lategan PM (1986) The influence of culture age on the cellular fatty acid composition of four selected yeasts. J Gen Microbiol 132 (7): 1895–1898

    CAS  Google Scholar 

  • Vorderwülbecke T, Kieslich K, Erdmann H (1992) Comparison of lipases by different assays. Enzyme Microb Technol 14: 631–639

    Article  Google Scholar 

  • Wainwright M (1992) An introduction to fungal biotechnology. Wiley, Chichester

    Google Scholar 

  • Wan Yunus WMZ, Wan MZ, Salleh AB, Basri M, Ampon K, Razak CNA (1996) Preparation and immobilization of lipase onto poly(methyl acrylate-methyl methacrylate divinylbenzene) beads for lipid hydrolysis. Biotechnol Appl Biochem 24 (1): 19–23

    Google Scholar 

  • Wang YJ, Wang FF, Sheu JY, Tsai YC, Shaw JE (1992) Changes of lipase catalysed lipolytic rates in a batch reactor. Biotechnol Bioeng 39 (11): 1128–1132

    Article  PubMed  CAS  Google Scholar 

  • Weete JD (1974) Fungal lipid biochemistry. Plenum Press, New York

    Book  Google Scholar 

  • Weete JD (1980) Lipid biochemistry of fungi and other organisms. Plenum Press, New York

    Book  Google Scholar 

  • Weete JD, Gandhi S (1992) Potential for fungal lipids in biotechnology. In: Arora DK, Elander RP, Mukherjee KD (eds) Handbook of applied mycology, vol 4. Dekker, New York, pp 377–400

    Google Scholar 

  • Weiss A (1990) Enzymatic preparation of solid fatty acid monoglycerides. Fettwiss Technol 92 (10): 392–400

    CAS  Google Scholar 

  • Wells GB, Dickson RC, Lester RL (1996) Isolation and composition of inositolphosphorylceramide-type sphingolipids of hyphal forms of Candida albicans. J Bacteriol 178: 6223–6226

    PubMed  CAS  Google Scholar 

  • Welsh FW, Williams RE, Dawson KM (1990) Lipase mediated synthesis of low molecular weight flavor esters. J Food Sci 55 (6): 1679–1682

    Article  CAS  Google Scholar 

  • Welsh FW, Williams RE, Chang SC, Dicaire CJ (1991) Production of low molecular weight esters using vegetable oils or butter oil as reaction media. J Chem Technol Biotechnol 52 (2): 201–210

    Article  CAS  Google Scholar 

  • Wijeyaratne SC, Ohta K, Chavanich S, Mahamontri V, Nilubol N, Hayashida S (1986) Lipid composition of a thermotolerant yeast Hansenula polymorpha. Agric Biol Chem 50 (4): 827–832

    Article  CAS  Google Scholar 

  • Williams WV, Rosembaum H, Zurier RB (1996) Effects of unsaturated fatty acids on expression of early response genes in human T lymphocytes. Pathobiology 64 (1): 27–31

    Article  PubMed  CAS  Google Scholar 

  • Wisdom RA, Dunnill P, Lilly MD (1987) Enzymic interesterification of fats: laboratory and pilot scale studies with immobilized lipase from Rhizopus arrhizus. Biotechnol Bioeng 29 (9): 1081–1085

    Article  PubMed  CAS  Google Scholar 

  • Wu GP, Xu JD, Bian ZN, Xiong ZP (1990a) Studies on the fermentation and purification of lipase from Candida rugosa. Chin J Pharm 21 (4): 145–149

    CAS  Google Scholar 

  • Wu GP, Xu JD, Bian ZN, Xiong ZP (1990b) Studies on lipase from Candida rugosa. I. Characters of enzyme. Chin J Pharm 21 (8): 337–340

    CAS  Google Scholar 

  • Wynn J, Ratledge C (2000) Evidence that the rate-limiting step for the biosynthesis of arachidonic acid in Mortierella alpina is at the level of the 18:3 to 20:3 elongase. Microbiol Reading 146 (9): 2325–2331

    CAS  Google Scholar 

  • Wynn JP, Aidil bin Abdul H, Ratledge C (1999) The role of malic enzyme in the regulation of lipid accumulation in filamentous fungi. Microbiology 145: 19111917

    Google Scholar 

  • Wynn JP, Hamid AA, Li Y, Ratledge C (2001) Biochemical events leading to the diversion of carbon into storage lipids in the oleaginous fungi Mucor circinelloides and Mortierella alpina. Microbiology 147: 2857–2864

    PubMed  CAS  Google Scholar 

  • Xian M, Yan J, Kang Y, Liu J, Bi Y, Zhen K (2001) Production of gamma-linolenic acid by Mortierella isabellina grown on hexadecanol. Lett Appl Microbiol 33 (5): 367–370

    Article  PubMed  CAS  Google Scholar 

  • Xu X, Fomuso L, Akoh C (2000) Synthesis of structured triacylglycerols by lipase-catalyzed acidolysis in a packed bed bioreactor. J Agric Food Chem 48 (1): 3–10

    Article  PubMed  CAS  Google Scholar 

  • Yadwad VB, Ward OP, Noronha LC (1991) Application of lipase to concentrate the docosahexaenoic acid DHA fraction of fish oil. Biotechnol Bioeng 38 (8): 956–959

    Article  PubMed  CAS  Google Scholar 

  • Yagi T, Nakanishi T, Yoshizawa Y, Fukui F (1990) The enzymatic acyl exchange of phospholipids with lipases. J Ferment Bioeng 69 (1): 23–25

    Article  CAS  Google Scholar 

  • Yamaguchi S, Mase T (1991a) Purification and characterization of monoacylglycerol and diacylglycerol lipase isolated from Penicillium camemberti U 150. Appl Microbiol Biotechnol 34 (6): 720–725

    Article  CAS  Google Scholar 

  • Yamaguchi S, Mase T (1991b) High yield synthesis of monoglyceride by monoacylglycerol and diacylglycerol lipase from Penicillium camemberti U 150. J Ferment Bioeng 72 (3): 162–167

    Article  CAS  Google Scholar 

  • Yang D, Rhee JS (1991) Stability of the lipase immobilized on DEAE Sephadex for continuous lipid hydrolysis in organic solvent. Biotechnol Lett 13 (8): 553–558

    Article  CAS  Google Scholar 

  • Yang D, Rhee JS (1992) Continuous hydrolysis of olive oil by immobilized lipase in organic solvent. Biotechnol Bioeng 40 (6): 748–752

    Article  PubMed  CAS  Google Scholar 

  • Ykema A, Kater MM, Smit H (1989) Lipid production in whey permeate by an unsaturated fatty acid mutant of the oleaginous yeast Apiotrichum curvatum. Biotechnol Lett 11 (7): 477–482

    Article  CAS  Google Scholar 

  • Ykema A, Verbree EC, Verwoert HGS, Linden KM, Van Der Nijkamp HJJ, Smit H (1990) Lipid production of revertants of Ufa mutants from the oleaginous yeast Apiotrichum curvatum. Appl Microbiol Biotechnol 3: 176–183

    Google Scholar 

  • Zhou QH, Kosaric N (1993) Effect of lactose and olive oil on intra and extracellular lipids of Torulopsis bombicola. Biotechnol Lett 15 (5): 477–482

    Article  CAS  Google Scholar 

  • Zichenko GA, Belov AP (1990) Topography of the enzymes of acylglycerol biosynthesis in yeast membranes. IZV Timiryazev S-KH Akad 0: 123–129

    Google Scholar 

  • Zu-Yi L, Ward OP (1993a) Enzyme catalysed production of vegetable oils containing w-3-polyunsaturated fatty acid. Biotechnol Lett 15 (2): 185–188

    Article  Google Scholar 

  • Zu-Yi L, Ward OP (1993b) Lipase catalyzed esterification of glycerol and n-3 polyunsaturated fatty acid concentrate in organic solvent. J Am Oil Chem Soc 70 (8): 745–748

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sancholle, M., Lösel, D.M., Laruelle, E. (2004). Lipids in Fungal Biotechnology. In: Kück, U. (eds) Genetics and Biotechnology. The Mycota, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-07426-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-07426-8_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07667-1

  • Online ISBN: 978-3-662-07426-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics