Skip to main content

Molecular Biology of Cellulolytic Fungi

  • Chapter
Genetics and Biotechnology

Part of the book series: The Mycota ((MYCOTA,volume 2))

Abstract

The synthesis, modification and hydrolysis of carbohydrates by glycosidase enzymes are some of the fundamental activities in nature. Enzymes responsible for these processes are produced across different organisms, genera and species including the kingdom fungi. Together with bacteria, fungi are responsible for the recycling of nature’s recalcitrant polymers such as lignocellulose which is mainly stored in the plant cell walls. The three main components of a plant cell wall are cellulose, hemicellulose and lignin in a percent ratio of about 40:30:30 (Sjöström 1981). White rot fungi are capable of degrading all three polymeric substances, including the polyphenolic lignin, whereas brown rot and soft rot fungi prefer the carbohydrate polymers of cellulose, formed of 13-1,4-linked D-glucopyranose units with no side branches and hemicellulose, of which the backbone structure consists of ß-1,4-linked D-xylopyranosyl units (xylan) or 13-1,4-linked D-mannose and D-glucose units (mannan) with sugar side chains that may be acetylated and/or methylated (reviewed in Tenkanen 1995). Earlier studies of lignocellulose hydrolysis have mainly concentrated on the biochemistry and molecular biology of cellulose degradation. More recently, the enzymology of lignin degradation (reviewed in Leonowicz et al. 1999) and especially molecular studies on the hydrolysis of hemicellulose have advanced considerably (e.g. de Vries et al. 2002). Xylan degradation has been studied in detail with genes and enzymes from Aspergillus (reviewed in de Vries et al. 2002) and lignin degradation with Phanerochaete chrysosporium (reviewed in Cameron et al. 2000). At present, some 20 enzymes involved in the degradation of lignocellulose have been described. In this chapter, we will concentrate on molecular aspects relating to cellulose hydrolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrahao-Neto J, Rossini CH, El-Gogary S, Henrique-Silva F, Crivellaro O, El-Dorry H (1995) Mitochondrial functions mediate cellulase gene expression in Trichoderma reesei. Biochemistry 34: 10456–10462

    PubMed  CAS  Google Scholar 

  • Ahn JH, Sposato P, Kim SI, Walton JD (2001) Molecular cloning and characterization of cell from the fungus Cochliobolus carbonum. Biosci Biotechnol Biochem 65: 1406–1411

    PubMed  CAS  Google Scholar 

  • Archer DB, Peberdy JF (1997) The molecular biology of secreted enzyme production by filamentous fungi. Crit Rev Biotechnol 17: 273–306

    PubMed  CAS  Google Scholar 

  • Aro N, Ilmén M, Saloheimo A, Penttilä M (2001) ACEII, a novel transcriptional activator involved in regulation of cellulase and xylanase genes of Trichoderma reesei. J Biol Chem 26: 24309–24314

    Google Scholar 

  • Aro N, Ilmén M, Saloheimo A, Penttilä M (2002) ACEI of Trichoderma reesei is a repressor of cellulase and xylanase genes. Appl Environ Microbiol 69: 56–65

    Google Scholar 

  • Barnett C, Shoemaker S (1987) Expression of endoglucanase genes of Trichoderma reesei in Aspergillus nidulans. FEMS symposium biochemistry and genetics of lignocellulose degradation, Paris, 7–9 Sept, pp 2–18

    Google Scholar 

  • Becker D, Johnson KS, Koivula A, Schülein M, Sinnott ML (2000) Hydrolyses of alpha-and beta-cellobiosyl fluorides by Ce16A (cellobiohydrolase II) of Trichoderma reesei and Humicola insolens. Biochem J 345Pt2: 315–319

    Google Scholar 

  • Becker D, Braet C, Brumer H, Claeyssens M, Divne C, Fagerström R, Harris M, Jones A, Kleywegt GJ, Koivula A, Mandi S, Piens K, Sinnott M, Stâhlberg J, Teeri TT, Underwood M, Wohlfahrt G (2001) Engineering of a glycosidase Family 7 cellobiohydrolase to more alkaline pH optimum: the pH behaviour of Trichoderma reesei Ce17A and its E223S/A224H/L225V/T226A/D262G mutant. Biochem J 356: 19–30

    PubMed  CAS  Google Scholar 

  • Bergquist P, Te’o V, Gibbs M, Cziferszky A, Paula de Faria F, Azevedo M, Nevalainen H (2002) Expression of xylanase enzymes from thermophilic microorganisms in fungal hosts. Extremophiles 6: 177–184

    PubMed  CAS  Google Scholar 

  • Bisaria VS, Mishra S (1989) Regulatory aspects of cellulase biosynthesis and secretion. CRC Crit Rev Biotechnol 9: 61–103

    CAS  Google Scholar 

  • Birch P, Sims P, Broda P (1995) Substrate-dependent differential splicing of introns in the regions encoding the cellulose binding domains of two exocellobiohydrolase I-like genes in Phanerochaete chrysosporium. Appl Environ Microbiol 61: 3741–3744

    PubMed  CAS  Google Scholar 

  • Boer H, Teeri TT, Koivula A (2000) Characterization of Trichoderma reesei cellobiohydrolase Ce17A secreted from Pichia pastoris using two different promoters. Biotechnol Bioeng 69: 486–494

    PubMed  CAS  Google Scholar 

  • Boisset C, Pétrequin C, Chanzy H, Henrissat B, Schülein M (2001) Optimized mixtures of recombinant Humicola insolens cellulases for the biodegradation of crystalline cellulose. Biotechnol Bioeng 72: 339–345

    PubMed  CAS  Google Scholar 

  • Bourne Y, Henrissat B (2001) Glycoside hydrolases and glycosyltransferases: families and functional modules. Curr Opin Struct Biol 11: 593–600

    PubMed  CAS  Google Scholar 

  • Broda P, Birch P, Brooks P, Sims P (1995) PCR-mediated analysis of lignocellulolytic gene transcription by Phanerochaete chrysosporium. Substrate-dependent differential expression within gene families. Appl Environ Microbiol 61: 2358–2364

    Google Scholar 

  • Caddick MX, Brownlee AG, Arst HN Jr (1986) Regulation of gene expression by pH of the growth medium in Aspergillus nidulans. Mol Gen Genet 203: 346–353

    PubMed  CAS  Google Scholar 

  • Cameron MD, Timofeevski S, Aust SD (2000) Enzymology of Phanerochaete chrysosporium with respect to the degradation of recalcitrant compounds and xenobiotics. Appl Microbiol Biotechnol 54: 751–758

    PubMed  CAS  Google Scholar 

  • Carle-Urioste JC, Escobar-Vera J, El-Gogary S, HenriqueSilva F, Torigoi E, Crivellaro O, Herrera-Estrella A, ElDorry H (1997) Cellulase induction in Trichoderma reesei by cellulose requires its own basal expression. J Biol Chem 272: 10169–10174

    PubMed  CAS  Google Scholar 

  • Carrard G, Linder M (1999) Widely different rates of two closely related cellulose-binding domains from Trichoderma reesei. Eur J Biochem 262: 637–643

    PubMed  CAS  Google Scholar 

  • Carrard G, Koivula A, Söderlund H, Beguin P (2000) Cellulose-binding domains promote hydrolysis of different sites on crystalline cellulose. Proc Natl Acad Sci USA 97 (19): 10342–10347

    PubMed  CAS  Google Scholar 

  • Chow CM,Yague E, Raguz S, Wood DA, Thurston CF (1994) The cel3 gene of Agaricus bisporus codes for a modular cellulase and is transcriptionally regulated by the carbon source. Appl Environ Microbiol 60: 2779–2785

    Google Scholar 

  • Christensen T, Hynes MJ, Davis MA (1998) Role of the regulatory gene areA of Aspergillus oryzae in nitrogen metabolism. Appl Environ Microbiol 64: 3232–3237

    PubMed  CAS  Google Scholar 

  • Claeyssens M, Nerinxck W, Piens K (eds) (1997) Carbohydrases from Trichoderma reesei and other microorganisms; structures, biochemistry, genetics and applications. Royal Society of Chemistry, Thomas Graham House, Cambridge

    Google Scholar 

  • Conesa A, van den Hondel CAMJJ, Punt P (2000) Studies on the production of fungal peroxidases in Aspergillus niger. Appl Environ Microbiol 66: 3016–3023

    PubMed  CAS  Google Scholar 

  • Conesa A, Punt PJ, van Luijk N, van den Hondel CAMJJ (2001) The secretion pathway in filamentous fungi: a biotechnological view. Fungal Genet Biol 33: 155–171

    PubMed  CAS  Google Scholar 

  • Contreras R, Carrez D, Kinghorn JR, van den Hondel CAMJJ, Fiers W (1991) Efficient KEX2-like processing of a glucoamylase-interleukin-6 fusion protein by Aspergillus nidulans and secretion of mature interleukin-6. Bio/Technology 9: 378–381

    PubMed  CAS  Google Scholar 

  • Covert SF, vanden Wymelenberg A, Cullen D (1992) Structure, organization, and transcription of a cellobiohydrolase gene cluster from Phanerochaete chrysosporium. Appl Environ Microbiol 58: 2168–2175

    PubMed  CAS  Google Scholar 

  • Dalboge H (1997) Expression cloning of fungal enzyme genes; a novel approach for efficient isolation of enzyme genes of industrial relevance. FEMS Microbiol Rev 1: 29–42

    Google Scholar 

  • Davies G, Henrissat B (1995) Structures and mechanisms of glycosyl hydrolases. Structure 3: 853–859

    PubMed  CAS  Google Scholar 

  • Davies GJ, Tolley SP, Henrissat B, Hjort C, Schülein M (1995) Structure of oligosaccharide-bound forms of the endoglucanase V from Humicola insolens at 1.9A resolution. Biochemistry 34: 16210–16220

    PubMed  CAS  Google Scholar 

  • Davies GJ, Brzozowski AM, Dauter M, Varrot A, Schülein M (2000) Structure and function of Humicola insolens family 6 cellulases: structure of the endoglucanase, Ce16B, at 1.6A resolution. Biochem J 15: 201–207

    Google Scholar 

  • Denman S, Xue GP, Patel B (1996) Characterization of a Neocallimastix patriciarum cellulase cDNA (celA) homologous to Trichoderma reesei cellobiohydrolase II. Appl Environ Microbiol 62: 1889–1996

    PubMed  CAS  Google Scholar 

  • De Vries RP, Visser J (2001) Aspergillus enzymes involved in degradation of plant cell wall polysaccharides. Microbiol Mol Biol Rev 65: 4497–4522

    Google Scholar 

  • De Vries RP, Visser J, de Graaff LH (1999) CreA modulates the X1nR-induced expression of xylose of Aspergillus niger genes involved in xylan degradation. Res Microbiol 150: 281–285

    PubMed  Google Scholar 

  • De Vries RP, Benen JA, de Graaff LH, Visser J (2002) Plant cell wall degrading enzymes produced by Aspergillus. In: Osiewacz HD (ed) The Mycota X. Springer, Berlin Heidelberg New York, pp 263–279

    Google Scholar 

  • Ding SJ, Buswell JA (2001) Endoglucanase I from the edible straw mushroom, Volvariella volvacea. Purification, characterization, cloning and expression. Eur J Biochem 268: 5687–5695

    Google Scholar 

  • Divne C, Sthälberg J, Reinikainen T, Ruohonen L, Petters-son G, Knowles JKC, Teeri TT, Jones AT (1994) The three-dimensional crystal structure of the catalytic core of cellobiohydrolase I from Trichoderma reesei. Science 265: 524–528

    PubMed  CAS  Google Scholar 

  • Dowzer CE, Kelly JM (1991) Analysis of the creA gene, a regulator of carbon catabolite repression in Aspergillus nidulans. Mol Cell Biol 11: 57015709

    Google Scholar 

  • Drysdale MR, Kolze SE, Kelly JM (1993) The Aspergillus niger carbon catabolite repressor encoding gene, creA. Gene 130: 241–245

    PubMed  CAS  Google Scholar 

  • Dunn-Coleman NS, Bloebaum P, Berka RJ, Bodie E, Robinson N, Armstrong G, Ward M, Przetak M, Carter GL, LaCost R, Wilson LJ, Kodama KH, Baliu E, Bower B, Lamsa M, Heinsohn H (1991) Commercial levels of chymosin production by Aspergillus. Bio/Technology 9: 976–981

    PubMed  CAS  Google Scholar 

  • El-Gogary S, Leite A, Crivellaro O, Eveleigh DE, El-Dorry H (1989) Mechanism by which cellulose triggers cellobiohydrolase I gene expression in Trichoderma reesei. Proc Natl Acad Sci USA 86: 6138–6141

    PubMed  CAS  Google Scholar 

  • Esteghlalian AR, Bilodeau M, Mansfield SD, Saddler JN (2001) Do enzymatic hydrolyzability and Simons’ stain reflect the changes in the accessibility of lignocellulosic substrates to cellulase enzymes? Biotechnol Prog 17: 1049–1054

    PubMed  CAS  Google Scholar 

  • Fanutti C, Ponyi G, Black G, Hazelwood GP, Gilbert HJ (1995) The conserved non-catalytic 40-residue sequence in cellulases and hemicellulases from anaerobic fungi functions as a protein docking domain. J Biol Chem 270: 29314–29322

    PubMed  CAS  Google Scholar 

  • Fillingham IJ, Kroon PA, Williamson G, Gilbert HJ, Hazlewood GP (1999) A modular cinnamoyl ester hydrolase from the anaerobic fungus Piromyces equi acts synergistically with xylanase and is part of a multiprotein cellulose-binding cellulase-hemicellulase complex. Biochem J 1: 215–224

    Google Scholar 

  • Fujino Y, Ogata K, Nagamine T, Ushida K (1998) Cloning, sequencing and expression of an endoglucanase gene from the rumen anaerobic fungus Neocallimastix frontalis MHC3. Biosci Biotechnol Biochem 62: 1795–1798

    PubMed  CAS  Google Scholar 

  • Garcia-Kirchener O, Segura-Granados M, RobledoBautista I, Duran-Paramo E (2000) Screening of potential antibiotic action of cellulolytic fungi. Appl Biochem Biotechnol 84–86: 769–778

    Google Scholar 

  • Garcia-Vallvé S, Romeu A, Palau J (2000) Horizontal gene transfer of glycosyl hydrolases of the rumen fungi. Mol Biol Evol 17: 352–361

    PubMed  Google Scholar 

  • Gebler J, Gilkes NR, Claeyssens M, Wilson DB, Beguin P, Wakarchuk WW, Kilburn DG, Miller RC Jr, Warren RA, Withers SG (1992) Stereoselective hydrolysis catalyzed by related beta-1,4-glucanases and beta-1,4xylanases. J Biol Chem 267: 12559–12561

    PubMed  CAS  Google Scholar 

  • Gielkens M, Gonzalez-Candelas L, Sanchez-Torres P, van de Vondervoort P, de Graaff L, Visser J, Ramon D (1999a) The abfB gene encoding the major alpha-L-arabinofuranosidase of Aspergillus nidulans: nucleotide sequence, regulation and construction of a disrupted strain. Microbiology 145: 735–741

    PubMed  CAS  Google Scholar 

  • Gielkens MMC, Visser J, de Graaff (1999b) Two cellobiohydrolase encoding genes from Aspergillus niger require D-xylose and the xylanolytic transcriptional activator X1nR for their expression. Appl Environ Microbiol 65: 4340–4345

    PubMed  CAS  Google Scholar 

  • Godbole S, Decker SR, Nieves RA, Adney WS, Vinzant TB, Baker JO, Thomas SR, Himmel ME (1999) Cloning and expression of Trichoderma reesei cellobiohydrolase I in Pichia pastoris. Biotechnol Prog 15: 828–833

    PubMed  CAS  Google Scholar 

  • Gouka RJ, Punt PJ, van den Hondel CA (1997) Efficient production of secreted proteins by Aspergillus: progress, limitations and prospects. Appl Microbiol Biotechnol 47: 1–11

    PubMed  CAS  Google Scholar 

  • Hallberg M, Henriksson G, Pettersson G, Divne C (2002) Crystal structure of the flavoprotein domain of the extracellular flavocytochrome cellobiose dehydrogenase. J Mol Biol 315: 421–434

    PubMed  CAS  Google Scholar 

  • Harkki A, Uusitalo J, Bailey M, Penttilä M, Knowles JKC (1989) A novel fungal expression system: secretion of active calf chymosin from the filamentous fungus Trichoderma reesei. Bio/Technology 7: 596–603

    CAS  Google Scholar 

  • Harkki A, Mäntylä A, Penttilä M, Muttilainen S, Bühler R, Suominen P, Knowles J, Nevalainen H (1991) Genetic engineering of Trichoderma to produce strains with novel cellulase profiles. Enzyme Microb Technol 13: 227–233

    PubMed  CAS  Google Scholar 

  • Harrison MJ, Nouwens AS, Jardine DR, Zachara NE, Gooley AA, Nevalainen H, Packer NH (1998) Glycosylation of cellobiohydrolase I from Trichoderma reesei. Eur J Biochem 256: 119–127

    PubMed  CAS  Google Scholar 

  • Hasper AA, Dekkers E, van Mil M, van de Vondervoort PI, de Graaff LH (2002) Eg1C, a new endoglucanase from Aspergillus niger with major activity towards xyloglucan. Appl Environ Microbiol 68: 1556–1560

    PubMed  CAS  Google Scholar 

  • Hedeland M, Nygard M, Isaksson R, Pettersson C (2000) Cellulases from the fungi Phanerochaete chrysosporium and Trichoderma reesei as chiral selectors in capillary electrophoresis: applications with displacer plugs and sample preconcentration. Electrophoresis 21: 1587–1596

    PubMed  CAS  Google Scholar 

  • Henriksson G, Nutt A, Henriksson H, Pettersson B, Stâhlberg J, Johansson G, Pettersson G (1999) Endoglucanase 28 (Cell2A), a new Phanerochaete chrysosporium cellulase. Eur J Biochem 259: 88–95

    PubMed  CAS  Google Scholar 

  • Henrique-Silva F, El-Gogary S, Carle-Urioste JC, Matheucci E Jr, Crivellaro O, El-Dorry H (1996) Two regulatory regions controlling basal and cellulose-induced expression of the gene encoding cellobiohydrolase I of Trichoderma reesei are adjacent to its TATA box. Biochem Biophys Res Commun 228: 229–237

    PubMed  CAS  Google Scholar 

  • Hirvonen M, Papageorgieou AC (2002) Crystallization and preliminary crystallographic analysis of a family 45 endoglucanase from the thermophilic fungus Melanocarpus albomyces. Acta Crystallogr D Biol Crystallogr 58: 336–368

    PubMed  Google Scholar 

  • Hjeljord L, Tronsmo A (1998) Trichoderma and Gliocladium in biological control: an overview. In: Harman GR, Kubicek CP (eds) Trichoderma and Gliocladium, vol 2. Enzymes, biological control and commercial applications. Taylor and Francis, London, pp 131–151

    Google Scholar 

  • Hrmova M, Petrakova E, Biely P (1991) Induction of cellulose-and xylan-degrading enzyme systems in Aspergillus terreus by homo-and heterodisaccharides composed of glucose and xylose. J Gen Microbiol 137: 541–547

    PubMed  CAS  Google Scholar 

  • Igarashi K, Samejima M, Eriksson KE (1998) Cellobiose dehydrogenase enhances Phanerochaete chrysosporium cellobiohydrolase I activity by relieving product inhibition. Eur J Biochem 253: 101–106

    PubMed  CAS  Google Scholar 

  • Ilmén M, Onnela M-L, Klemsdal S, Keränen S, Penttilä M (1996a) Functional analysis of the cellobiohydrolase I promoter of the filamentous fungus Trichoderma reesei. Mol Gen Genet 253:303–314. Corrigendum: Ilmén (1998)

    Google Scholar 

  • Ilmén M, Thrane C, Penttilä M (1996b) The glucose repressor gene crei of Trichoderma: isolation and expression of a full-length and a truncated mutant form. Mol Gen Genet 251: 451–460

    PubMed  Google Scholar 

  • Ilmén M, Saloheimo A, Onnela M-L, Penttilä M (1997) Regulation of cellulase expression in the filamentous fungus Trichoderma reesei. Appl Environ Microbiol 63: 1298–1306

    PubMed  Google Scholar 

  • Ilmén M, Onnela M-L, Klemsdal S, Keränen S, Penttilä M (1998) Functional analysis of the cellobiohydrolase I promoter of Trichoderma reesei. Mol Gen Genet 257: 386

    PubMed  Google Scholar 

  • Inglis GD, Popp AP, Selinger LB, Kawachuk LM, Gaudet DA, McAllister TA (2000) Production of cellulases and xylanases by low-temperature basidiomycetes. Can J Microbiol 46: 860–865

    PubMed  CAS  Google Scholar 

  • Jeenes DJ, Mackenzie B, Mackenzie DA, Archer DB (1993) A truncated glucoamylase gene fusion for heterologous protein secretion from Aspergillus niger. FEMS Microbiol Lett 107: 267–271

    PubMed  CAS  Google Scholar 

  • Karlsson J, Momcilovic D, Wittgren B, Schülein M, Tjerneld F, Brinkmalm G (2002) Enzymatic degradation of carboxymethyl cellulose hydrolyzed by the endoglucanases Cel5A, Cel7B and Ce145A from Humicola insolens and Ce17B, Ce112A and Ce145A core from Trichoderma reesei. Biopolymers 63: 3240

    Google Scholar 

  • Keränen S, Penttilä M (1995) Production of recombinant proteins in the filamentous fungus Trichoderma reesei. Curr Opin Biotechnol 6: 534–537

    PubMed  Google Scholar 

  • Kim H, Goto M, Jeong HJ, Jung KH, Kwon I, Furukawa K (1998) Functional analysis of a hybrid endoglucanase of bacterial origin having a cellulose binding domain from a fungal exoglucanase. Appl Biochem Biotechnol 75: 193–204

    PubMed  CAS  Google Scholar 

  • Kirk TK, Cullen D (1998) Enzymology and molecular genetics of wood degradation by white-rot fungi. In: Young RA, Achtar M (eds) Environmentally friendly technologies for the pulp and paper industry. Wiley, New York, pp 273–308

    Google Scholar 

  • Klarskov K, Piens K, Stâhlberg J, Hoj PB, Beeumen JV, Claeyssens M (1997) Cellobiohydrolase I from Trichoderma reesei: identification of an active-site nudeophile and additional information on sequence including the glycosylation pattern of the core protein. Carbohydr Res 304: 143–154

    PubMed  CAS  Google Scholar 

  • Kleywegt GJ, Zou JY, Divne C, Davies GJ, Sinning I, Sthälberg J, Reinikainen T, Sridosuk M, Teed TT, Jones AT (1997) The crystal structure of the catalytic core domain of endoglucanase I from Trichoderma reesei at 3.6–1 resolution, and a comparison with related enzymes. J Mol Biol 272: 383–397

    PubMed  CAS  Google Scholar 

  • Koivula A, Reinikainen T, Ruohonen L, Valkeajärvi A, Claeyssens M, Teleman O, Kleywegt G, Szardenings M, Rouvinen J, Jones T, Teeri TT (1996) The active site of Trichoderma reesei cellobiohydrolase II: the role of tyrosine-169. Protein Eng 9: 691–699

    PubMed  CAS  Google Scholar 

  • Koivula A, Kinnari T, Harjunpää V, Ruohonen L, Teleman A, Drakenberg T, Rouvinen J, Jones TA, Teeri TT (1998a) Tryptophan 272: an essential determinant of crystalline cellulose degradation by Trichoderma reesei cellobiohydrolase Ce16A. FEBS Lett 429: 341–346

    PubMed  CAS  Google Scholar 

  • Koivula A, Linder M, Teed TT (1998b) Structure-function relationships in Trichoderma cellulolytic enzymes. In: Harman GE, Kubicek CP (eds) Trichoderma and Gliocladium, vol 2. Enzymes, biological control and commercial applications. Taylor and Francis, London, pp 3–23

    Google Scholar 

  • Kotiranta P, Karlsson J, Siika-Aho M, Medve J, Viikari L, Tjerneld F, Tenkanen M (1999). Adsorption and activity of Trichoderma reesei cellobiohydrolase I, endoglucanase II, and the corresponding core proteins on steam pretreated willow. Appl Biochem Biotechnol 81: 81–90

    PubMed  CAS  Google Scholar 

  • Kraulis P, Clore GM, Nilges M, Jones TA, Pettersson G, Knowles J, Gronenborn AM (1989) Determination of the three-dimensional solution structure of the C-terminal domain of cellobiohydrolase I from Trichoderma reesei. A study using nuclear magnetic resonance and hybrid distance geometry-dynamical simulated annealing. Biochemistry 28: 7241–7257

    Google Scholar 

  • Kubicek CP, Penttilä M (1998) Regulation of the production of plant polysaccharide degrading enzymes by Trichoderma. In: Harman G, Kubicek CP (eds) Trichoderma and Gliocladium, vol 2. Enzymes, biological control and commercial applications. Taylor and Francis, London, pp 49–72

    Google Scholar 

  • Kubicek CP, Panda T, Schreferl-Kunar G, Gruber F, Messner R (1987) 0-linked but not N-linked glycosylation is necessary for the secretion of endoglucanases I and II by Trichoderma reesei. Can J Microbiol 33: 698–703

    Google Scholar 

  • Kwon I, Ekino K, Goto M, Furukawa K (1999) Heterologous expression and characterization of endoglucanase I (EGI) from Trichoderma viride HK-75. Biosci Biotechnol Biochem 63: 1714–1720

    PubMed  CAS  Google Scholar 

  • Kwon I, Ekino K, Oka T, Goto M, Furukawa K (2002) Effects of amino acid alterations on the transglycosylation reaction of endoglucanase I from Trichoderma viride HK-75. Biosci Biotechnol Biochem 66: 110–116

    PubMed  CAS  Google Scholar 

  • Lehtiö J (2001) Functional studies and engineering of family 1 carbohydrate-binding modules. PhD Thesis, Royal Institute of Technology, Department of Biotechnology, Stockholm, Universitetsservice US AB, Stockholm

    Google Scholar 

  • Leonowicz A, Matuszewska A, Luterek J, Ziegenhagen D, Wojtam-Wasilewska M, Cho NS, Hofrichter M, Rogalski J (1999) Biodegradation of lignin by white-rot fungi. Fungal Genet Biol 27: 175–185

    PubMed  CAS  Google Scholar 

  • Lim D, Hains P, Walsh B, Bergquist P, Nevalainen H (2001) Proteins associated with the cell envelope of Trichoderma reesei: a proteomic approach. Proteomics 1: 899–910

    PubMed  CAS  Google Scholar 

  • Limon C, Margolles-Clark E, Benitez T, Penttilä M (2001) Addition of substrate-binding domains increases substrate-binding capacity and specific activity of a chitinase from Trichoderma harzianum. FEMS Microbiol Lett 198: 57–63

    PubMed  CAS  Google Scholar 

  • Linder M, Teed T (1996) The cellulose-binding domain of the major cellobiohydrolase of Trichoderma reesei exhibits true reversibility and a high exchange rate on crystalline cellulose. Proc Natl Acad Sci USA 93: 12251–12255

    PubMed  CAS  Google Scholar 

  • Linder M, Nevanen T, Söderholm L, Bengs O, Teeri TT (1998) Improved immobilization of fusion proteins via cellulose-binding domains. Biotechnol Bioeng 60: 642–647

    PubMed  CAS  Google Scholar 

  • Linder M, Nevanen T, Teed TT (1999) Design of a pH-dependent cellulose-binding domain. FEBS Lett 447: 13–16

    PubMed  CAS  Google Scholar 

  • Liu JH, Selinger LB, Hu YJ, Moloney MM, Cheng KJ, Beau-chemin KA (1997) An endoglucanase from the anaerobic fungus Orpinomyces joyonii: characterization of the gene and its product. Can J Microbiol 43: 477–485

    PubMed  CAS  Google Scholar 

  • MacCabe AP, Orejas M, Perez-Gonzalez JA, Ramon D (1998) Opposite patterns of expression of two Aspergillus nidulans xylanase genes with respect to ambient pH. J Bacteriol 180: 1331–1333

    PubMed  CAS  Google Scholar 

  • Mackenzie LF, Davies GJ, Schülein M, Withers SG (1997) Identification of the catalytic nucleophile of endoglucanase I from Fusarium oxysporum by mass spectrometry. Biochemistry 36: 5893–5901

    PubMed  CAS  Google Scholar 

  • Mannonen L (1993) Barley cell culture as a producer of heterologous protein. PhD Thesis, Technical Research Centre of Finland, Espoo, Publications 138

    Google Scholar 

  • Mäntylä A, Paloheimo M, Suominen P (1998) Industrial mutants and recombinant strains of Trichoderma reesei. In: Harman GR, Kubicek CP (eds) Trichoderma and Gliocladium, vol 2. Enzymes, biological control and commercial applications. Taylor and Francis, London, pp 291–309

    Google Scholar 

  • Maras M, de Bruyn A, Schraml J, Herdewijn P, Claeyssens M, Fiers W, Conteras W (1997) Structural characterization of N-linked oligosaccharides from cellobiohydrolase I secreted by the filamentous fungus Trichoderma reesei RUTC 30. Eur J Biochem 245: 617–625

    PubMed  CAS  Google Scholar 

  • Margolles-Clark E, Ilmén M, Penttilä M (1997) Expression patterns of ten hemicellulase genes from filamentous fungus Trichoderma reesei on various carbon sources. J Biotechnol 57: 167–179

    CAS  Google Scholar 

  • Marui J, Tanaka A, Mimura S, de Graaf L, Visser J, Kitamoto N, Kato M, Kobayashi T, Tsukagoshi N (2002) A transcriptional activator, AoX1nR, controls the expression of genes encoding xylanolytic enzymes in Aspergillus oryzae. Fungal Genet Biol 35: 157–169

    PubMed  CAS  Google Scholar 

  • Mattinen ML, Kontteli M, Kerovuo J, Linder M, Annila A, Lindeberg G, Reinikainen T, Drakenberg T (1997) Three-dimensional structures of three engineered cellulose-binding domains of cellobiohydrolase I from Trichoderma reesei. Protein Sci 6: 294–303

    PubMed  CAS  Google Scholar 

  • McQueen-Mason S, Cosgrove DJ (1994) Disruption of hydrogen bonding between plant cell wall polymers by proteins that induce wall extension. Proc Natl Acad Sci USA 91: 6574–6578

    PubMed  CAS  Google Scholar 

  • Medve J, Karlsson J, Lee D, Tjerneld F (1998) Hydrolysis of microcrystalline cellulose by cellobiohydrolase I and endoglucanase II from Trichoderma reesei: adsorption, sugar production pattern, and synergism of the enzymes. Biotechnol Bioeng 59: 621–634

    PubMed  CAS  Google Scholar 

  • Merivuori H, Sands J, Montenecourt B (1985) Effects of tunicamycin on secretion and enzymatic activities of cellulase from Tricoderma reesei. Appl Microbiol Biotechnol 23: 60–66

    CAS  Google Scholar 

  • Mernitz G, Koch A, Henrissat B, Schulz G (1996) Endoglucanase II (EGII) of Penicillium janthinellum: cDNA sequence, heterologous expression and promoter analysis. Curr Genet 29: 490–495

    PubMed  CAS  Google Scholar 

  • Messner R, Kubicek-Pranz EM, Gsur A, Kubicek CP (1991) Cellobiohydrolase II is the main conidial-bound cellulase in Trichoderma reesei and other Trichoderma strains. Arch Microbiol 155: 601–606

    PubMed  CAS  Google Scholar 

  • Morgavi DP, Beauchemin KA, Nserenko VL, Rode LM, Iwaasa AD, Yang WZ, McAllister TA, Wang Y (2000) Synergy between ruminal fibrolytic enzymes and enzymes from Trichoderma longibrachiatum. J Dairy Sci 83: 1310–1321

    PubMed  CAS  Google Scholar 

  • Morris DD, Gibbs MD, Bergquist PL (1996) Cloning of a family G xylanase gene (xynB) from the extremely thermophilic bacterium Dictyoglomus thermophilum and activity of the gene product on kraft pulp. In: Jeffries T, Viikari L (eds) Enzymes for pulp and paper processing. American Chemical Society, Washington, DC, pp 101–115

    Google Scholar 

  • Munoz IG, Ubhayasekera W, Henriksson H, Szabo I, Pettersson G, Johansson G, Mowbray SL, Stählberg J (2001) Family 7 cellobiohydrolases from Phanoerocahete chrysosporium: crystal structure of the catalytic module of Cel7D (CBH58) at 1.3 A resolution. J Mol Biol 314: 1097–1111

    PubMed  CAS  Google Scholar 

  • Nakari-Setälä T, Penttilä M (1995) Production of Trichoderma reesei cellulases on glucose-containing media. Appl Environ Microbiol 61: 3650–3655

    PubMed  Google Scholar 

  • Nehlin JO, Ronne H (1990) Yeast MIG1 repressor is related to the mammalian early growth response and Wilm’s tumour finger proteins. EMBO J 9: 2891–2898

    PubMed  CAS  Google Scholar 

  • Nevalainen H, Penttilä M (1995) Molecular biology of cellulolytic fungi. In: Klick U (ed) The Mycota, vol II. Genetics and biotechnology. Springer, Berlin Heidelberg New York, pp 303–319

    Google Scholar 

  • Nyyssönen E, Keränen S (1995) Multiple roles of the cellulase CBHI in enhancing production of fusion antibodies by the filamentous fungus Trichoderma reesei. Curr Genet 28: 71–79

    PubMed  Google Scholar 

  • Nyyssönen E, Penttilä M, Harkki A, Saloheimo A, Knowles JKC, Keränen S (1993) Efficient production of antibody fragments by the filamentous fungus Trichoderma reesei. Bio/Technology 11: 591–595

    PubMed  Google Scholar 

  • Okada H, Sekiya T, Yokoyama K, Tohda H, Kumagai H, Morikawa Y (1998) Efficient secretion of Trichoderma reesei cellobiohydrolase II in Schizosaccharomyces pombe and characterization of its products. Appl Microbiol Biotechnol 49: 301–308

    PubMed  CAS  Google Scholar 

  • Orejas M, MacCabe AP, Perez Gonzalez JA, Kumar S, Ramon D (1999) Carbon catabolite repression of the Aspergillus nidulans xlnA gene. Mol Microbiol 31: 177–184

    PubMed  CAS  Google Scholar 

  • Otzen DE, Christiansen L, Schülein M (1999) A comparative study of the unfolding of the endoglucanase Ce145 from Humicola insolens in denaturant and surfactant. Protein Sci 8: 1878–1887

    PubMed  CAS  Google Scholar 

  • Ozturk ZN, Ogel ZB (2000) PCR with degenerate primers amplifies a subgenomic DNA fragment from the endoglucanase gene(s) of Torula thermophila, a thermophilic fungus. Mol Biotechnol 16: 109–115

    PubMed  CAS  Google Scholar 

  • Palonen H, Tenkanen M, Linder M (1999) Dynamic interaction of Trichoderma reesei cellobiohydrolases Ce16A and Ce17A and cellulose at equilibrium and during hydrolysis. Appl Environ Microbiol 65: 5229–5233

    PubMed  CAS  Google Scholar 

  • Park JS, Shin HS, Doi RH (2000) Fusion proteins containing cellulose-binding domains. Methods Enzymol 326: 418–429

    PubMed  CAS  Google Scholar 

  • Penttilä M (1998) Heterologous protein production in Trichoderma. In: Harman GR, Kubicek CP (eds) Trichoderma and Gliocladium, vol 2. Enzymes, biological control and commercial applications. Taylor and Francis, London, pp 365–382

    Google Scholar 

  • Penttilä M, Enari T-M (1991) Genetic engineering of industrial yeasts. In: Cheremisinoff, PN Ferrante LM (eds) Biotechnology–current progress, vol 1. Technomic Publ, Lancaster, UK, pp 173–202

    Google Scholar 

  • Penttilä M, Lehtovaara P, Nevalainen H, Bhikhabhai R, Knowles J (1986) Homology between cellulase genes of Trichoderma reesei: complete nucleotide sequence of the endoglucanase I gene. Gene 45: 253–263

    PubMed  Google Scholar 

  • Penttilä ME, André L, Saloheimo M, Lehtovaara P, Knowles JKC (1987a) Expression of two Trichoderma reesei endoglucanases in the yeast Saccharomyces cerevisiae. Yeast 3: 175–185

    PubMed  Google Scholar 

  • Penttilä ME, Suihko M-L, Lehtinen U, Nikkola M, Knowles JKC (1987b) Construction of brewer’s yeasts secreting fungal endo-(3-glucanase. Curr Genet 12: 413–420

    Google Scholar 

  • Penttilä ME, André L, Lehtovaara P, Bailey M, Teeri TT, Knowles JK (1988) Efficient secretion of two fungal cellobiohydrolases by Saccharomyces cerevisiae. Gene 63: 103–112

    PubMed  Google Scholar 

  • Pérez-Gonzales JA, Gonzalez R, Querol A, Sendra J, Ramón D (1993) Construction of a recombinant wine yeast strain expressing 13-(1,4) endoglucanase and its use in microvinification processes. Appl Environ Microbiol 59: 2801–2806

    Google Scholar 

  • Punt PJ, Zegers ND, Busscher M, Pouwels PH, van den Hondel CAMJJ (1991) Intracellular and extracellular production of proteins in Aspergillus under control of expression signals of the highly expressed Aspergillus nidulans gpdA gene. J Biotechnol 17: 19–34

    PubMed  CAS  Google Scholar 

  • Radzio R, Kück U (1997) Synthesis of biotechnically relevant heterologous proteins in filamentous fungi. Proc Biochem 32: 529–539

    CAS  Google Scholar 

  • Reinikainen T, Ruohonen L, Nevanen T, Laaksonen L, Kraulis P, Jones A, Knowles JK, Teeri T (1992) Investigation of the function of mutated cellulose-binding domains of Trichoderma reesei cellobiohydrolase I. Proteins 14: 475–482

    PubMed  CAS  Google Scholar 

  • Roberts I, Jeenes DJ, MacKenzie DA, Wilkinson AP, Sumner IG, Archer DB (1992) Heterologous gene expression in A. niger: a glucoamylase-porcine pancreatic prophospholipase A2 fusion protein is secreted and processed to yield mature enzyme. Gene 122: 155–161

    PubMed  CAS  Google Scholar 

  • Rho D, Desrochers M, Jurasek L, Driguez H, Defaye J (1982) Induction of cellulase in Schizophyllum commune: thiocellobiose as a new inducer. J Bacteriol 149: 47–53

    PubMed  CAS  Google Scholar 

  • Rose SH, van Zyl WH (2002) Constitutive expression of the Trichoderma reesei beta-1,4-xylanase gene (xyn2) and the beta-1,4-endoglucanase gene (eg1) in Aspergillus niger in molasses and defined glucose media. Appl Microbiol Biotechnol 58: 461–468

    PubMed  CAS  Google Scholar 

  • Rouvinen J, Bergfors T, Teeri TT, Knowles J, Jones TA (1990) Three-dimensional structure of cellobiohydrolase II from Trichoderma reesei. Science 249: 380–386

    PubMed  CAS  Google Scholar 

  • Ruijter GJ, Visser J (1997) Carbon repression in Aspergilli. FEMS Microbiol Lett 151: 103–114

    PubMed  CAS  Google Scholar 

  • Ruijter GJ, Vanhanen SA, Gielkens MM, van de Vondervoort PJ, Visser J (1997) Isolation of Aspergillus niger creA mutants and effects of the mutations on expression of arabinases and L-arabinose catabolic enzymes. Microbiology 143: 2991–2998

    PubMed  CAS  Google Scholar 

  • Ruohonen L, Koivula A, Reinikainen T, Valkeajärvi A, Teleman A, Claeyssens M, Szardenings M, Jones TA, Teeri TT (1993) Active site of T. reesei cellobiohydrolase II. In: Reinikainen T, Suominen P (eds) Proceedings of the 2nd Tricel meeting, Majvik, Finland 1993. Foundation for Biotechnical and Industrial Fermentation Research, vol 8. Fagepaino Oy Helsinki, pp 87–96

    Google Scholar 

  • Saloheimo M, Niku-Paavola ML (1991) Heterologous production of the ligninolytic enzyme: expression of the Phlebia radiata laccase gene in Trichoderma reesei. Bio/Technology 9: 987–990

    CAS  Google Scholar 

  • Saloheimo M, Lehtovaara P, Penttilä M, Teeri TT, Stählberg J, Johansson G, Pettersson G, Claeyssens M, Tomme P, Knowles JKC (1988) EGIII, a new endoglucanase from Trichoderma reesei: the characterization of both gene and enzyme. Gene 63: 11–21

    PubMed  CAS  Google Scholar 

  • Saloheimo A, Henrissat B, Penttilä M (1993) Small endoglucanase from Trichoderma reesei, cloned by expression in yeast. In: Reinikainen T, Suominen P (eds) Proceedings of the 2nd Tricel meeting, Majvik, Finland 1993. Foundation for Biotechnical and Industrial Fermentation Research, vol 8. Fagepaino Oy Helsinki, pp 139–146

    Google Scholar 

  • Saloheimo A, Henrissat B, Hoffrén A-M, Teleman O, Penttilä M (1994) A novel, small endoglucanase gene, egl5, from Trichoderma reesei isolated by expression in yeast. Mol Microbiol 13: 219–228

    PubMed  CAS  Google Scholar 

  • Saloheimo M, Nakari-Setälä T, Tenkanen M, Penttilä M (1997) cDNA cloning of a Trichoderma reesei cellulase and demonstration of endoglucanase activity by expression in yeast. Eur J Biochem 429: 584–591

    Google Scholar 

  • Saloheimo A, Aro N, Ilmén M, Penttilä M (2000) Isolation of ace1, a Cys2-His2 transcription factor involved in regulation of activity of the cellulase promoter cbhl of Trichoderma reesei. J Biol Chem 275: 5817–5825

    PubMed  CAS  Google Scholar 

  • Saloheimo M, Paloheimo M, Hakola S, Pere J, Swanson B, Nyyssönen E, Bhatia A, Ward M, Penttilä M (2002a) Swollenin, a Trichoderma reesei protein with sequence similarity to the plant expansins, exhibits disruption activity on cellulosic materials. Eur J Biochem 269: 4202–4211

    PubMed  CAS  Google Scholar 

  • Saloheimo M, Kuja-Panula J, Ylösmäki E, Ward M, Penttilä M (2002b) Enzymatic properties and intracellular localisation of the novel Trichoderma reesei 3glucosidase. Appl Environ Microbiol 68: 4546–4553

    PubMed  CAS  Google Scholar 

  • Salovuori I, Makarow M, Rauvala H, Knowles J, Kääriäinen L (1987) Low molecular mass high-mannose type glycans in a secreted protein of the filamentous fungus Trichoderma reesei. Biotechnology 5: 152–156

    CAS  Google Scholar 

  • Sandgren M, Shaw A, Ropp TH, Wu S, Bott R, Cameron AD, Stahlberg J, Mitchinson C, Jones A (2001) The X-ray crystal structure of the Trichoderma reesei family 12 endoglucanase 3, Cel 12A, at 1.9 A resolution. J Mol Biol 308: 295–310

    PubMed  CAS  Google Scholar 

  • Schülein M (2000) Protein engineering of cellulases. Biochim Biophys Acta 1543: 239–252

    PubMed  Google Scholar 

  • Schülein M, Tikhomirov DE, Schou C (1993) Humicola insolens alkaline cellulases. In: Reinikainen T, Suominen P (eds) Proceedings of the 2nd Tricel Meeting. Foundation for Biotechnical and Industrial Fermentation Research, vol 8. Fagepaino Oy Helsinki, pp 109–116

    Google Scholar 

  • Shoemaker S, Schweikart V, Ladner M, Gelfand D, Kwok S, Myambo K, Innis M (1983) Molecular cloning of the exo-cellobiohydrolase from Trichoderma reesei strain L27. Bio/Technology 1: 687–690

    CAS  Google Scholar 

  • Shoemaker S, Barnett C, Sumner L, Jacobs L, Berka R, Silva R, Power S (1989) Cellulose depolymerases of Trichoderma: nomenclature and properties of some recombinant forms. Tricel 89, International Symposium on Trichoderma Cellulases, Vienna, 14–16 Sept, p 6

    Google Scholar 

  • Sims P, Soares-Felipe M, Wang Q, Gent M, Tempelaars C, Broda P (1994) Differential expression of multiple exo-cellobiohydrolase I-like genes in the lignin-degrading fungus Phanerochaete chrysosporium. Mol Microbiol 12: 209–216

    PubMed  CAS  Google Scholar 

  • Sjöström E (1981) Wood chemistry, fundamentals and applications. Academic Press, New York

    Google Scholar 

  • Sreenath HK, Yang VW, Bursdall HH Jr, Jeffries TW (1996) Toner removal by alkaline-active cellulases from desert basidiomycetes. In: Jeffries TW, Viikari L (eds) Enzymes for pulp and paper processing. American Chemical Society, Washington, DC, pp 267–279

    Google Scholar 

  • Sridosuk M, Kleman-Leyer K, Keränen S, Kirk TK, Teeri TT (1998) Modes of action on cotton and bacterial cellulose of a homologous endoglucanase-exoglucanase pair from Trichoderma reesei. Eur J Biochem 251: 885–892

    Google Scholar 

  • Stâhlberg J (1991) Functional organization of cellulases from Trichoderma reesei. PhD Thesis, Uppsala University, Uppsala, Sweden

    Google Scholar 

  • Stâhlberg J, Divne C, Koivula A, Piens K, Claeyssens M, Teeri TT, Jones TA (1996) Activity studies and crystal structures of catalytically deficient mutants of cellobiohydrolase I from Trichoderma reesei. J Mol Biol 264: 337–49

    PubMed  Google Scholar 

  • Strauss J, Mach RL, Zeilinger S, Hartler G, Stoffler G, Wolschek M, Kubicek CP (1995) Crel, the carbon catabolite repressor protein from Trichoderma reesei. FEBS Lett 376: 103–107

    PubMed  CAS  Google Scholar 

  • Strauss J, Horvath HK, Abdallah BM, Kindermann J, Mach RL, Kubicek CP (1999) The function of CreA, the carbon catabolite repressor of Aspergillus nidulans, is regulated at the transcriptional and post-transcriptional level. Mol Microbiol 32: 169–178

    PubMed  CAS  Google Scholar 

  • Sulzenbacher G, Driguez H, Henrissat B, Schulein M, Davies GJ (1996) Structure of the Fusarium oxysporum endoglucanase I with a non-hydrolyzable substrate analogue: substrate distortion gives rise to the preferred axial orientation for the leaving group. Biochemistry 35: 15280–15287

    PubMed  CAS  Google Scholar 

  • Suto M, Tomita F (2001) Induction and catabolite repression mechanisms of cellulase in fungi. J Biosci Bioeng 92: 305–311

    PubMed  CAS  Google Scholar 

  • Takashima S, Nakamura A, Hidaka M, Masaki H, Uozumi T (1996a) Cloning, sequencing and expression of the cellulase genes of Humicola grisea var. thermoidea. J Biotechnol 50: 137–147

    PubMed  CAS  Google Scholar 

  • Takashima S, Nakamura A, likura H, Masaki H, Uozumi T (1996b). Cloning of a gene encoding a putative carbon catabolite repressor from Trichoderma reesei. Biosci Biotechnol Biochem 60: 173–176

    PubMed  CAS  Google Scholar 

  • Takashima S, likura H, Nakamura A, Hidaka M, Masaki H, Uozumi T (1998a) Overproduction of recombinant Trichoderma reesei cellulases by Aspergillus oryzae and their enzymatic properties. J Biotechnol 65: 163–171

    PubMed  CAS  Google Scholar 

  • Takashima S, Nakamura A, Hidaka M, Masaki H, Uozumi T (1998b) Isolation of the creA gene from the cellulolytic fungus Humicola grisea and analysis of CreA binding sites upstream of the cellulase genes. Biosci Biotechnol Biochem 62: 2364–2370

    PubMed  CAS  Google Scholar 

  • Takashima S, Iikura H, Nakamura A, Hidaka M, Masaki H, Uozumi T (1999a) Comparison of gene structures and enzymatic properties between two endoglucanases from Humicola grisea. J Biotechnol 67: 85–97

    PubMed  CAS  Google Scholar 

  • Takashima S, Nakamura A, Hidaka M, Masaki H, Uozumi T (1999b) Molecular cloning and expression of the novel fungal beta-glucosidase genes from Humicola grisea and Trichoderma reesei. J Biochem 125: 728–736

    PubMed  CAS  Google Scholar 

  • Teeri T, Salovuori I, Knowles J (1983) The molecular cloning of the major cellobiohydrolase gene from Trichoderma reesei. Bio/Technology 1: 696–699

    CAS  Google Scholar 

  • Teeri TT, Penttilä M, Keränen S, Nevalainen H, Knowles JKC (1992) Structure, function, and genetics of cellulases.

    Google Scholar 

  • In: Finkelstein DB, Ball C (eds) Biotechnology of filamentous fungi. Butterworth-Heinemann, Boston, pp 417–445

    Google Scholar 

  • Teeri TT, Koivula A, Linder M, Wohlfahrt G, Ruohonen L, Lehti J, Reinikainen T, Sridosuk M, Kleman-leyer K, Kirk TK, Jones TA (1997) Cellulose-cellulase interactions of native and engineered cellobiohydrolases from Trichoderma reesei. In: Claeyssens M, Nerinckx W, Piens K (eds) Carbohydrases from Trichoderma reesei and other microorganisms. Structures, biochemistry, genetics and applications. Royal Society of Chemistry, Cambridge, pp 3–12

    Google Scholar 

  • Teeri TT, Koivula A, Linder M, Wohlfahrt G, Divne C, Jones TA (1998) Trichoderma reesei cellobiohydrolases: why so efficient on crystalline cellulose? Biochem Soc Trans 26: 2173–2178

    Google Scholar 

  • Tenkanen M (1995) Characterization of esterases acting on hemicelluloses. VTT publications 242. PhD Thesis, Technical Research Centre of Finland

    Google Scholar 

  • Tilburn J, Sarkar S, Widdick DA, Espeso EA, Orejas M, Mungroo J, Penalva MA, Arst HN Jr (1995) The Aspergillus PacC zinc finger transcription factor mediates regulation of both acid-and alkaline-expressed genes by ambient pH. EMBO J 14: 779–790

    PubMed  CAS  Google Scholar 

  • Tomme P, Boraston A, Mclean B, Kormos J, Creagh AL, Sturch K, Gilkes NR, Haynes CA, Warren RA, Kilburn DG (1998a) Characterization and affinity applications of cellulose-binding domains. J Chromatogr B Biomed Sci Appl 715: 283–296

    PubMed  CAS  Google Scholar 

  • Tomme P, van Tilbeurgh H, Pettersson G, Van Damme J, Vandekerckhove J, Knowles J, Teeri TT, Claeyssens M (1998b) Studies of the cellulolytic system of Trichoderma reesei QM9414. Analysis of domain function in two cellobiohydrolases by limited proteolysis. Eur J Biochem 170: 575–581

    Google Scholar 

  • Tormo J, Lamed R, Chirino AJ, Morag E, Bayer EA, Shoham Y, Steiz TA (1996) Crystal structure of a bacterial family-III cellulose-binding domain: general mechanism for attachment to cellulose. EMBO J 15: 5739–5751

    PubMed  CAS  Google Scholar 

  • Vallim M, Janse B, Gaskell J, Pizzirani-Kleiner A, Cullen D (1998) Phanerochaete chrysosporium cellobiohydrolase and cellobiose dehydrogenase transcripts in wood. Appl Environ Microbiol 64: 1924–1928

    Google Scholar 

  • Vanden Wymelenberg A, Covert S, Cullen D (1993) Identification of the gene encoding the major cellobiohydrolase of the white rot fungus Phanerochaete chrysosporium. Appl Environ Microbiol 59: 3492–3494

    Google Scholar 

  • Van Peij NNME, Gielkens MMC, de Vries RP, Visser J, de Graaff L (1998a) The transcriptional activator X1nR regulates both xylanolytic and endoglucanase gene expression in Aspergillus niger. Appl Environ Microbiol 64: 3615–3619

    PubMed  Google Scholar 

  • Van Peij NN, Visser J, de Graaff LH (1998b) Isolation and analysis of xlnR, encoding a transcriptional activator co-ordinating xylanolytic expression in Aspergillus niger. Mol Microbiol 27: 131–142

    PubMed  Google Scholar 

  • Van Rensburg P, van Zyl WH, Pretorius IS (1998) Engineering yeast for efficient cellulose degradation. Yeast 14: 67–76

    PubMed  Google Scholar 

  • Van Zeijl C, Punt P, Emalfarb M, Burlinghame R, Sinitsyn A, Parriche M, Bousson J-C, van den Hondel CAMJJ (2001) Chrysosporium lucknowense, a new fungal host for protein production. Fungal genetics newsletter 48, Suppl XXI. Fungal Genetics Conference Asilomar, p 89

    Google Scholar 

  • Varrot A, Halstrup S, Schülein M, Davies GJ (1999) Crystal structure of the catalytic core domain of the family 6 cellobiohydrolase II, Cel 6A, from Humicola insolens, at 1.92 A resolution. Biochem J 15: 297–304

    Google Scholar 

  • Villanueva A, Ramon D, Valles S, Lluch MA, MacCabe AP (2000) Heterologous expression in Aspergillus nidulans of a Trichoderma longibrachiatum endoglucanase of enological relevance. Agric Food Chem 48: 951–957

    CAS  Google Scholar 

  • Von Osslowski I, Teed T, Kalkkinen N, Oker-Blom C (1997) Expression of a fungal cellobiohydrolase in insect cells. Biochem Biophys Res Commun 233: 252–259

    Google Scholar 

  • Wang C, Eufemi M, Turano C, Giartosio A (1996) Influence of carbohydrate moiety on the stability of glycoproteins. Biochemistry 35: 7229–7307

    Google Scholar 

  • Wang H, Jones RW (1997) Site-directed mutagenesis of a fungal 3–1,4-endoglucanase increases the minimum size required for the substrate. Appl Microbiol Biotechnol 48: 225–231

    PubMed  CAS  Google Scholar 

  • Wang H, Jones RW (1999) Properties of the Macrophomina phaseolina endoglucanase ( EGLI) gene product in bacterial and yeast expression systems. Appl Biochem Biotechnol 81: 153–160

    Google Scholar 

  • Ward M, Wilson LL, Kodama KH, Rey MW, Berka RM (1990) Improved production of chymosin in Aspergillus by expression as a glucoamylase-chymosin fusion. Bio/Technology 8: 435–440

    PubMed  CAS  Google Scholar 

  • Ward M, Wu S, Dauberman J, Weiss G, Larenas E, Bower B, Rey M, Clarkson K, Bott R (1993) Cloning, sequence and preliminary structural analysis of a small, high pI endoglucanase (EGIII) from Trichoderma reesei. In: Reinikainen T, Suominen P (eds) Proceedings of the 2nd Tricel meeting, Majvik, Finland 1993. Foundation for Biotechnical and Industrial Fermentation Research, vol 8. Fagepaino Oy Helsinki, pp 153–158

    Google Scholar 

  • Wilson CA, Wood TM (1992) The anaerobic fungus Neocallimastix frontalis, isolation and properties of a cellulosome-type enzyme fraction with the capacity to hydrogen-bond ordered cellulose. Appl Microbiol Biotechnol 37: 125–129

    CAS  Google Scholar 

  • Wood TM, McCrae SI, Bhat M (1989) The mechanism of fungal cellulase action. Biochem J 260: 37–43

    PubMed  CAS  Google Scholar 

  • Xue GP, Orpin CG, Gobius KS, Aylward JH, Simpson GD (1992) Cloning and expression of multiple cellulase cDNAs from the anaerobic rumen fungus Neocalli-mastix patriciarum in Escherichia coli. J Gen Microbiol 138: 1413–1420

    PubMed  CAS  Google Scholar 

  • Yagüe E, Mehak-Zunic, Morgan L, Wood DA, Thurston CF (1997) Expression of CEL2 and CEL4, two proteins from Agaricus bisporus with similarity to fungal cellobiohydrolase I and 13-mannanase respectively, is regulated by the carbon source. Microbiology 143: 239–244

    PubMed  Google Scholar 

  • Yoshida M, Ohira T, Igarashi K, Nasagawa H, Aida K, Hallberg BM, Divne C, Nishino T, Samejima M (2001) Production and characterization of recombinant Phanerochaete chrysosporium cellobiose dehydrogenase in the methylotrophic yeast Pichia pastoris. Biosci Biotechnol Biochem 65: 2050–2057

    PubMed  CAS  Google Scholar 

  • Yuan S, Wu Y, Cosgrove DJ (2001) A fungal endoglucanase with plant cell wall extension activity. Plant Physiol 127: 324–333

    PubMed  CAS  Google Scholar 

  • Zeilinger S, Mach RL, Schindler M, Herzog P, Kubicek CP (1996) Different inducibility of expression of the two xylanase genes xynl and xyn2 in Trichoderma reesei. J Biol Chem 271: 25624–25629

    PubMed  CAS  Google Scholar 

  • Zeilinger S, Mach RL, Kubicek CP (1998) Two adjacent protein binding motifs in the cbh2 (cellobiohydrolase II-encoding) promoter of the fungus Hypocrea jecorina (Trichoderma reesei) cooperate in the induction by cellulose. J Biol Chem 273: 34463–34471

    PubMed  CAS  Google Scholar 

  • Zeilinger S, Ebner A, Marosits T, Mach R, Kubicek CP (2001) The Hypocrea jecorina HAP 2/3/5 protein complex binds to the inverted CCAAT-box (ATTGG) within the cbh2 (cellobiohydrolase II-gene) activating element. Mol Genet Genomics 266: 56–63

    PubMed  CAS  Google Scholar 

  • Zhou L, Xue GP, Orpin CG, Black GW, Gilbert HJ, Hazelwood GP (1994) Intronless celB from the anaerobic fungus Neocallimastix patriciarum encodes a modular family A endoglucanase. Biochem J 297: 359–364

    PubMed  CAS  Google Scholar 

  • Zurbriggen B, Bailey MJ, Penttilä ME, Poutanen K, Linko M (1990) Pilot scale production of a heterologous Trichoderma reesei cellulase by Saccharomyces cerevisiae. J Biotechnol 13: 267–278

    PubMed  CAS  Google Scholar 

  • Zurbriggen BD, Penttilä M, Viikari L, Bailey MJ (1991) Pilot scale production of a Trichoderma reesei endo-13glucanase by brewer’s yeast. J Biotechnol 17: 133–146

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nevalainen, K.M.H., Penttilä, M.E. (2004). Molecular Biology of Cellulolytic Fungi. In: Kück, U. (eds) Genetics and Biotechnology. The Mycota, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-07426-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-07426-8_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07667-1

  • Online ISBN: 978-3-662-07426-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics